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Preface 

For more than a decade, data warehousing and knowledge discovery technologies 
have been developing into key technologies for decision-making processes in compa-
nies. Since 1999, due to the relevant role of these technologies in academia and indus-
try, the Data Warehousing and Knowledge Discovery (DaWaK) conference series 
have become an international forum where both practitioners and researchers share 
their findings, publish their relevant results and dispute in depth research issues and 
experiences on data warehousing and knowledge discovery systems and applications. 

The 7th International Conference on Data Warehousing and Knowledge Discovery 
(DaWaK 2005) continued series of successful conferences dedicated to these topics. 
In this edition, the conference tried to provide the right, logical balance between data 
warehousing and knowledge discovery. Regarding data warehousing, papers cover 
different relevant and still unsolved research problems, such as the modelling of ETL 
processes and integration problems, designing OLAP technologies from XML docu-
ments, modelling data warehouses and data mining applications together, improve-
ments in query processing, partitioning and implementations. With regard to data 
mining, a variety of papers were presented on subjects including data mining tech-
niques, clustering, classification, text documents and classification, and patterns. 
These proceedings contain the technical papers that were selected for presentation at 
the conference. 

We received 196 abstracts, and finally received 162 papers from 38 countries, and 
the Program Committee eventually selected 51 papers, making an acceptance rate of 
31.4 % of submitted papers.  

We would like to express our gratitude to all Program Committee members and ex-
ternal reviewers who reviewed the papers very profoundly and in a timely manner. 
Due to the high number of submissions and the high quality of the submitted papers, 
the reviewing, voting and discussion process was an extraordinarily challenging task. 
Special thanks must be given to Mr. Tho Manh Nguyen for all his support in the or-
ganization of the PC-tasks of DaWaK 2005. We would also like to thank all the au-
thors who submitted their papers to DaWaK 2005 as their contributions built the basis 
of this year’s excellent technical program. 

Many thanks go to Ms. Gabriela Wagner for providing a great deal of assistance in 
the administering of the DaWaK management issues as well as to Mr. Raimund An-
gleitner-Flotzinger and Mr. Andreas Dreiling for their supervision of  the conference 
management software. 

  
 

August, 2005 A. Min Tjoa 
 Juan Trujillo 
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A Tree Comparison Approach to Detect
Changes in Data Warehouse Structures

Johann Eder, Christian Koncilia, and Karl Wiggisser

University of Klagenfurt,
Dep. of Informatics-Systems

{eder, koncilia, wiggisser}@isys.uni-klu.ac.at

Abstract. We present a technique for discovering and representing
changes between versions of data warehouse structures. We select a tree
comparison algorithm, adapt it for the particularities of multidimen-
sional data structures and extend it with a module for detection of node
renamings. The result of these algorithms are so called editscripts con-
sisting of transformation operations which, when executed in sequence,
transform the earlier version to the later, and thus show the relationships
between the elements of different versions of data warehouse structures.
This procedure helps data warehouse administrators to register changes.
We describe a prototypical implementation of the concept which imports
multidimensional structures from Hyperion Essbase data warehouses,
compares these versions and generates a list of differences.

1 Introduction and Motivation

Data warehouses provide sophisticated features for aggregating, analyzing, and
comparing data to support decision making in companies. The most popular
architecture for data warehouses are multidimensional data cubes, where trans-
action data (called cells, fact data or measures) are described in terms of master
data (also called dimension members). Usually, dimension members are hierar-
chically organized in dimensions, e.g., university ← faculty ← department.
where B ← A means that A rolls-up to B.

As most data warehouses typically comprise a time dimension, available data
warehouse systems are able to deal with changing measures, e. g. , changing mar-
gin or sales. They are however not able to deal with modifications in dimensions,
e. g. , if a new faculty or department is established, or a faculty is split into two,
or departments are joined.

In [1] we presented the COMET approach, a temporal data warehouse meta-
model, which allows to represent not only changes of transaction data, but also
of schema, and structure data. The COMET model can then be used as basis
of OLAP tools which are aware of structural changes and permit correct query
results spanning multiple periods and thus different versions of dimension data.

Temporal data warehouses, however, need a representation of changes which
took place between succeeding structure versions of the dimension data. Typi-
cally, a change log is not available, but the data warehouse administrator has

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2005, LNCS 3589, pp. 1–10, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 J. Eder, C. Koncilia, and K. Wiggisser

Fig. 1. Our running Example

to create and maintain a mapping between snapshots of the dimension struc-
ture. The contribution of this paper is to assist data warehouse administrators
in detecting and describing these structural changes, i.e. insertion, deletion and
rearrangement of dimension members. Besides these structural changes in tree
structured dimensions there are also semantical changes (e.g. merging or split-
ting of dimension members) which cannot be discovered by looking at dimension
data alone. For these semantical changes we have developed a change detection
procedure based on data mining techniques [2]. Since this method analyzes out-
liers in the cell values, the computational costs are rather high. Therefore, it is
desirable to find structural changes first by mere structural comparisons with
more efficient algorithms.

For detecting structural changes, we present a novel comparison algorithm for
multidimensional data by adopting and extending an existing tree comparison
algorithm to the particularities of data warehouses. One of the main advantages
of our approach is that beside detecting changes like insert, delete and update
of an element on the instance level, it also supports the detection of key modifi-
cations (e.g. renamings of departments).

Such an approach can only be heuristic in nature and can never be complete,
as we will explain below. Therefore, this method is intended to support the
administrator but not to fully automate the task. Since dimension members can
be numerous (e.g. product catalog), the productivity gain will be significant.

Throughout the rest of this paper, we will use the following running example.
Consider a car dealer who wants to keep track of her/his sales. For this, she/he
implements a data warehouse with several dimensions. For sake of simplicity, we
take a closer look at only one of these dimensions, namely the Cars dimension.

The left tree in Fig. 1 depicts the original version of this dimension. As can be
seen, this dealer sells two different brands: BMW and Rolls-Royce. Each brand
consists of several different car types. For instance, Corniche, Phantom V and
Silver Dawn are different Rolls-Royce cars. The right tree in Fig. 1 shows the
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subsequent version of this dimension. As can be seen, different modifications
have been made: first of all, both brands united and are now known as BMW &
Rolls-Royce. A new car was introduced, namely BMW 1. Another car, Phantom
V, is no longer part of the product portfolio. Silver Spirit has been renamed and
is now known as Silver Spirit II. Moreover, for all Rolls-Royce cars power is no
longer given in kW but in horsepower.

2 Related Work

Our approach builds on the techniques developed in two different research areas,
namely temporal data warehousing and tree comparison algorithms.

During the last years different temporal data warehouse approaches have
been published. [3,4,5,6,7,8] are just a few of them. They differ in different as-
pects. For instance some of them support only changes on the schema level (e.g.
[7]) or on the instance level (e.g. [3] and [4]), some support changes on both, the
schema and the instance level (e.g. [8]).

There are several tree comparison algorithms. For instance, Zhang and
Shasha [9] worked on ordered trees. The Stanford DB Group proposed algo-
rithms for ordered [10] and unordered [11] trees. Nowadays as XML is very
popular many algorithms for comparing XML documents, which are also trees,
have been defined, for instance the approach of Cobena, Abiteboul and Marian
[12] or the approach of Wang, DeWitt and Cai [13].

3 Comparison of Data Warehouse Structures

3.1 The Data Structure

From our running example it is easy to see, that a DWH structure can be rep-
resented by a tree. To define our data structure formally, we introduce a tree
T = (V, E), where V = {m1, . . . , mm} is a set of nodes and E = {e1, . . . en} is a
set of edges. A node is representing a dimension member of a DWH cube, there-
fore node mi is defined as triple mi = 〈id, label, value〉, where id is a unique
identifier for each node, label is the dimension member’s name and value is
an object containing all other characteristics – i.e. formula, alias, description,
consolidation, . . . – of the dimension member. The id may stem from the data
source or may be generated during the process of building the tree. An edge ei

is a hierarchical relation between two members and therefore defined as tuple
ei = 〈mj , mk〉, meaning that mj is the parent of mk. E+ is the transitive closure
of E and therefore holding all ancestor relations.

Depending on the underlying DHW system, the structure can either be seen
as ordered tree or unordered tree. In an ordered tree, members have a designated
order within their parents, whereas in an unordered tree they don’t. To be able to
identify the nodes in the tree and to map them to the underlying DWH-system,
we define labels to be unique in an unordered tree. As we always can identify a
node through its parent and position within the parent in ordered trees, labels
don’t have to be unique in such a tree.
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3.2 Transformations and Operations

We compare two versions of a DWH structure. Therefore we represent each
version by a tree. Between this two versions a sequence of tree transformations
occurred. Our goal is to find this transformations.

We identified five possible operations on the member level. Hereafter t1 : T =
(V, E) references the old version of a tree and t2 : T = (V′, E′) references the
new version. Hence V,E and V′,E′ are the sets of nodes and edges before and
after the transformation respectively.

1. DELETE (DEL(mi)): The dimension member mi is deleted from the DWH
structure. A node can only be deleted if it does not have children.
(a) Precondition: mi ∈ V, ∃ej = 〈 , mi〉 ∈ E, �ek = 〈mi, 〉 ∈ E
(b) Operation: V′ = V\{mi}, E′ = E\{ej}
(c) Postcondition: mi /∈ V′, �e = 〈 , mi〉 ∈ E′

2. INSERT (INS((mi, l, v),mj, mk)): The member mi with label l and value v
is inserted as child of node mj directly after node mk. If mk is NULL, mi

becomes the first child of mj . For unordered trees mk may always be NULL.
(a) Precondition: mi /∈ V, mj ∈ V, mk = NULL∨ (mk ∈ V∧ (mj , mk) ∈ E)
(b) Operation: V′ = V ∪ {mi}, E′ = E ∪ {〈mj , mi〉}
(c) Postcondition mi ∈ V′, 〈mj, mi〉 ∈ E′

3. MOVE (MOV(mi, mj , mk)): The dimension member mi is moved to the parent
mj or is moved within its parent mj to be directly after mk. If mk is NULL,
mi becomes the first child of mj . For unordered trees mk may be NULL.
(a) Precondition: mi ∈ V, mj ∈ V, mk = NULL∨(mk ∈ V∧(mj , mk) ∈ E),

〈mi, mj〉 /∈ E+

(b) Operation: V′ = V, E′ = (E\ 〈 , mi〉) ∪ {〈mj , mi〉}
(c) Postcondition 〈mj, mi〉 ∈ E′

4. UPDATE (UPD(mi, value)): The characteristics of a dimension member mi –
i.e. the node’s value – is changed to value.
(a) Precondition: mi = 〈id, label, 〉 ∈ V
(b) Operation: E′ = E,m′

i = 〈id, label, value〉, V′ = (V\{mi}) ∪ {m′
i}

(c) Postcondition: m′
i ∈ V′ = 〈id, label, value〉

5. RENAME (REN(mi, label)): The name of a dimension member mi – i.e. the
node’s label – is changed to label.
(a) Precondition: mi = 〈id, , value〉 ∈ V
(b) Operation: E′ = E,m′

i = 〈id, label, value〉, V′ = (V\{mi}) ∪ {m′
i}

(c) Postcondition: m′
i ∈ V′ = 〈id, label, value〉

One may argue that MOVE is not a basic operation, as it may be composed
using DELETE and INSERT. This is true for most cases, but in our context we
want to identify relations between the old and the new version of a member.
This enables us to define what we called transformation functions to transform
cell data between different versions [1].

We distinguish between UPDATE and RENAME because in many commercial
systems, e.g. Hyperion Essbase, the member’s name is a key and we want to
distinguish between value changes and key changes of a member.
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3.3 Comparison of Dimension Members

To compare different versions of dimension members, we define a compare(x, y)
function that takes into account the various characteristics of a dimension mem-
ber. The compare(x, y) function takes two value-objects as defined above as
parameters and returns a value in the range of [0, 1] as degree of similarity.
Characteristics to be compared may for instance include formulae, user defined
attributes (UDAs), aliases, comments, shared member relations, consolidation
function and other DWH system specific attributes.

Some of these attributes are more distinguishing than others. So if for ex-
ample two nodes have exactly the same formula and three out of four UDAs
in common but a different consolidation function, it is rather likely that they
represent the same element, so compare(x, y) gives a value near to 1. On the
other hand, if the consolidation function is the same, but one is a shared mem-
ber and the other is not, it may be quite unlikely that these nodes represent
the same element, hence compare(x, y) results in a value near to 0. We define
these weighting factors to be parametrizeable. Hence the user may decide what
“similar” exactly means in her/his situation.

4 Treecomparison and Extensions

As tree comparison is a well explored area, there was no need to develop a new
comparison algorithm for trees. Instead we evaluated different existing methods
in order to find the ideal base for our approach.

In [10] Chawathe et al. present an algorithm for comparing two versions of a
tree. The result of the algorithm is an editscript consisting of tree transformations
which transforms t1 into t2. The time complexity of this method is O(nd + d2),
where n is the number of leaves in the tree and d is a measure for the difference
of the two versions. As we assume that there are only a few changes between two
versions, we can say that d 
 n. We chose Chawathe et al.’s algorithm as base
for our work because of a couple of reasons: its support of the essential MOVE
operation, its low time complexity, its ready-to-use editscript as representation
for changes, and it can be used for ordered and unordered trees.

In this section we will introduce Chawathe et al.’s treecomparison algorithm
and our extensions to make it applicabe for our domain.

4.1 Treecomparison in Detail

Chawathe et al.’s algorithm is defined on ordered trees but is applicable on
unordered trees as well. Each node has a label and a value which are obtained
from the data source. Furthermore, each node has a unique identifier which can
either stem from data source or be generated during data extraction. The id
may not identify nodes over different versions, so nodes representing the same
elements in different versions may have different ids and vice versa.

The result of this procedure is a so called editscript which transforms t1 into
t2. This editscript is a sequence consisting of four atomic operations: INSERT,
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UPDATE, MOVE and DELETE. As the matching of nodes between versions relies on
node labels, change of node labels (RENAME) is not supported.

Chawathe et al. define their INSERT and MOVE operations index based, mean-
ing that to determine the position where to insert a node, they use the in-
dex within the children of a node. To adapt their approach to our predeces-
sor based data structure we modified the FindPos(x) function to return the
predecessor for the node, or NULL, if there is no predecessor, instead of the
index.

The algorithm compares two tree versions: t1 : T and t2 : T. For simplicity
reasons we write x ∈ t meaning that node x is an element of the node set V of
tree t. The comparison algorithm needs the two tree versions and a matching
set as input. The matching set M is a set of pairs (a, b) with a ∈ t1 and b ∈ t2,
where a and b represent the same member in the two versions.

As the node ids may not identify elements over versions other matching cri-
terions for nodes have been defined. Before we can give a definition of these
criterions, we have to introduce some terms: l(x) and v(x) give the label and
value of node x respectively. The function common(x, y) gives {(v, w) ∈ M|v
is leaf descendant of x and w is leaf descendant of y} the so called Common
Leaves of x and y. Finally |x| is the number of leaf descendants of node x. We
also slightly modified the original matching criterions for leaf nodes for sake of
simplicity. So two nodes x and y are seen as representing the same element iff
one of the following conditions holds:

1. x and y are leaves, l(x) = l(y), and compare(v(x), v(y)) ≥ f , where f is a
user defined threshold in the range [0, 1]. f is called Minimum Similarity.

2. x and y are inner nodes and l(x) = l(y) and |common(x,y)|
max(|x|,|y|) ≥ t for 1

2 < t ≤ 1.
We call t the Minimum Common Leaves. t is defined by the user.

It can easily be seen that in addition to their label leaf nodes are compared
using their values, but inner nodes are only compared using their descendants.
For sure changes in the values of inner nodes will be detected later on in the
update phase. Zhang [14] proposes a similar matching constraint for inner nodes.
As labels have to be equal for allowing matches, renamings of nodes – i.e. changes
of labels – cannot be detected in the approach of Chawathe et al.

After the matching set M is calculated the editscript can be generated. This
happens in five phases.

1. Update Phase: For all pairs of nodes (x, y) ∈ M where v(x) = v(y) an update
operation is generated.

2. Align Phase: For all misaligned nodes, i.e. if the order is different in the two
versions, appropriate move operations are generated.

3. Insert Phase: For all unmatched nodes x ∈ t2 an insert is generated.
4. Move Phase: For all pairs of nodes (x, y) ∈ M such that (p(x), p(y)) /∈ M

(p(x) is the parent of x) a move to the correct parent is generated.
5. Delete Phase: For all unmatched nodes x ∈ t1 a delete operation is generated.
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4.2 Detecting Renaming of Nodes

With the plain algorithm described above changes of labels – which are renam-
ings of dimension members in our case – cannot be detected. Hence, our approach
extends Chawathe et al.’s approach in order to detect label changes.

In the original algorithm a renaming will always result in two operations,
one DELETE and one INSERT. But this does not represent the real semantics. We
want the different versions of members to be connected over structure versions.
Therefore, we introduce the new operation RENAME, denoted as REN(x, l) where
x is the node to be renamed and l is its new label.

The renaming detection takes place after the matching set calculation but
before generating the editscript. All nodes x ∈ t1 and y ∈ t2 which are not part
of a matching may have been renamed. They are added to the sets OldNames
O and NewNames N, respectively. We define O = {x ∈ t1|�(x, b) ∈ M} and
N = {y ∈ t2|�(a, y) ∈ M}. If one of the sets is empty, no renaming is possible.

For reduction of complexity we only consider renamings within the same
parent to be detected. So parents of possibly renamed nodes have to match.
But as the parents may also be renamed and therefore no match is possible
yet, this rule may foreclose detecting many renamings. Hence we also consider
possibly renamed parents as matched parents. For this purpose we define a set
PossibleRenamings P as follows: P = {(a, b)|a ∈ O ∧ b ∈ N • (p(a), p(b)) ∈
M ∨ (p(a), p(b)) ∈ P}. So P is the set of all pairs of nodes from O and N where
their parents either match or are possibly renamed. One can create P during a
Top-Down traversal of the trees or by a repeated application of the build rule
until the set remains stable.

We also define an order on P which is important for the appropriate traversal
of P in the next step. To define this order formally, we introduce the level of
a member x (lev(x)) as the height of the subtree rooted at x. We define the
operator “<” on pairs ∈ P as follows: ∀(a, b), (x, y) ∈ P : (a, b) < (x, y) ⇔
min(lev(a), lev(b)) < min(lev(x), lev(y)). The order within leaf node pairs and
inner node pairs respectively is irrelevant. So if P is traversed following this
order, all pairs containing at least one leaf node will be examined before any
pair containing only inner nodes.

The similarity check for renamed nodes has in principle the same constraints
as mentioned before. So we define likelyRenamed(a, b) which checks if (a, b) ∈ P
is a likely renaming, to return true iff one of the following conditions holds:

1. a and b are leaf nodes and compare(v(a), v(b)) ≥ f (f as defined above)
2. a and b are inner nodes and |commonRename(a,b)|

max(|a|,|b|) ≥ t (t as defined above)

The function commonRename(x, y) gives {(v, w)|v is leaf descendant of x
and w is leaf descendant of y, and (v, w) ∈ M or (v, w) ∈ L}, so all common
leaves plus all common likely renamed leaf nodes.

In an ordered tree within the calculation of likelyRenamed(a, b) one may
also take into account the siblings of the nodes. So if the predecessors and the
successors of a and b match, one may increase the degree of similarity a bit,
although it must not reach 1, as this would mean identical.
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likelyRenamed(a, b) splits P into two disjoint sets LikelyRenamings L and
UnlikelyRenamings U. L contains all pairs of nodes which are sufficiently similar
to be seen as representing the same element. All other elements of P are moved
to U. As for one node only one real renaming can have happened, the following
restriction has to hold for L: ∀(a, b), (x, y) ∈ L • a = x ⇔ b = y. So a node
can only appear in at most one pair in L. If more than one likely renaming
for one node is detected, we define the one with the highest similarity of the
involved nodes to go to L, all others are moved to U. Because of P’s order all
leaves are handled first. Likely renamed leaves are used in the similarity check
of inner nodes, i.e. likely renamed leaves are seen as common leaves. Therefore,
it is important to follow P’s order during this step, as otherwise renamed inner
nodes may not be detected correctly.

The renaming detection component cannot replace human interaction. It re-
lies on heuristics which may return a wrong result. Therefore, a human user has
to acknowledge all detected renamings by checking L and U. All renamings con-
firmed by the user are moved into the set Renamings R. For all pairs (a, b) ∈ R
a rename operation REN(a,l(b)) is generated and (a, b) is added to M. Fur-
thermore the algorithm may not detect all renamings. For instance, if a node is
renamed, its value changed very much and it is moved to another parent, then
the renaming will not be detected. For complexity purposes only renamed nodes
within the same parent will be considered. One may omit this restriction but
this will increase the runtime complexity considerably.

After this verbal description, we now formally describe the steps which are
necessary to detect renamings of nodes.

1. O = {x ∈ t1|�(a, b) ∈ M • a = x}, N = {y ∈ t2|�(a, b) ∈ M • b = y}
2. P = {(a, b)|a ∈ O, b ∈ N • (p(a), p(b)) ∈ M ∨ (p(a), p(b)) ∈ P}
3. ∀(a, b) ∈ P in traversal order•

(a) if likelyRenamed(a, b) = true
i. P = P\{(a, b)}, L = L ∪ {(a, b)}
ii. ∀x ∈ t1|(x, b) ∈ P • P = P\{(x, b)}, U = U ∪ {(x, b)}
iii. ∀y ∈ t2|(a, y) ∈ P • P = P\{(a, y)}, U = U ∪ {(a, y)}

(b) else P = P\{(a, b)}, U = U ∪ {(a, b)}
4. Let the user acknowledge all real renamings and insert them to R
5. ∀(a, b) ∈ R •

(a) Generate operation REN(a,l(b))
(b) M = M ∪ {(a, b)}

5 Implementation

We implemented our approach in Java 1.4 under Windows XP. In this prototype
the user is able to import and compare two different cubes from the commercial
multidimensional database Hyperion Essbase. After importing both cubes from
Hyperion Essbase, the prototype presents both versions as trees (see Fig. 1). The
left tree represents the old version and right tree the new version of the data
warehouse. The user triggers the matching procedure from the interface.
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(a) Confirm renamings (b) Resulting EditScript

(c) After applying the comparison algorithm

Fig. 2. Outcomings of the Algorithm

After the matchings are calculated the systems tries to find renamed nodes.
Figure 2(a) shows how the user can acknowledge the renamings found by the
system. The resulting trees are presented to the user so she/he can evaluate,
if the weighting factors are adequate. After the user confirmed the matchings
found by the system, the system starts to generate the editscript.

The resulting editscript of our running example is shown in Fig. 2(b). Figure
2(c) shows the two trees after the editscript is calculated. Different symbols
are used to depict different types of modifications that where detected. “=”
means that a corresponding, unchanged dimension member has been found, “->”
means that a member has been moved to another position, “%” means that the
corresponding member has been changed, e.g., that a user defined attribute has
been modified, “+” means that no corresponding member in the other tree could
be found. Finally, “*” means that a member has been renamed.

We also applied our prototype on a larger cube with about 16.400 members.
The matching and the editscript generation took in average 0.6 and 1.15 seconds
respectively, running on a Pentium IV at 2.4GHz and 1GB RAM. Hence we see
that this approach may also be applied on large cubes in reasonable time. All
changes were recognized correctly.
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6 Conclusions

For the validity of OLAP queries spanning several periods of data collection
it is essential to be aware of the changes in the dimension structure of the
warehouse. This means in particular, to have a representation of the changes (and
implicit unchanged elements) between different versions of the multidimensional
structure.

We adopted and extended a tree comparison algorithm to serve for this pur-
pose. The output of this extended algorithm is an editscript consisting of elemen-
tary change operations. We contributed in particular a module for discovering
renamings of nodes. Such an editscript facilitates the work of a data warehouse
administrator who is in charge of representing structural changes. In a proto-
type implementation based on Hyperion Essbase we were able to demonstrate
the validity of the approach, both the adequacy and validity of the algorithms
and their scalability for real data warehouses.
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Abstract. Association rules (AR) are one of the most popular data mining 
techniques in searching databases for frequently occurring patterns. In this 
paper, we present a novel approach to accomplish the conceptual design of data 
warehouses together with data mining association rules, allowing us to 
implement the association rules defined in the conceptual modeling phase. The 
great advantage of our approach is that the association rules are specified from 
the early stages of a data warehouse project and based on the main final user 
requirements and data warehouse goals, instead of specifying them on the final 
database implementation structures such as tables, rows or columns. Finally, to 
show the benefit of our approach we implement the specified association rules 
on a commercial data warehouse management server. 

Keywords: Data Warehouses, UML extension, conceptual modeling, 
multidimensional modeling, Data Mining, KDD, Association rules.  

1   Introduction 

The discovery of interesting association relationships among huge amount of data is 
called Association Rule (AR). The aim of the AR is to provide an observation a 
posteriori of the most common links between data. As an example, a customer selects 
items from those offered by a retailer (market basket). The retailer keeps a registry of 
every customer transaction and AR lets us know the relationships between the items 
that customers are purchasing. This is also referred as Market Basket Analysis. 

Data warehouses (DW) store historical, cleansed, subject oriented and integrated 
data extracted from various sources (Fig. 1). Analysts have to collect all business 
concerned data to implement a data mining (DM) algorithm. Thus, DW is a perfect 
framework to apply DM. Typically, DW analysts use multidimensional (MD) models 
to represent the information they manage. In MD models, data is organized into facts 
(the aim of analysis) and dimensions representing the context where we wish to 
analyze facts. Therefore, data mining could be modeled in an MD environment. 

In order to take advantage of the effort in the modeling process of DW and to 
enable the potential of algorithms, rules and modeling techniques, to develop in an 
extended and well-known standard modeling language, we propose to integrate the 
AR Mining process into DW modeling, extending the UML with a profile. 
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Fig. 1. The process of knowledge discovery 

Our proposal is an extension of UML for designing AR Mining models for DW, 
based on modeling process presented in “Extending the UML for Multidimensional 
Modeling”  [1] which is a UML profile1 for MD Modeling, that provides the specific 
mechanisms for conceptual model DW, because it allows us to consider main MD 
modeling properties and avoids having to learn a new specific notation or language.  

The remainder of this paper is structured as follows: Section 2 explains other 
works that have dealt with association rules, DW and modeling. Section 3 
summarizes the conceptual MD modeling on which we are based. Section 4 proposes 
the new UML extension for designing AR models for MD modeling. Section 5 
presents a case study and applies our UML extension for designing AR models for 
MD modeling, section 6 sketches some further implementation issues. Finally, section 
7 presents the main conclusions and introduces immediate and future work. 

2   Related Work 

The mining concept of discovering AR was introduced in  [2]. Early proposals used 
flat files as input data not in a DW environment. Another important contribution was 
to provide an SQL-like language with a set of primitive operations to support ad-hoc 
and interactive data mining integrated into databases, specifically extending SQL to 
support mining operators. DMQL  [12], M-SQL  [11] and  Mine Rule [13] are SQL-like 
languages. In  [3] there is a comparison between the query languages. All efforts to 
develop a language for DM allow us to integrate the mining process into databases, 
not in a separated statistic analysis tool, but as a process in a DB framework.  

                                                           
1  A profile is a set of improvements that extend an existing UML type of diagram for a 

different use. These improvements are specified by means of the extendibility mechanisms 
provided by UML (stereotypes, properties and restrictions) in order to be able to adapt it to a 
new method or model. 
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A Pattern Base Management is proposed in  [9], this is a system that stores and 
manages patterns as data is managed by a database management system. It is a novel 
issue in knowledge discovery, and it has been further modeled in  [10], not in DW 
context but as an isolated system that manages and stores patterns. On the other hand, 
several data mining approaches have been proposed to run on top of data warehouses. 
An algorithm for mining in a star schema or multidimensional model was proposed 
 [3],  [17]. In  [3],  [5],  [6] mining was applied in relational databases as a sequence of 
SQL queries, this represents an important advance of the relationship between AR and 
databases. Another proposal was  [18] which represents techniques that improve 
performance using SQL. At metadata level, in the Data Mining chapter of the 
Common Warehouse Model (CWM)  [7] there is a specification that describes 
metadata interchange among DW and business intelligence knowledge management. 
This approach consists of a number of meta-models that represents common 
warehouse metadata in the major areas of interest to DW and BI, including the mining 
process. But, in all these approaches the only benefit is that they work with huge data 
previously cleaned. These works do not take into consideration main final user goals 
of the corresponding multidimensional model underneath, so they do not use 
important terms in DW such as facts, dimensions or classification hierarchies. 

Therefore, we argue that there is still a missing work that allows us the 
specification of data mining techniques together with the multidimensional modeling 
accomplished to design data warehouses. Furthermore, the sooner this is specified 
(from the early stages of a DW project such as the conceptual modeling phase), the 
better the specified data mining techniques will be focused on final user needs.  

3   Object-Oriented Multi-dimensional Modeling 

In this section, we outline our approach to DW conceptual modeling, based on the 
UML [1],  [8],  [14],  [19], specified by means of a UML profile that contains the 
necessary stereotypes in order to carry out conceptual modeling successfully  [15]. 
The  main  features of MD modeling are: the many-to-many relationships between the  

 

Fig. 2. Multidimensional modeling using the UML 
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facts and one specific dimension (Fig. 2.a), degenerated dimensions, multiple 
classification and alternative path hierarchies (Fig. 2.b), the non-strict and complete 
hierarchies and the categorization of dimensions (Fig. 2.c). In this approach, the 
structural properties of MD modeling are represented by means of a UML class 
diagram in which the information is clearly organized into facts and dimensions. 

Facts and dimensions are represented by means of fact classes (stereotype Fact) 
and dimension classes (stereotype Dimension) respectively. Fact classes are defined 
as composite classes in shared aggregation relationships of dimension classes. The 
minimum multiplicity in the role of the dimension classes is 1, to indicate that all the 
facts must always be related to all the dimensions. The relations many-to-many 
between a fact and a specific dimension are specified by means of the multiplicity 1..* 
in the role of the corresponding dimension class. 

4   UML Approach for Association Rule Modeling 

Association Rules (AR) look for relationships between items in an entity. This mining 
process depends on identifying frequent item sets in data, grouped by an entity called 
Case. Frequent item sets could be used to summarize association between items in the 
selected attributes. We obtain rules using one or more attributes as input, and one or 
more attributes to predict.  Consequently we have association rules with some input 
attributes that predicts others (or the same), based on the grouping condition (Case).  
Consequently, Case from MD point of view could be an –stereotype OID- attribute of 
a Dimension class, because facts could be aggregated by any dimension or a –
stereotype OID- of a Fact class (degenerated Dimension). Input and Predict attributes 
could be selected from OID attributes (Fact or Dimension) or Fact attributes –
stereotype FA- or Dimension attributes –stereotype DA- and rules could have several 
Input and/or Predict attributes. Case, input and predict are elements of a class called 
Association Rule Mining Model. 

Rules are obtained considering specific settings. Basic settings are minimum 
support (MinSupp) and minimum confidence (MinConf) that rule must satisfy, max 
number of records of the item set (MaxItemSetSize) and max number of predicates 
(MaxNumberOfPredicates) (max number of appearances in the body of the rule). 
These four settings represent the class Association Rule Mining Settings. 

Finally, AR has an antecedent (body) and a consequent (header). The first contains 
input attribute/s value/s, the last contains predicted attribute/s value/s observed in the 
grouped item set. AR Mining Results class is built with these four attributes. 

Summarizing, AR mining process is represented using three classes: AR Mining 
Model (ARMM) that is the model, AR Mining Settings (ARMS), and finally AR 
Mining Results (ARMR) that contains the results of the process, the rules. 

 

Fig. 3. Association Rule Metamodel 
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Figure 3 shows the proposed model in which we could see that one AR Mining 
Model could have several settings, and for each setting we get a set of results. 

All conditions take part of Association Rules Settings class (ARSettings) in AR 
mining model (Fig. 3). Head and Body of the rule are defined as attributes of 
Association Rule Results class (ARResults), as shown in Fig 3. Each rule obtained 
has support and confidence, probabilities values that could be represented in percent 
values, defined as attributes of ARResults class in meta-model. 

This proposal allows us to work with attributes from dimensions and facts class of 
a multidimensional model, to obtain distinct types of association rules: single and 
multi-dimensional rules, single and multiple predicates rules, hybrid-dimension and 
inter-dimension association rules, single or multiple-level rules, or any other rules.  

There is a “type constraint”: association rule mining applied to DW needs the data 
under study (Input and Predict) to be discrete. Then quantitative continuous data must 
be categorized. This is a precondition that introduces a constraint in the model.  

Domain expert can provide some additional constraints on the rule pattern to be 
mined, so that generated rules are of interest to the user and more specific and useful. 
User could restrict to generate rules about a concrete case of an attribute using OCL. 

According to [4], an extension to the UML begins with a brief description and then 
lists and describes all of the stereotypes, tagged values, and constraints of the 
extension. In addition to these elements, an extension contains a set of well-
formedness rules. These rules are used to determine if a model is semantically 
consistent with itself. According to this quote, we define our UML extension for AR 
mining conceptual MD modeling, following the schema composed of these elements: 
description, prerequisite extensions, stereotypes / tagged values, well-formedness 
rules, and comments.  

4.1   Description 

This UML extension reuses a set of stereotypes previously defined in [1], and defines 
a set of tagged values, stereotypes, and constraints, which enables us to create AR 
mining integrated into MD models. The 18 tagged values we have defined are applied 
to certain components of the MD modeling, allowing us to represent them in the same 
model and on the same diagrams that describe the rest of the system. These tagged 
values will represent the participation in the AR structure of the different elements of 
the MD modeling (fact class, dimension class, base class, attributes, etc.), allowing us 
to specify how rules will be obtained depending on this mining model structure 
information and on the value of attributes of the model. A set of constraints are 
specified in order to define well-formedness rules. The correct use of our extension is 
assured by the definition of constraints in both natural language and OCL  [16]. 

4.2   Prerequisite Extensions 

This UML profile reuses stereotypes that were previously defined in another UML 
profile in [1]. This profile provided the needed stereotypes, tagged values, constraints 
to accomplish the MD modeling properly, allowing us to represent main MD 
properties of DW’s at the conceptual level. To facilitate the comprehension of the 
UML profile we present and use in this paper, we provide a summary of the 
specification of these stereotypes in Table 1. 
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Table 1. Stereotype from the UML profile for conceptual MD modeling [19] 

Name Base Class Description 
Fact Class Classes of this stereotype represent facts in a MD model 

Dimension Class Classes of this stereotype represent dimensions in a MD model 
Base Class Classes of this stereotype represent dimension hierarchy levels in a MD model 
OID Attribute Represent OID attributes of Facts, Dimension or Base classes in a MD model 
Fact-

Attributes 
Attribute Attributes of this stereotype represent attributes of Fact classes in a MD 

model 
Descriptor Attribute Represent descriptor attributes of Dimension or Base classes in a MD model 
Dimension
-Attribute 

Attribute Represent attributes of Dimension or Base classes in a MD model 

Comple-
teness 

Association Associations of this stereotype represent the completeness of an association 
between a Dimension class and a Base class or between two Base classes 

 

Table 2. Tagged values defined in the Profile 

Tagged Values of the Model 
Name Type M1 Description 

Classes Set(OclType) 1..* It specifies all classes of model.  
Tagged Values of the Class 

Name Type M Description 
Case { OID } 1 It specifies the case that an instance of this class uses to group by. 

The default attribute level Case tagged value is OID. 
Input Set({D,OID,DA,

FA}) 
1..
* 

It specifies a set of Inputs of the AR. The default attribute level 
Input tagged value is D case exists, otherwise, OID.  

Predict Set({D,OID,DA,
FA}) 

1..
* 

It specifies a set of Predicts class used to obtain AR. The default 
attribute level  Predict tagged value is D if exists, otherwise, OID. 

Tagged Values of the Attribute 
Name Type M Description

2
 

Case { OID } 1  
Input Set({D,OID,DA,FA}) 1..*  

Predict Set({D,OID,DA,FA}) 1..*  
Tagged Values of the Instance 

Name Type M Description 
Case { OID } 1 It specifies the case of an instance 
Input Set({D,OID,DA,FA}

) 
1..* It specifies a set of Inputs for this instance.  

Predict Set({D,OID,DA,FA}
) 

1..* It specifies the set of Predicates for an instance 

Tagged Values of the Constraint 
Name Type M Description 

Involved-
Classes 

Set(OCLType) 0..1 Classes that are involved in a rule, to be enforced in the 
constraint  

Case { OID } 1 It specifies the attribute that is the Case of the itemsets.  
Input Set({D,OID,DA,FA}) 1..* It specifies a set of Inputs of the AR 

Predict Set({D,OID,DA,FA}) 1..* It specifies a set of Predicts of the AR 
MinSupp Double 0..1 It specifies the minimum support of the AR 
MinConf Double 0..1 It specifies the minimum confidence of the AR 

MISS Integer 0..1 It specifies the maximum item set size of the rule 
MNOP Integer 0..1 It specifies the maximum number of predicates of the rule 

1 M stands for Multiplicity 
2 Due to space constraints, we do not include the descriptions of the tagged values of attributes as they are 
similar to their counterpart tagged values of classes. 
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4.3   Tagged Values 

In this section, we provide the definition of several tagged values for the model, 
classes, attributes, instances and constraints. 

Table 2 shows the tagged values of all elements in this extension. We must set only 
one Case Tagged Value of the Class for each mining model. The Case tagged value of 
the class could be defined for a Fact class or for a Dimension class. At attribute level 
the default Case tagged value must be OID –stereotype OID-. Default tagged values 
of the attributes of Input and Predict are descriptor attribute -stereotype D- in case 
they exist, or OID -stereotype OID- otherwise. We must select at least one Input and 
at least one Predict tagged attribute of the class for each Case tagged value of the 
class. This means that we could have rules with more than one input and several 
predict attributes. We could set other than D attribute or OID attribute (from Fact or 
Dimension class) putting a tagged value of Input or Predict of attribute close to the 
desired one. If more than one OID exists in a class it is mandatory to set the 
corresponding tagged value of the attribute. Default value of MinSupp is 0.01 and 
default value of MinConf is 0.40. Default values of MISS and MNOP are 2000 and 3 
respectively. These are attributes of association rule mining settings class. 

4.4   Well-Formedness Rules 

We can identify and specify in both natural language and OCL constraints some well-
formedness rules. These rules are grouped in Table 3. 

Table 3. Well-Formedness constraints 

- Correct type of the tagged values: 
The Case tagged value should be defined for an OID attribute of a Fact or Dimension class of the 

model 
context Model inv  

self.classes-> forAll(a | a.attributes ->forÄll( c | c.Case) -> notEmpty() implies self.attribute.oclIsTypeOf(OID)) 
- Relationship between Input and Predict tagged values of classes and respective tagged values of its 

attributes: 
If is not defined Input and Predict tagged values for an attribute is settled to D defined for its class.  
context Model inv  

self.classes->forAll(c| c.Input ->forÄll(a | a.attributes.Input)->isEmpty() implies a.attribute.oclIsTypeOf(D)=Input ) 
forAll(c | c.Predict->forÄll(a | a.attributes.Predict)->isEmpty() implies attribute.oclIsTypeOf(D)=Predict) 

- Categorization of continuous values of an Input and Predict tagged value of attribute 
Input and Predict Tagged values must be Type of Integer or must be discrete  
context Model inv  

self.classes-> forAll(a | a.attributes ->forÄll( p | p.Predict) -> notEmpty() implies self.attribute.oclType(Integer)) 
or self.attribute.oclType(Set(String))) 
self.classes-> forAll(a | a.attributes ->forÄll( p | p.Input) -> notEmpty() implies self.attribute.oclType(Integer)) 
or self.attribute.oclType(Set(String))) 

4.5   Comments 

In addition to the previous constraints, the designer can specify association rules with 
OCL. If the Input, or Predict values of a class or an attribute depends on the value of 
an attribute of an instance, it can be expressed as an OCL expression (see Fig. 5). 
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Normally, AR constraints defined for stereotypes of classes (fact, dimension and 
base) will be defined by using a UML note attached to the class instance2 
corresponding to the Case of the rule (only one Case for Note). We do not impose any 
restriction on the content of these notes in order to allow the designer the greatest 
flexibility, only those imposed by the tagged values definitions.  

5   A Case Study 

The goal of our proposal is to model AR mining in dimensional modeling framework. 
Typical example is Market Basket analysis modeled as star-schema where Sales are 
the Fact class and Product, Time and Customer are dimension classes.  

To discover rules in a MD model we have to select the case we want to analyze 
relationships of. To obtain associations of products in a market basket, we have to set 
a basket as Case with ticket number as key to group by, and select Input and Predict 
attributes,  (SubCategory.Description) as Input and Predict from Product dimension to 

 

Fig. 4. Example of multidimensional model with AR information and constraints 

                                                           
2  The connection between a note and the element it applies to is shown by a dashed line 

without an arrowhead as this is not a dependency [21]. 
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predict which subcategories are related in a market basket. Fig. 4 shows an MD 
model that includes a fact class (Sales), four dimensions (Product, Time, Customer 
and Store) and eight base classes (Subcategory, Category, Month,Quarter, Year, City, 
Province and State). Sales fact class has two OID -stereotype OID-: one is 
ticket_num, which is a degenerated dimension, the other one is ticket_line. Remember 
that Fact attributes could be used as Case if they are previously categorized.  

Adding corresponding tagged values we could obtain different association rules 
from this model. Two AR constraints have been specified as notes in Fig. 4, each note 
is attached to the class that contains the corresponding Case tagged value: 

Rule 1 uses Sales.Ticket_num -stereotype OID- as Case marked as –tagged value 
C- and Subcategory.Description -stereotype D- marked as -tagged value I and P- as 
Input and Predict respectively, the MinSupp is 0.05. The MinConf is 0.80, MISS as a 
maximum of 20000 frequent itemsets and MNOP of 2, are the association rule mining 
settings. Rules obtained could be “If helmet and mountain-bike then road bikes (0.52, 
0.3)” which means if a customer buys helmet and mountain-bike also buy road bikes 
in the 52% of the cases and that this holds in 30% of the transactions. 

Rule 2 uses Customer.ID -stereotype OID- as Case, Product.Name -stereotype D- 
and Month.Name -stereotype D- as Input -tagged value I - and Product.Name as 
Predict -tagged value I and P-. The MinSupp is 0.01, MinConf is 0.40, MISS as a 
maximum of 2000 frequent itemsets and MNOP of 3, by default. Rules obtained could 
be “If helmet and September then Road Tire (0.9, 0.04)”. 

6   Implementation 

The model was implemented in SQL Server 2005 (Beta version). Analysis Services is 
a component of SQL Server 2005 which allows us to implement DW with the 
concepts of a MD model.  Based on the model used as Case study (Fig. 4) we have 
created the Fact table Sales, the dimensions (Product, Time, Customer and Store) and 
their hierarchies (Subcategory, Category, Month, Quarter, Year, City, Province and 
State). Finally we have defined the association Rules. To define the rule 1 in the 
previous section, we consider Customer dimension as Case, that means that case key 
is stereotype OID of customer, and Subcategory of Product as Input selecting 
EnglishProductSubcategory as key of a nested table as Fig. 5 shown. In SQL Server 
predict means that will be used as Input and Predict, otherwise use Predict only.  

 

Fig. 5. Model structure example in Analysis Services 
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7   Conclusions and Future Work 

In this paper, we have presented an extension of the UML that allows us to model 
Association Rules in the conceptual multidimensional modeling of DW. Thus, the 
defined AR are directly related to the main final user needs and goals of the data 
warehouse. To achieve this, we have provided the needed stereotypes, tagged values 
and constraints that allow us to represent AR in multidimensional objects such as 
facts, dimensions, classification hierarchy levels and so on. To show the benefit of our 
approach, we have applied our extension to a market basket analysis case study. 
Finally, we have also shown how the information represented with our approach is 
implemented on a commercial data base management server with data mining 
facilities such Microsoft SQL Server 2005 (Beta version). In this way, all AR defined 
with our approach in the MD modeling at the conceptual level are directly 
implemented in the DW framework. Our immediate future work is to align our 
approach with the Model Driven Architecture (MDA) and to extend our profile to 
represent other data mining techniques rather than just association rules.  

References  

[1] S. Luján-Mora, J. Trujillo and I. Song. Extending the UML for Multidimensional 
Modeling. In Proc. 5th International Conference on the UML’02, vol 2460 of LNCS, 
pages 290-304, Dresden, Germany. September 2002. Springer-Verlag. 

[2] R. Agrawal, T. Imielinski and A. Swami. Mining Asociation Rules between Sets of Items 
in Large Databases. In Proc. ACM SIGMOD 93. pages 207-216. Washington DC. 1993. 

[3] M. Botta, J. Boulicaut, C. Masson and R. Meo. A Comparison between Query Languages 
for the Extraction of Association Rules. DaWaK 2002: 1-10 

[4] E. Ng, A. Fu, K. Wang. Mining Association Rules from Stars. ICDM (IEEE) Maebashi 
TERRSA, Maebashi City, Japan December 9 - 12, 2002, pages 322-329. 

[5] L. Dehaspe and L. Raedt. Mining association rules in multiple relations. In Proc. of the 
7th Workshop on ILP, vol. 1297, pages 125–132, Prague, Czech Republic, 1997. 

[6] S. Nestorov, N. Juki  .Ad-Hoc Association-Rule Mining within the Data Warehouse. 
Proceedings of the 36th Hawaii International Conference on System Sciences 
(HICSS’03) 

[7] OMG: CWM Common Warehouse Metamodel Specification. http://www.omg.org. 
[8] OMG: UML Unified Modeling Language Specification 1.5. 2004. 
[9] S. Rizzi et al. Toward a logical model for patterns. In Proc. ER Conference, pages 77-90, 

Chicago, 2003. 
[10] S. Rizzi. UML-Based Conceptual Modeling of Pattern-Bases. In Proc. 1st Int. Workshop 

on “Pattern Representation and Management (PaRMa’04), Crete, Greece, March 2004. 
[11] T. Imielinski, A. Virmani. MSQL: A Query Language for Database Mining. Data Mining 

and Knowledge Discovery, 3. 1999: 373-408 
[12] J. Han, J. Fu, W. Wang, K. Koperski, O. Zaiane. DMQL: A Data Mining Query 

Language for Relational Databases. In SIGMOD'96 Workshop on Research Issues in 
Data Mining and Knowledge Discovery (DMKD'96), Montreal, Canada, 1996. 

[13] R.Meo, G.Psaila, and S.Geri. A new SQL-like operator for mining association rules. In 
Proceedings of the 2nd Int'l Conference on Very Large Databases, India. September 1998 



 Extending the UML for Designing Association Rule Mining Models 21 

 

[14] J. Trujillo, et al., Designing Data Warehouses with OO Conceptual Models. IEEE 
Computer, special issue on Data Warehouses, 2001(34): p. 66-75. 

[15] M. Gogolla and B. Henderson. Analysis of UML Stereotypes within the UML Metamodel.  
5th Int Conf. on the UML- The Language and its Applications. 2002. Dresden, Springer, 

[16] J. Warmer and A. Kleppe. The Object Constraint Language Second Edition. Getting 
Your Models Ready for MDA. 2003: Addison Wesley. 

[17] H. Günzel, J. Albrecht and W. Lehner. Data Mining in a Multidimensional Environment. 
ADBIS 1999: 191-204 

[18] H. Cokrowijoyo, D. Taniar . A framework for mining association rules in Data 
Warehouses . IDEAL 2004: 159-165 

[19] S. Luján-Mora, J. Trujillo, I. Song: Multidimensional Modeling with UML Package 
Diagrams. ER 2002: 199-213 



 

A Min Tjoa and J. Trujillo (Eds.):  DaWaK 2005, LNCS 3589, pp. 22 – 31, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Event-Feeded Dimension Solution 

Tho Manh Nguyen1,2, Jaromir Nemec1, and Martin Windisch1 

1 T-Mobile Austria, Rennweg 97-99, A-1030 Vienna, Austria 
{tho.nguyen, jaromir.nemec, martin.windisch}@t-mobile.at 

2 Institute of Software Technology and Interactive Systems, Vienna Uni. of Technology 
Favoritenstr. 9-11/188, A-1040 Vienna, Austria 

tho@ifs.tuwien.ac.at 

Abstract. From the point of view of a data warehouse system its part of collect-
ing and receiving information from other systems is crucial for all subsequent 
business intelligence applications. The incoming information can be classified 
generally in two types, the state-snapshot data and the state-change or event 
data usually called transactional data, which contains information about the 
change processes applied on the instances of information objects. On the way 
towards active data warehouses it becomes more important to provide complete 
data with minimal latency. We focus in this paper on dimensional data provided 
by any data-master application. The information transfer is done via messages 
containing the change-information of the dimension instances. The receiving 
data warehouse system is able to validate the event-messages, reconstruct the 
complete history of the dimension and provide a well applicable "comprehen-
sive slowly changing dimension" (cSCD) interface for well-performing queries 
on the historical and current state of the dimension. A prototype implementation 
of "active integration" of a data warehouse is proposed. 

1   Introduction 

The upcoming integration technology standards [12,13] based on message exchange 
between information systems provide benefits not only to operative systems. Also 
non-OLTP systems like data warehouses can gain some profits out of this develop-
ment [4]. In the past a restricted integration of the source systems traditionally led to 
batch-oriented data load approaches for data warehouses.  

This situation is also in place at T-Mobile Austria, where we have done the analy-
sis and development of the solution, proposed in this paper. The data warehouse at T-
Mobile Austria runs on an Oracle 9.1.3 relational database and has a data volume of 
about six terabyte (TB). The complexity and number of operational source systems is 
very high. Therefore, the data warehouse provides its information as a single point of 
truth for nearly all units of the enterprise.  

The data freshness for transactional data is very high, although the data is currently 
batch loaded. CDRs (call detail records) are usually loaded every four hours. The 
dimensional data loaded from legacies like the billing system (BSCS, Business Sup-
port & Control System), SAP or the CRM Systems is received via daily snapshots. 
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Because of the limitations of the snapshot based approach1, a more efficient ap-
proach being more near-real time is considered. Data changes in the operational 
sources are captured and provided near real time as event messages via the event-
based infrastructure TIBCO [12]. This approach implies also the discussion of the 
message content and its validation. Mainly three quality aspects are under inspection: 
the completeness, uniqueness and order of the event-messages.  

For the further processing of the event-messages we developed one comprehensive 
and general applicable SCD representation inspired by Kimball’s three SCD-types [7] 
and propose a valid alternative to snapshot based information transfer. This solution is 
applicable especially in cases, where the information requirements of the receiving 
system focus on complete and detailed historical information for all instances com-
bined with a minimal latency demand. For a given latency time-interval the advan-
tages of this method are obvious for a dimension with a small number of changes 
compared to its cardinality.  

The proposed method provides much more than a data replication. The primary 
target is not a physical mirror of the dimension object. Moreover all necessary views 
including the change history of this object are implemented in a standardized way 
with quite realistic efforts. The event feeded cSCD approach has been designed ac-
cording to the main goals of T-Mobile Austria’s data warehouse, which are simple: 
“to provide a single point of truth easy to access”. 

The remainder of this paper is structured as follows. Section 2 reviews related 
work. Section 3 introduces the Event Model concerning the event and event process-
ing descriptions. The Event-feeded cSCD prototype implementation is described in 
Section 4. Finally, in Section 5, we present our conclusion and the future work. 

2   Related Works 

Active data warehouses [4,13] prefer to provide complete data within minimal la-
tency. The well known limitations of processing dimensional snapshot-data [11] can 
be overcome by the proposed method, which is preferred for a dimension with a small 
number of changes compared to its cardinality because of less resource consumption. 
The complete history of the dimensional change events is also an advantage compared 
with historical (periodic) snapshots. 

In some cases daily snapshots [1] have been used to provide change information 
out of the differences of two consecutive snapshots. To hold an appropriate history of 
such dimensions the only way was, to store the received snapshots chronologically, 
which means, that the storage request for the historical data does primarily not depend 
on the change fluctuation and volatility of the instances. One can apply in a second 
step some compression algorithms to overcome these disadvantages. 

R. Kimball [7] has introduced the slowly changing dimension (SCD) types 1, 2 and 
3 to track changes in dimension attributes. In SCD type 1, the changed attribute is 

                                                           
1  Multiple change events between snapshots miss completely. For each snapshot comparison 

the number of records to process is high, requiring also high computing-resources and -time 
and the history is kept by tremendous daily snapshot versions consuming a lot of storage. 
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simply overwritten to reflect the most current value thus does not keep the historical 
changes. SCD type 2 creates another (dimension) record to keep trace the changed 
attributes, but could not keep the old value both before and after the change. For this 
purpose, the SCD type 3 uses the “current value” and “previous value” but it isn't 
appropriate for the unpredictable changes.  

R. Bliujute et al. [2] suggested the temporal star schema to overcome the SCD is-
sues with event and state-oriented data. They tackled the SCD type 2 in fixed attrib-
utes with timestamp. We instead propose a more general event model where the target 
dimensional object can be fine tailored depending on business requirements.  

The flexibility in choosing the event timestamp (e.g. between transaction time-
stamp and processing timestamp) enables in the proposed cSCD representation the 
handling of time-consistency issues as discussed by R. Bruckner et al. [3].  

J. Eder et al. [8] propose a temporal multi-dimensional data model to cope with the 
changes of dimension via multi versions and valid time. Our purpose is keeping track 
not only the versions of instances but also their relationships in dimensional data. 

W. Inmon recommends the usage of normalized dimensions [6]. This is a very im-
portant aspect as the event based maintenance of denormalized dimensions although 
possible is not very practical [10].  

3   Event Model 

For a formal description of an event and event processing a UML based model is 
created. The core part of this model is an UML profile describing the event meta-
model. Additionally, the semantic of event is defined and shown by a simple example. 
Possible strategies of event interpretation are discussed. 

Based on the defined model and the interpretation of the event a broader discussion 
is performed, demonstrating that the traditional distinction between fact and dimen-
sion in event based DWH environment represents only a different specialization of 
our event based model.  

3.1   Profile 

To describe a general event it is necessary to raise the model to the meta level M2 [9] 
as the structure of each event type is very proprietary based on the transferred busi-
ness information. The simplified profile definition is depicted in Fig. 1. 

The key concepts of the event profile are as follows: 

- Stereotype «Event» describes the object containing the event data. 
- Stereotype «Efd» (abbreviation for event feeded dimension) depicts the target 

object that is maintained via the event stream. 
- Stereotypes «Trans» and «Snap» as subtypes of «Efd» are discussed below 

Those stereotypes are applicable on the class level, the rest of stereotypes are con-
nected with an attribute: 

- Stereotype «Key» is used to mark the (natural or surrogate) primary key of the 
dimension  
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- Stereotype «Order» is intended to define the order in which the events were 
created and should be processed. 

- Stereotype «Timestamp» identifies an attribute containing the timestamp in-
formation of an event. The transaction time, event creation time, event proc-
essing time are various examples of this stereotype. 

- Stereotype «Action» describes the nature of the change represented in the 
event (insert / update / delete) 

- Stereotype «Status» enables the depiction of a logical deletion of a dimension 
instance. 

 

Fig. 1. Simplified Profile Event Definition 

Not all of the listed stereotypes are mandatory, the usage is constrained by seman-
tic rules (see below) such as: The «Event» and «Efd» classes must contain at least one 
Key attribute (i.e. an attribute with stereotype «Key»). Order and Timestamp attrib-
utes may coincident, e.g. in cases when the time grain is to large to distinct the events 
uniquely, the Order attribute is used to define the unique event sequence. The oppo-
site extreme when neither of those attributes is defined is also valid. In that case the 
timestamp of event processing can be used as a default Timestamp attribute (of course 
the unique order of events must be established in this case as well). 

3.2   Example 

To illustrate the usage of Event profile lets consider a simplified application that 
maintains the customer attributes via an event interface. The customer is identified 
with an attribute id, the customer attributes consist of name, address and tariff.  
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The class with associated stereotype Event describes the customer-value-change 
event. This event is generated on each change of at least one attribute of a particular 
customer. As marked with stereotype Key the primary key of the customer dimension 
is the attribute id. The attribute timestamp is stereotyped as Timestamp i.e. this attrib-
ute defines the point in the time of the change of customer attributes. The rest of at-
tributes have no stereotypes they are regular event attributes containing additional 
information. 

The second class in Fig. 2 describes the target object maintained via the event feed 
(stereotype Trans defines that a full versioned history of the target object will be 
build; see the detailed discussion in 3.3). The meaning of the additional attribute is 
discussed below. 

 

Fig. 2. Customer Event Profile Example 

3.3   Event Processing 

The profile based event model must be enriched with semantic rules defining the 
interpretation of an event. The most important feature is the sub-typing of the Efd 
object. In the profile two main examples are defined Snap and Trans. 

The Snap object is maintained with overwrite policy, i.e. new records are inserted; 
existing records are updated or deleted. In a Snap object only one record per primary 
key is stored. Snap is mnemonic for dimension snapshot. 

The Trans object is maintained cumulatively, each event is added to the target ob-
ject, building a complete transactional history of the dimension. 

The handling of primary key of the build dimension can be configured. The Pri-
mary key option defines if the target object uses the natural key (as provided within 
the event) or if a surrogate key should be generated while the event is processed. In 
any case the primary key always uniquely identifies the dimension instance, so if a 
complete history of the dimension is maintained an additional attribute stereotyped as 
«Version» must extend the primary key of the target table. 

Other option is defined on the level of attribute; an attribute noted as Timestamp-
Post is applicable for Trans object only. It is filled with the value of the correspond-
ing Timestamp attribute of the successor version decreased by the smallest grain of 
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the time dimension (e.g. 1 ms). The default value is an artificially set high date (e.g. 
31-12-9999 00:00:00). The usage of two timestamps in a full history table is not a 
"pure relational" design but extreme practical solution as for the selection of a version 
of a particular dimension occurrence a simple logic can be applied (required time-
stamp between Timestamp  and TimestampPost). 

If an attribute has a suffix From it contains the value "before the change", i.e. in 
Trans object this is the value stored in the preceding version. The association between 
the corresponding attribute is established with naming conventions. 

A different aspect of semantic is the validation of the event model, i.e. the verifica-
tion if the model is well-formed. Examples of constraints that must be checked are 
listed below: 

- Event class must have at least one Key attribute 
- Each Timestamp attribute must have a type compatible with date/time. 

The final role of semantic in event context is the event validation. It is possible to 
extend the event data with redundant information that can be checked while the event 
is processed. The exceptions can be interpreted as an advice of lost or corrupted 
events. 

For examples adding an Action attribute to the event (possible values: insert / up-
date / delete) enables additional checks: 

- key must exists in the target object on update and delete  
- key must not exists in the target object on insert 

Other types of validation can be alternatively implemented as services on the event 
transport layer, e.g. guaranteed delivery or de-dup filtering [5]. 

4   Event-Feeded cSCD Implementation 

The described implementation represents a particular instantiation of the presented 
model in Section 3. The target object is implemented as a Trans table; natural key 
option is used; Action and from attributes are supported. 

4.1   Development Environment 

Because the target DWH is also based on Oracle DBMS, we decided to keep the cur-
rent development environment, i.e. developing the event feed cSCD solution as an 
Oracle PL/SQL package and call easily the functionality from ETL (e.g. Informatica  
Powercenter) mappings. 

4.2   The UTL_EVENT_SCD Package 

The package can be used to trace the changing attributes of any (dimensional) table. It 
accepts a variant of parameters for the detailed configuration of the event-processing 
and -correction such as traced entity (via table name parameter), correct option (op-
tional, mandatory or automatically), refresh option (incremental or from scratch), filer 
criteria, etc.  
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Fig. 3. UTL_EVENT_SCD Package modules and its related tables  

The package (Fig. 3) contains 3 main modules: Event Processing (EP), Snapshot 
Generation (SG), and Consistency Checking (CC) providing the following options: 

• Validating the events before refreshing the historical transactions of the entity 
instances (update TRANS table) with full historical tracing and versioning. 

• Providing the state information at any point in time for any instance or subset of 
instances (generate SNAPSHOT table on demand) 

• Checking the consistency between the entity state data of the legacy system and 
the data in DWH, and solving the inconsistency issue. 

4.2.1   Event Processing (EP) 
EP applies event data and refreshes the TRANS table as follows. It first accesses the 
event data, filters those which happened since the last refresh (i.e. those records which 
do not appear in TRANS or have different states with the current records in TRANS). 
The event validation then checks the events with automatic correction options to over-
ride some invalid events. This validation and correction processes are based on some 
useful attributes such as change_key, attribute_from or sequence order. The invalid or 
overridden events are kept in the PROTOCOL table. 

The valid events are used to refresh the TRANS table. For each event data related 
to an entity instance, an equivalent transaction record in TRANS table is created. If 
there are other events related to the same entity, the extended SCD type 2 [1,5] is 
applied to keep trace over all transactions (with versions). The TRANS table thus 
contains the complete transaction history of dimension changes. 

Examples: We apply the UTL_EVENT_SCD package to trace the Customer’s at-
tribute changes. Suppose that we have currently two customers Robert and Sonja until 
7 am,14/02/2005. At 7:10, Robert informs that he changes his address from 20 Renn-
weg to 25 Favoriten. 7:12 am, a new customer Micheal has registered into the system, 
and Robert changes his tariff from type 1 to type 2 at 7:13. At 7:14, Sonja changes her 
tariff from type 2 to type 1. The UTL_EVENT_SCD package is executed at 7:15 to 
refresh the previous TRANS table. (Fig. 4) 
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CUST_TRANS (Before Event  applying) 
ID Valid_from Valid_to Name Address Tariff Address_from Tariff _from Recordstamp version Last_version Change_key 
1 14-02-2005 07:00:00 31-12-9999 00:00:00 Robert 20 Rennweg T1 14-02-2005 07:00:00 1 Y I 
2 14-02-2005 07:00:00 31-12-9999 00:00:00 Sonja 15 Kargan T2   14-02-2005 07:00:00 1 Y I 

 
CUST_EVENT 

ID Timestamp Seq Name Address Tariff Address_from Tariff_from Change_key 
1 14-02-2005 07:10:00 1 Robert 25 Favoriten T1 20 Rennweg  U 
3 14-02-2005 07:12:00 2 Micheal 10 Rathaus T2   I 
1 14-02-2005 07:13:00 3 Robert 25 Favoriten T2  T1 U 
2 14-02-2005 07:14:00 4 Sonja 15 Kargan T1  T2 U 

 
CUST_TRANS (After Event applying) 
ID Valid_from Valid_to Name Address Tariff Address _from Tariff _from Recordstamp version Last_version Change_key 
1 14-02-2005 07:00:00 14-02-2005 07:09:59 Robert 20 Rennweg T1   14-02-2005 07:15:00 1 N I 
1 14-02-2005 07:10:00 14-02-2005 07:12:59 Robert 25 Favoriten T1 20 Rennweg  14-02-2005 07:15:00 2 N U 
1 14-02-2005 07:13:00 31-12-9999 00:00:00 Robert 25 Favoriten T2  T1 14-02-2005 07:15:00 3 Y U 
2 14-02-2005 07:00:00 14-02-2005 07:13:59 Sonja 15 Kargan T2   14-02-2005 07:15:00 1 N I 
2 14-02-2005 07:14:00 31-12-9999 00:00:00 Sonja 15 Kargan T1  T2 14-02-2005 07:15:00 2 Y U 
3 14-02-2005 07:12:00 31-12-9999 00:00:00 Micheal 10 Rathaus T2   14-02-2005 07:15:00 1 Y I 

Fig. 4. TRANS table refresh after UTL_EVENT_SCD package execution 

The investigation of the performance behavior based on the prototype implementa-
tion showed a near linear scalability of the processing-time per event with an average 
throughput of about 300 TRANS-records per second on a dimension with the cardi-
nality of one million records. The minimum refresh period is about 3-4 seconds 
caused by process overheads. However, with the high number of events (e.g. over 
20000 events), the more events accumulated, the less efficient of the event-SCD ap-
proach compared to the snapshot based SCD approach. 
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Fig. 5. Elapsed processing time and performance throughput comparison between event-SCD 
and snapshot based SCD approach 

4.2.2   On Demand Snapshot Generation (SG) 
Despite the series of snapshots is not kept as previously, the requirement to have a 
snapshot at one point in time for any subset of entity instances remains. From the 
TRANS table, we can rebuild these required snapshots. The package provides two 
options to generate a snapshot: (1) from scratch (Fig. 6) and (2) based on an existing 
snapshot, further referenced as based snapshot (Fig.7). The generated Customer snap-
shots at 7:00 and 7:15 are shown in Fig. 8. 

 



30 T.M. Nguyen, J. Nemec, and M. Windisch 

 

CREATE TABLE CUST_SNAP AS 
SELECT ID, i_timepoint as Snaptime, Name,Address, Tariff  
FROM CUST_TRANS 
WHERE CHANGE_KEY <> 'D' AND  
i_timepoint BETWEEN VALIDFROM_T AND VALIDTO_T; 

Fig. 6. Create Snapshot from scratch (i_timepoint is the time point of the snapshot data) 

CREATE TABLE CUST_SNAP AS 
SELECT * FROM 
(SELECT ID,i_timepoint as Snaptime, Name, Address, Tariff  
 FROM CUST_TRANS WHERE CHANGE_KEY <> 'D' AND 
 i_timepoint BETWEEN VALIDFROM_T AND VALIDTO_T  
 AND VALIDFROM_T > v_prev_time 
UNION ALL 
 SELECT ID,i_timepoint as Snaptime, Name, Address, Tariff  
 FROM BASED_CUST_SNAP 
 WHERE ID NOT IN 

(SELECT ID FROM CUST_TRANS WHERE 
   i_timepoint BETWEEN VALIDFROM_T AND VALIDTO_T  

 AND VALIDFROM_T > v_prev_time) 
 ); 

Fig. 7. Create Snapshot from based snapshot (BASED_CUST_SNAP is the based snapshot 
table, v_prev_time is the time point of the based snapshot data) 

SNAPSHOT at 14-02-2005 7:00  SNAPSHOT at 14-02-2005 7:15 
ID Snaptime Name Address Tariff  ID Snaptime Name Address Tariff 

1 14-02-2005 07:00:00 Robert 20 Rennweg T1  1 14-02-2005 07:15:00 Robert 25 Favoriten T2 
2 14-02-2005 07:00:00 Sonja 15 Kargan T2  2 14-02-2005 07:15:00 Sonja 15 Kargan T1 

      3 14-02-2005 07:15:00 Micheal 10 Rathaus T2 

Fig. 8. SNAPSHOT tables generated at 7:00 and 7:15 

4.2.3   Consistency Checking and Recovery (CC) 
In the event based cSCD approach, an inconsistent state could be detected when we 
are able to access on a truthful snapshot source (usually provided from the legacy 
systems). The input requirements of this process are the mandatory truthful snapshot 
(Si, tj) table and the metadata parameters describing the record-structure. The consis-
tency checking process compares a truthful snapshot(-part) taken on any subset of 
instances Si, at any point of time tj with the corresponding on demand snapshot (Si, tj) 
(see Section 4.2.2) which is temporary stored in a TEMP_SNAP (Si, tj) table. The 
found inconsistencies between the snapshots are applied again as new change events 
to correct the TRANS records.  

5   Conclusion and Future Work 

The event feeded cSCD approach presented in this paper significantly reduces the 
number of records to be processed compared to the snapshot based approach. Besides, 
compared with the Kimball's classification of SCD [7] we see that the SDC types 1,2 
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and 3 are only examples of possible instantiations of the proposed cSCD approach 
(SDC 1 and 2 respectively use the Snap object without and with from attributes;   
SDC 3 is based on Trans object without from attributes). 

Although the target object was up to now considered as a dimension, this is not a 
limitation of the proposed model. A typical fact table can be described also as a ver-
sioned dimension (fast changing dimension), using the add-version update policy 
(each event creates a new record in the fact table) with appropriate validation e.g. to 
maintain a balance attribute.  

Further more extending our model with summarizing stereotypes (e.g. add the actual 
value of the attribute to the previous value) the way is opened for describing running 
aggregates. On the other hand the correlation of system-dependent event-messages as 
an alternative to the join of dimensional snapshots needs further inspection. 

Acknowledgement 

This research was funded by T-Mobile Austria and supported by the IT department 
providing the needed infrastructure and environment. 

References 

1. Arun Sen, Atish P. Sinha, A Comparison of Data Warehousing Methodologies. Communi-
cations of the ACM, Vol. 48, No. 3, March 2005. 

2. Bliujute, R., Saltenis, S., Slivinskas, G., and Jensen, C.S. (1998). Systematic Change 
Management in Dimensional Data Warehousing. In Proc. of the 3rd Intl. Baltic Work-
shop on Databases and Information Systems , Riga, Latvia, (pp. 27-41). 

3. Bruckner R., Tjoa A., Managing Time Consistency for Active Data Warehouse Environ-
ments. DaWaK 2001, Springer-Verlag LNCS 2114, pp. 254–263, 2001. 

4. Brobst, S., Enterprise Application Integration and Active Data Warehousing, In Proc. 
Data Warehousing 2002, pp. 15-22, Physica-Verlag 2002. 

5. Hohpe G., Woolf B., Enterprise Integration Patterns, Designing, Building, and Deploying 
Messaging Solutions, Addison-Wesley, 2004 

6. Inmon, W., Building the Data Warehouse; Jon Wiley & Sons, Second Edition, 1996 
7. Kimball R. et al., The Data Warehouse Toolkit: The Complete Guide to Dimensional 

Modeling, 2nd Edition, John Wiley & Sons, 2002. 
8. Koncilia, C., Eder, J., Changes of Dimension Data in Temporal Data Warehouses, DaWaK 

2001, Springer-Verlag LNCS 2114, pp. 284–293, 2001. 
9. Meta Object Facility (MOF) Specification http://www.omg.org/docs/formal/00-04-03.pdf 

10. Rieger B., Brodmann K., Mastering Time Variances of Dimension Tables in the Data 
Warehouse, Osnabrueck University, 1999 

11. Rocha R., Cardoso F.,  Souza, M., Performance Tests in Data Warehousing ETLM Process 
for Detection of Changes in Data Origin. DaWaK 2003, LNCS 2737, pp. 129-139, 2003. 

12. TIBCO Software Inc.: http://www.tibco.com 
13. Vandermay J., Considerations for Building a Real-time Oracle Data Warehouse, DataMir-

ror Corporation White Paper,2000. 



XML-OLAP: A Multidimensional Analysis
Framework for XML Warehouses

Byung-Kwon Park1, Hyoil Han2, and Il-Yeol Song2

1 Dong-A University, Busan, Korea
bpark@dau.ac.kr

2 Drexel University, Philadelphia, PA 19104, USA
hyoil.han@cis.drexel.edu, songiy@drexel.edu

Abstract. Recently, a large number of XML documents are available
on the Internet. This trend motivated many researchers to analyze them
multi-dimensionally in the same way as relational data. In this paper, we
propose a new framework for multidimensional analysis of XML docu-
ments, which we call XML-OLAP. We base XML-OLAP on XML ware-
houses where every fact data as well as dimension data are stored as XML
documents. We build XML cubes from XML warehouses. We propose a
new multidimensional expression language for XML cubes, which we call
XML-MDX. XML-MDX statements target XML cubes and use XQuery
expressions to designate the measure data. They specify text mining op-
erators for aggregating text constituting the measure data. We evaluate
XML-OLAP by applying it to a U.S. patent XML warehouse. We use
XML-MDX queries, which demonstrate that XML-OLAP is effective for
multi-dimensionally analyzing the U.S. patents.

1 Introduction

An online analytical processing (OLAP) system is a powerful data analysis tool
for decision-making [11]. It provides an analysis from multiple perspectives or
dimensions for a large amount of data residing in a data warehouse. Data ware-
houses are commonly organized with one large fact table and multiple small
dimension tables. The fact and dimension tables are typically the structured
data stored in a relational database.

Recently, a large number of XML documents are available on the Internet.
Thus, we need to analyze them multi-dimensionally in the same way as relational
data. However, the data model of XML documents is not flat like relational data,
but a tree structure. In addition, XML documents can contain unstructured data
such as text. Thus, we need to develop a new framework of multidimensional
analysis for XML documents.

In this paper, we propose an OLAP framework for XML documents, which
we call XML-OLAP. We base XML-OLAP on XML warehouses where every fact
data as well as dimension data is stored as an XML document. XML cubes are
built from XML warehouses. While conventional data cubes have numeric data
as measure values, XML cubes have either numeric or text data. We propose a
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new multidimensional expression language over XML cubes, which we call XML-
MDX. XML-MDX statements target XML cubes and use XQuery expressions
to specify the measure data, axis dimensions, and slicer. They also specify text
mining operators for aggregating text constituting the measure data such as
summarization, classification, and top keyword extraction.

We show an XML-OLAP example for the U.S. patent warehouse to evaluate
its effectiveness. The U.S. patent warehouse is built by extracting information
from the U.S. Patent Web Site [12], converting it into XML documents, and stor-
ing them in a native XML database. Dimension tables are also built in the form
of XML documents and stored in the native XML database. We demonstrate
XML-MDX queries to show that XML-OLAP is effective for multi-dimensionally
analyzing the U.S. patents.

This paper makes the following contributions: (1) We propose a new frame-
work, XML-OLAP, for multi-dimensional analysis of XML documents. We be-
lieve XML-OLAP is the first framework for online analysis of an XML document
set. (2) We propose a new multidimensional expression language, XML-MDX.
We are inspired by the Microsoft MDX language [11] which is widely accepted
as an OLAP query language. XML-MDX can accommodate the hierarchical tree
structures of XML documents. (3) We propose a mechanism to enable the aggre-
gation of text data contained in XML documents using text mining operations. It
can give the text mining community a vehicle to make their technology accessible
to a broad user base.

This paper is organized as follows: Section 2 describes the related work.
Section 3 describes building an XML warehouse. Section 4 describes building
XML cubes and querying them using XML-MDX. Section 5 describes the XML-
OLAP application to the U.S. patent XML data. Section 6 concludes the paper.

2 Related Work

Pokorny [9] applied a star schema to XML data. A dimension hierarchy is de-
fined as a set of logically connected collections of XML data. Facts may also
be conceived as elements of XML data. Pokorny proposed a formal model for
dimension hierarchies and referential integrity constraints in an XML environ-
ment. We also assume that both dimension and fact information are represented
as XML documents in the same way as Pokorny does.

Nassis et al. [7] also worked on XML document warehousing. They focused
on the conceptual design of XML document warehouses and the concept of
virtual dimensions using XML views. They utilized object-oriented concepts in
UML to develop a conceptual model for XML document warehouses from user
requirements.

Golfarelli et al. [2] dealt with the problem of automatically deriving the con-
ceptual schema from an XML source. They assumed that the XML data have
all the information for the schema. They proposed a semi-automatic approach
for building a schema from an XML DTD or schema.
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Hümmer et al. [3] proposed a family of XML document templates, called
XCube, to describe a multidimensional structure, dimensions and fact data for
integrating several data warehouses into a virtual or federated data warehouse.
The XML templates are not directly related to XML warehousing, but they can
be used for representing hierarchical dimension data in our framework.

There are a lot of work on constructing OLAP cubes from distributed XML
data. Jensen et al. [4,5] transformed XML data on the web into relational data
in order to be used by conventional OLAP tools. Niemi et al. [8] proposed a
system which can construct an OLAP cube based on an user’s MDX query.
They all construct a relational OLAP cube by transforming XML data collected
from distributed XML sources, whereas we construct an XML cube from XML
documents.

3 XML Warehouses

In Section 3.1, we present the multidimensional model of an XML warehouse
and how to derive it. In Section 3.2, we present how to build an XML warehouse
from the given XML document set.

3.1 Multidimensional Modeling of XML Warehouses

We assume that an XML warehouse has a multidimensional model as in Fig-
ure 1. The model has a single repository of XML documents, which forms fact
data, and multiple repositories of XML documents, in which each forms one
dimension data. In Figure 1, there are n dimensions and thus, n repositories of
XML documents.

The fact repository is the same as assumed by Nassis et al. [7]. Each fact is
described in a single XML document. Thus, the fact data is not as simple as in
a conventional data warehouse. It has a hierarchical tree structure containing
structured data and unstructured data.

Dimension data are described in XML documents, and each dimension data
is grouped into a repository of XML documents. Since each dimension has a
hierarchy, a single XML document in a repository contains an instance of a di-
mension hierarchy rooted at a top level member in the hierarchy. Some auxiliary
data structures like indexes are used to link dimension data with fact data.

Facts

Dimension 1

Dimension n
………

XML Doc
XML Doc

XML Doc

Dimension 2

XML Doc

Fig. 1. Multidimensional Model of An XML Warehouse
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The XML multidimensional model described in this section has the following
advantages: (1) Since all the fact and dimension data are described in XML doc-
uments, we can easily collect them. (2) We can store all the fact and dimension
data in a native XML database and can easily manage and query them through
the native XML database management system. (3) Since each dimension data is
described in an XML document, we can easily represent the dimension hierarchy
in a single document using the tree structure of an XML document. Thus, we
need not join multiple tables as required in the relational snowflake model.

3.2 Building an XML Warehouse

Building an XML warehouse consists of two steps: building a single XML reposi-
tory for fact data and building a number of XML repositories for dimension data.
Rusu et al. [10] dealt with the problem of processing raw XML documents into
a data warehouse repository, and proposed some rules and techniques for data
cleaning, integration, summarization, and updating/linking existing documents.
We assume that the XML repository for fact data is provided after cleaning. We
focus on building the XML repositories for dimension data. In order to decide
the required dimensions to analyze the given XML document repository, we need
to build the conceptual model of the XML documents.

There are several works on the conceptual modeling of XML data using
UML. Jensen et al. [5] proposed an algorithm for automatically constructing
UML diagrams from XML data based on their DTD’s. Lujan-Mora et al. [6]
extended UML for multidimensional modeling including multistar model, shared
hierarchy levels, and heterogeneous dimensions. We adopt their methods for
conceptual modeling of XML data in UML class diagrams.

From the conceptual model of fact data, we can decide dimensions for analyz-
ing them. We assume that it is done manually because the conceptual model is
object-oriented and expressed in UML class diagrams for the purpose of helping
people to understand the logical structure of fact data. Nassis et al. [7] proposed
to select dimensions based on user requirements and to represent the dimensions
virtually using XML views since they assumed that all the dimension data are
part of fact data. However, we assume that some dimension data are out of fact
data. Thus, for simplicity, we materialize an XML repository for each dimension
selected.

For multidimensional analysis, we need some mechanism to join dimension
and fact data. In a conventional data warehouse, we insert a foreign key in the
fact data to match with each dimension data. In this paper, we rely on an index
structure that matches each dimension data with the corresponding fact data.
We build the index together with the XML repositories for dimension data.

4 The Multidimensional Analysis Framework for XML
Warehouses

In this section, we describe XML-OLAP, which is about generating XML cubes
and expressing multidimensional queries. In Section 4.1, we present a new notion
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of XML cube (called XQ-Cube). In Section 4.2, we present a new multidimen-
sional expression language (called XML-MDX ) for XQ-Cubes.

4.1 XML Cubes

Since our XML warehouse has XML documents as fact data, the cube con-
structed from the XML warehouse should have the cells whose values are an
aggregation of XML documents. Defining an aggregation over multiple XML
documents is difficult because an XML document is a hierarchically structured
composite data object. However, defining an aggregation over such data segments
as numeric or text data segments is possible.

We propose to use an XQuery expression for measure specification. We call
the cube constructed from the XML warehouse with measure values described
by an XQuery expression XQ-Cube. The measure values, the evaluation result
of the XQuery expression, are numeric or text data. If they are numeric, the
aggregation will be the same as in relational cubes such as addition and average;
otherwise, the aggregation will be a kind of text operation. We introduce text
mining operations for text aggregation (see Section 4.2).

An XQ-Cube has the following advantages: (1) A variety of cubes can be gen-
erated. Since the measure data is specified using an XQuery expression, any kind
of cube can be defined that XQuery can generate. (2) It provides an aggregation
mechanism over XML documents. Since the measure data is a fragment of an
XML document, we can apply various aggregation operators according to the
data type. (3) An XQ-Cube is a generalization of a relational cube. It becomes a
relational cube when the XQuery expression is evaluated to numeric data, while
it becomes a text cube when evaluated to text data.

4.2 Multidimensional Expression Language

For querying a cube, we need a query language for cubes. Microsoft designed
a multidimensional expression language called MDX [11] for relational cubes.
We are inspired by Microsoft MDX to design a new multidimensional expres-
sion language called XML-MDX for XQ-Cubes. XML-MDX has two statements:
CREATE XQ-CUBE and SELECT. The former is for creating a new XQ-Cube,
and the latter for querying. In general, in order to enhance the query processing
performance of XML-MDX or to use an XQ-Cube multiple times, we first create
an XQ-Cubes and then refer to it in queries.

CREATE XQ-CUBE: Figure 2 shows the basic syntax of the CREATE XQ-
CUBE statement. The <XQ-Cube name> value specifies the name of the XQ-
Cube to create. A CREATE XQ-CUBE statement is composed of two clauses:
FROM and WHERE. The created XQ-Cube is stored for use by XML-MDX
queries.

The FROM clause specifies the measure data from which the XQ-Cube will
be created. Figure 3 shows the definition of the FROM clause expressed in BNF
notation. The <XQ-Cube specification> value specifies the measure data using
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CREATE XQ-CUBE  <XQ-cube name>
FROM  <XQ-cube specification>
[ WHERE  <slicer specification> ]

Fig. 2. Definition of CREATE XQ-CUBE statement in BNF

<FROM_clause> ::= FROM <XQ-cube_specification>
<XQ-cube_specification> ::= <XQuery_expression> : <aggregation_operator> ]
<aggregation_operator> ::= ADD | LIST | COUNT | SUMMARY | TOPIC | 

TOP KEYWORDS | CLUSTER

Fig. 3. Definition of FROM Clause in BNF

<WHERE_clause> ::= WHERE <slicer_specification>
<slicer_specification> ::= “(“ <XQuery_expression> { “,” <XQuery_expression> } “)”

Fig. 4. Definition of WHERE Clause in BNF

SELECT  <axis 0 specification>,
<axis 1 specification>,

…

FROM  <XQ-Cube name>
[ WHERE  <slicer specification> ]

Fig. 5. Basic Syntax of XML-MDX

an XQuery expression. We should specify an aggregation operator according to
the measure data, the evaluation result of the XQuery expression.

In this paper, we define the following seven aggregation operators: ADD,
LIST, COUNT, SUMMARY, TOPIC, TOP KEYWORDS, and CLUSTER.
ADD is for numeric data as it is in relational OLAP. The other operators are all
for non-additive data including text. LIST displays the data consecutively in a
sequence. COUNT displays the number of measure data. The others are all from
text mining techniques: SUMMARY, TOPIC, and TOP KEYWORDS display
a total summary, a topic, and top keywords respectively from all the text data
to aggregate. CLUSTER builds a cluster over all the text data to aggregate. We
can expand the aggregation operators as the text mining techniques progress.

The WHERE clause is optional. It determines which dimension members to
use for the slicer which restricts the extractions of data to the determined dimen-
sion members. Figure 4 shows the definition of the WHERE clause expressed in
BNF notation. The <slicer specification> value specifies a slicer which is a tuple
of XQuery expressions. Each XQuery expression specifies a dimension member
which filters off the other members. A special XQuery expression is used for
specifying the ’All’ member (see Figure 8). The dimensions that are not spec-
ified in the <slicer specification> form the axis dimensions of the XQ-Cube
created.
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<SELECT_clause> ::= SELECT <axis_specification> { “,” <axis_specification> }
<axis_specification> ::= <XQuery_expression_set> ON <axis_name>
<XQuery_expression_set> ::= “{“ <XQuery_expression> { “,” <XQuery_expression> } “}”
<axis_name> ::= COLUMNS | ROWS | PAGES | SECTIONS | CHAPTERS | 

AXIS(<index>)

Fig. 6. Definition of SELECT Clause in BNF

SELECT: Figure 5 shows the basic syntax of the SELECT statement. A SE-
LECT statement has the same structure as that of Microsoft MDX, which is
composed of three clauses: SELECT, FROM, and WHERE. The FROM clause
designates an XQ-Cube name previously created by a CREATE XQ-CUBE
statement. We populate the result set of the SELECT statement from the des-
ignated XQ-Cube.

The SELECT clause specifies axis dimensions. Each axis dimension deter-
mines an edge of a multidimensional result set. Figure 6 shows the definition
of the SELECT clause expressed in BNF notation. Each <axis specification>
value defines one axis dimension. The number of dimensions in an XML ware-
house is the maximum number of axis dimensions. An <axis specification> value
is broken down into a set of XQuery expressions and an axis name.

The result set of the XQuery expressions constitute the members of an axis
dimension. Since each dimension having a hierarchical structure is represented in
a single XML document, an XQuery expression specifies a member of a dimension
level. We need an XQuery expression for each member of an axis dimension.

We assign axis names in the same way as Microsoft MDX does [11]. Each axis
dimension is associated with a number: 0 for the X-axis, 1 for the Y-axis, 2 for the
Z-axis, and so on. The <index> value is the axis number. For the first 5 axes, the
aliases COLUMNS, ROWS, PAGES, SECTIONS, and CHAPTERS can be used
in place of AXIS(0), AXIS(1), AXIS(2), AXIS(3), and AXIS(4), respectively. An
XML-MDX query cannot skip axes. That is, a query that includes one or more
axes must not exclude lower-numbered or intermediate axes.

The definition of the WHERE clause of the SELECT statement is the same as
that of CREATE XQ-CUBE statement. The <slicer specification> value filters
the XQ-Cube specified in the FROM clause. Note that, as in Microsoft MDX,
the dimensions that are not explicitly assigned to axes in the SELECT clause
are assumed to be slicer dimensions. They filter the XQ-Cube with their default
members. A default member is the All member if an ’All’ level exists, or an
arbitrary member of the highest level.

XML-MDX has the following advantages over Microsoft MDX: (1) It can
have all the features of Microsoft MDX since XML-MDX is designed based on
Microsoft MDX. (2) Composing and processing XML-MDX queries are easy
since all the specifications for the measure values and the dimension members are
expressed in XQuery. We use an existing XQuery engine to process XML-MDX
queries since no special syntax is required for XML-MDX. (3) When specifying
slicer or axes, selecting the dimension members satisfying a condition is possible
since we are using XQuery to specify them. Microsoft MDX has no such facility
and use only a path in the dimension hierarchy.
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5 Application to US Patent XML Warehouse

We assume that we are given a huge collection of XML documents about U.S.
patents. They form the XML repository representing fact data of the U.S. patent
XML warehouse. Figure 7 shows an example of such documents. After reviewing
the fact repository, we build a conceptual model using a UML class diagram.
From the conceptual model, we decide the dimensions to use for multidimen-
sional analysis.

Figure 8 shows the hierarchies of the four dimensions selected for the U.S.
patent XML warehouse. Each dimension has the ’All’ level. The two dimensions,
’Appl.Time’ and ’Reg.Time’, represent when a patent was applied and registered
respectively. The dimension, ’Inventor’, represents a patent’s inventors. The di-
mension, ’Topic’, represents a patent’s classification.

Figure 9 shows an XML document in the XML repository representing the
dimension, ’Appl.Time’. The document is about an application year, 1998. The

<uspatent>
<title>

<text>  Rule based database security system and method  </text>
</title>
<abstract>

<text> A rule-based database security system and method are disclosed. </text>
</abstract>
<inventor>

<name> Cook; William R. </name>
<addr> Redwood City, CA </addr>

</inventor>
<patent>

<no> 6,820,082 </no>
<applNo>  541227 </applNo>

</patent>
<registeredOn> <date>  November 16, 2004  </date> </RegisteredOn>
<filedOn> <date> April 3, 2000 </date> </FiledOn>
<claim>

<number> 1 </number>
<text>  A method for processing requests from a user to perform an act …</text>

</claim>
</uspatent>

Fig. 7. Fact Data about U.S. Patents
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Fig. 8. Dimension Hierarchies of U.S. Patent XML Warehouse

<year num = “1998”> 
<month num = “3” name = “Mar.” /> 
<month num = “9” name = “Sep.” /> 

</year>

Fig. 9. An XML Document for Dimension ApplTime
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<instType name = “university” code = “001”> 
<institute name = “Drexel” addr = “Philadelphia, PA”> 

<inventor name = Il-Yeol Song” addr = “Philadelphia, PA” />
</institute>

</instType>

Fig. 10. An XML Document for Dimension Inventor

CREATE XQ-CUBE  XQ-Cube-1
FROM   col(‘/db/uspatent’)//patent/no : COUNT
WHERE  ( col(‘/db/applTime’)/ALL,

col(‘/db/regTime’)//year[@num>2000] )

Fig. 11. An Example of CREATE XQ-Cube Statement

level, ’year’, has an attribute, ’num’, It has the lower level, ’month’, having two
attributes: ’num’ and ’name’. The level, ’month’, has two members whose values
of the attribute, ’num’ are 3 and 9 respectively.

Figure 10 shows an XML document in the XML repository representing the
dimension, ’Inventor’. The document is about an institution type, ’university’,
which is a member of the level, ’instType’ of the dimension. The level, ’instType’,
has two attributes: ’name’ and ’code’. It has the lower level, ’institute’, having
two attributes: ’name’ and ’addr’. The level, ’institute’, has the lower level,
’inventor’, having two attributes: ’name’ and ’addr’.

Figure 11 shows an example to create an XQ-Cube named XQ-Cube-1. The
XQuery expression, ”col(’/db/uspatent’)//patent/no”, specifies the measure of
XQ-Cube-1. The collection, ”/db/uspatent” contains the fact data from which
we collect ”//patent/no” for the measure. The aggregation operator, COUNT,
counts the number of patent no’s. The WHERE clause has two XQuery ex-
pressions. The collection, ”/db/applTime” contains the XML documents for
’Appl.Time’. The special XQuery expression, ”/All” means that the ’All’ level
is selected for slicing, which results in the aggregation along all the members
of the dimension. The collection, ”/db/regTime” contains the XML documents
for ’Reg.Time’. The XQuery expression, ”//year[@num>2000]” results in slicing
off all ’year’ less than or equal to 2000. As a result, XQ-Cube-1 has three axis
dimensions: ’Inventor’, ’Topic’, and ’Reg.Time’ with ’year’ greater than 2000.

Figure 12 shows an XML-MDX query for XQ-Cube-1. The slicer specification
in the WHERE clause slices off the registration years less than or equal to 2002.

SELECT  { col(‘/db/topic’)//high[@topic=‘XML’],
col(‘/db/topic’)//high[@topic=‘OLAP’] } ON COLUMNS

{ col(‘/db/inventor’)//instType[@name=‘university’],
col(‘/db/inventor’)//instType[@name=‘industry’] } ON ROWS

FROM    XQ-Cube-1
WHERE  ( col(‘/db/regTime’)//year[@num > 2002] )

Fig. 12. An Example of XML-MDX Query
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Then, a new XQ-Cube is returned as a result, which has the axis dimensions
specified in the SELECT clause. The axis COLUMNS has two members of the
dimension ’Topic’: ’XML’ and ’OLAP’. The axis ROWS has two members of the
dimension ’Inventor’: ’university’ and ’industry’.

6 Conclusions

In this paper, we proposed XML-OLAP as a new framework for multidimen-
sional analysis of XML warehouses. We assumed that both fact and dimension
data are all represented as XML documents in XML warehouses. We proposed to
construct a new type of cube named XQ-Cube from XML warehouses. An XQ-
Cube is constructed from the measure data specified by an XQuery expression.
We used text mining operations for the aggregation of text measure data. We
proposed XML-MDX as a new multidimensional expression language for XQ-
Cubes. We demonstrated its effectiveness through the example of U.S. Patent
XML Warehouse. We believe our framework will contribute to the effective anal-
ysis of the vast amount of XML documents on the Web.
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Abstract. Extract-Transform-Load (ETL) workflows are data centric workflows 
responsible for transferring, cleaning, and loading data from their respective 
sources to the warehouse. In this paper, we build upon existing graph-based 
modeling techniques that treat ETL workflows as graphs by (a) extending the 
activity semantics to incorporate negation, aggregation and self-joins, (b) 
complementing querying semantics with insertions, deletions and updates, and (c) 
transforming the graph to allow zoom-in/out at multiple levels of abstraction (i.e., 
passing from the detailed description of the graph at the attribute level to more 
compact variants involving programs, relations and queries and vice-versa). 

1   Introduction 

Conceptual and logical modeling of the design of data warehouse back-stage activities 
has been a relatively novel issue in the research community [3, 5, 6, 7]. The data 
warehouse back-stage activities are mainly implemented through tools, known as 
Extraction-Transformation-Loading (ETL) tools that employ data centric workflows 
to extract data from the sources, clean them from logical or syntactical 
inconsistencies, transform them into the format of the data warehouse, and eventually 
load these data into the warehouse.  

The main issues concerning the modeling of these activities have to do (a) with the 
semantics of the involved activities and (b) with the exploitation of the deduced 
model to obtain a better understanding and a clearer evaluation of the quality of the 
produced design for a data warehouse scenario. 

Several works in the area [2, 4] present systems tailored for ETL tasks (see also [9] 
for a broader discussion); nevertheless, the main focus of these works is on achieving 
functionality, rather than on modeling the internals or dealing with the software 
design or maintenance of these tasks. [3, 5] employ UML as a conceptual modeling 
language, whereas [7] introduces a generic graphical notation for the same task. Being 
defined at the conceptual level, these efforts lack a full model of the semantics of ETL 
workflows and a mechanism to allow the designer to navigate efficiently through 
large scale designs without being overwhelmed by their inherent complexity. 
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In our previous research, we have presented a first attempt towards a graph-based 
model for the definition of the ETL scenarios [6]. The model of [6, 8] treats an ETL 
scenario as a graph, which we call the Architecture Graph. Activities and data stores 
are modeled as the nodes of the graph; the attributes that constitute them are modeled 
as nodes too. Activities have input and output schemata and provider relationships 
relate inputs and outputs between data providers and data consumers. In this paper, 
we extend previous work in several ways. First, we complement the existing graph-
based modeling of ETL activities by adding graph constructs to capture the semantics 
of insertions, deletions and updates. Second, we extend the previous results by adding 
negation, aggregation and self-joins in the expressive power of our graph-based 
approach. More importantly, we introduce a systematic way of transforming the 
Architecture Graph to allow zooming in and out at multiple levels of abstraction (i.e., 
passing from the detailed description of the graph at the attribute level to more 
compact variants involving programs, relations and queries and vice-versa). The 
visualization of the Architecture graph at multiple levels of granularity allows the 
easier understanding of the overall structure of the involved scenario, especially as the 
scale of the scenarios grows. 

This paper is organized as follows. In Section 2, we discuss extensions to the graph 
model for ETL activities. Section 3 introduces a principled approach for zooming in 
and out the graph. In Section 4, we conclude our results and provide insights for 
future work. 

2   Modeling of Side-Effects and Special Cases for ETL Activities 

The purpose of this section is to present a formal logical model for the activities of an 
ETL environment and the extensions to existing work that we make. First, we start 
with the background constructs of the model, already introduced in [6, 8] and then, we 
move on to extend this modeling with update semantics, negations, aggregation and 
self-joins. We employ LDL++ [1, 10] in order to describe the semantics of an ETL 
scenario in a declarative nature and understandable way. LDL++ is a logic-
programming, declarative language that supports recursion, complex objects and 
negation. Moreover, LDL++ supports external functions, choice, (user-defined) 
aggregation and updates.  

2.1   Preliminaries 

In this subsection, we introduce the formal model of data types, data stores and 
functions, before proceeding to the model of ETL activities. To this end, we reuse the 
modeling constructs of [6, 8] upon which we subsequently proceed to build our 
contribution. The basic components of this modeling framework are: 

− Data types. Each data type T is characterized by a name and a domain, i.e., a 
countable set of values. The values of the domains are also referred to as 
constants.  

− Attributes. Attributes are characterized by their name and data type. For single-
valued attributes, the domain of an attribute is a subset of the domain of its data 
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type, whereas for set-valued, their domain is a subset of the powerset of the 
domain of their data type 2dom(T). 

− A Schema is a finite list of attributes. Each entity that is characterized by one or 
more schemata will be called Structured Entity.  

− Records & RecordSets. We define a record as the instantiation of a schema to a 
list of values belonging to the domains of the respective schema attributes. 
Formally, a recordset is characterized by its name, its (logical) schema and its 
(physical) extension (i.e., a finite set of records under the recordset schema). In 
the rest of this paper, we will mainly deal with the two most popular types of 
recordsets, namely relational tables and record files.  

− Functions. A Function Type comprises a name, a finite list of parameter data 
types, and a single return data type. 

− Elementary Activities. In the framework of [8], activities are logical abstractions 
representing parts, or full modules of code. An Elementary Activity (simply 
referred to as Activity from now on) is formally described by the following 
elements: 
- Name: a unique identifier for the activity. 
- Input Schemata: a finite list of one or more input schemata that receive data 

from the data providers of the activity.  
- Output Schemata: a finite list of one or more output schemata that describe 

the placeholders for the rows that pass the checks and transformations 
performed by the elementary activity.  

- Operational Semantics: a program, in LDL++, describing the content passing 
from the input schemata towards the output schemata. For example, the 
operational semantics can describe the content that the activity reads from a 
data provider through an input schema, the operation performed on these 
rows before they arrive to an output schema and an implicit mapping 
between the attributes of the input schema(ta) and the respective attributes of 
the output schema(ta). 

- Execution priority. In the context of a scenario, an activity instance must 
have a priority of execution, determining when the activity will be initiated.  

− Provider relationships. These are 1:N relationships that involve attributes with a 
provider-consumer relationship. The flow of data from the data sources towards 
the data warehouse is performed through the composition of activities in a larger 
scenario. In this context, the input for an activity can be either a persistent data 
store, or another activity. Provider relationships capture the mapping between the 
attributes of the schemata of the involved entities. Note that a consumer attribute 
can also be populated by a constant, in certain cases. 

− Part_of relationships. These relationships involve attributes and parameters and 
relate them to their respective activity, recordset or function to which they 
belong.  

The previous constructs, can be complemented by incorporating the semantics of 
ETL workflow in our framework. Due to the lack of space, we do not elaborate in 
detail on the full mechanism of the mapping of LDL rules to the Architecture Graph 
(including details on intra-activity and inter-activity programs); we refer the interested 
reader to [9] for this task. Instead, in this paper, we focus on the parts concerning 
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side-effect programs (which are most common in ETL environments), along with the 
modeling of aggregation and negation. To this end, we first need to introduce 
programs as another modeling construct. 

− Programs. We assume that the semantics of each activity is given by a 
declarative program expressed in LDL++. Each program is a finite list of LDL++ 
rules. Each rule is identified by an (internal) rule identifier. We assume a normal 
form for the LDL++ rules that we employ. In our setting, there are three types of 
programs, and normal forms, respectively: 

(i) intra-activity programs that characterize the internals of activities (e.g., a 
program that declares that the activity reads data from the input schema, 
checks for NULL values and populates the output schema only with 
records having non-NULL values) 

(ii) inter-activity programs that link the input/output of an activity to a data 
provider/consumer 

(iii)side-effect programs that characterize whether the provision of data is an 
insert, update, or delete action. 

We assume that each activity is defined in isolation. In other words, the inter-
activity program for each activity is a stand-alone program, assuming the input 
schemata of the activity as its EDB predicates. Then, activities are plugged in the 
overall scenario that consists of inter-activity and side-effect rules and an overall 
scenario program can be obtained from this combination. 

Side-effect programs. We employ side-effect rules to capture database updates. We 
will use the generic term database updates to refer to insertions, deletions and updates 
of the database content (in the regular relational sense). In LDL++, there is an easy 
way to define database updates. An update expression is of the form 

head <- query part, update part 

and has the following semantics: (a) we make a query to the database and specify the 
tuples that abide by the query part and (b) we update the predicate of the update part 
as specified in the rule.  

raise1(Name, Sal, NewSal) <- 
 employee(Name, Sal), Sal = 1100,   (a) 
 NewSal = Sal * 1.1,     (b) 
 - employee(Name, Sal),     (c) 
 + employee(Name, NewSal).    (d) 

Fig. 1. Exemplary LDL++ rule for side-effect updates 

For example, consider the rule depicted in Fig. 1. In Line (a) of the rule, we mark 
the employee tuples with salary equal to 1100 in the relation employee(Name,Sal). 
For each the above marked tuples, Line (b) computes an updated salary with a 10% 
raise through the variable NewSal. In Line (c), we delete the originally marked tuples 
from the relation. Finally, Line (d) inserts the updated tuples, containing the new  
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salaries in the relation. In LDL updates, the order of the individual atoms is important 
and the query part should always advance the update part, to avoid having undesired 
effects from a predicate failing after an update (more details for the syntax of LDL 
can be found in [10]). 

2.2   Mapping Side-Effect Programs to the Architecture Graph of a Scenario 

Concerning our modeling effort, the main part of our approach lies in mapping 
declarative rules, expressing the semantics of activities in LDL, to a graph, which we 
call the Architecture Graph. In our previous work, the focus of [8] is on the input-
output role of the activities instead of their internal operation. It is quite 
straightforward to complement this modeling with the graph of intra- and inter- 
activity rules [9]. In principle, activities comprise input and output schemata. Intra-
activity programs and their variables facilitate the mapping of inputs to outputs. All 
attributes, activities and relations are nodes of the graph, connected through the proper 
part-of relationships. Each LDL rule connecting inputs (body of the rule) to outputs 
(head of the rule) is practically mapped to a set of provider edges, connecting inputs 
to outputs. Special purpose regulatory edges, capturing filters or joins are also part of 
the graph. 

 

Fig. 2. Side-effects over the LDL++ rule of Fig. 1 

While intra- and inter-activity rules are straightforwardly mapped to graph-based 
constructs, side-effects involve a rather complicated modeling, since there are both 
values to be inserted or deleted along with the rest of the values of a recordset. Still, 
there is a principled way to map LDL side-effects to the Architecture Graph. 
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1. A side-effect rule is treated as an activity, with the corresponding node. The 
output schema of the activity is derived from the structure of the predicate of 
the head of the rule. 

2. For every predicate with a + or – in the body of the rule, a respective provider 
edge from the output schema of the side-effect activity is assumed. A basic 
syntactic restriction here is that the updated values appear in the output 
schema. All provider relations from the output schema to the recordset are 
tagged with a + or –. 

3. For every predicate that appears in the rule without a + or – tag, we assume the 
respective input schema. Provider edges from this predicate towards these 
schemata are added as usual. The same applies for the attributes of the input 
and output schemata of the side effect activity. An obvious syntactic 
restriction is that all predicates appearing in the body of the rule involve 
recordsets or activity schemata (and not some intermediate rule). 

Notice that it is permitted to have cycles in the graph, due to the existence of a 
recordset in the body of a rule both tagged and untagged (i.e., both with its old and 
new values). The old values are mapped to the input schema and the new to the output 
schema of the side-effect activity.  

In Fig. 2, we depict an example for the usage of side-effects over the LDL++ rule 
of Fig. 1. Observe that Name is tagged both as + or –, due to its presence at two 
predicates, one removing the old value of Sal and another inserting NewSal, 
respectively. Observe, also, how the input is derived from the predicate employee at 
the body of the rule. 

2.3   Special Cases for the Modeling of the Graph 

In this subsection, we extend our basic modeling to cover special cases such as 
aliases, negation, aggregation and functions. 

Alias relationships. An alias relationship is introduced whenever the same predicate 
appears in the same rule (e.g., in the case of a self-join). All the nodes representing 
these occurrences of the same predicate are connected through alias relationships to 
denote their semantic interrelationship. Note that due to the fact that intra-activity 
programs do not directly interact with external recordsets or activities, this practically 
involves the rare case of internal intermediate rules.  

Negation. When a predicates appears negated in a rule body, then the respective part-
of edge between the rule and the literal’s node is tagged with ‘ ’. Note that negated 
predicates can appear only in the rule body. 

Aggregation. Another interesting feature is the possibility of employing aggregation. 
In LDL, aggregation can be coded in two steps: (a) grouping of values to a bag and 
(b) application of an aggregate function over the values of the bag. Observe the 
example of Fig. 3, where data from the table DW.PARTSUPP are summarized, through 
activity Aggregate1 to provide the minimum daily cost in view V1. In Fig. 3 we list 
the LDL program for this activity. Rules (R16-R18) explain how the data of table 
DW.PARTSUPP are aggregated to produce the minimum cost per supplier and day. 
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Observe how LDL models aggregation in rule R17. Then, rule R19 populates view V1 
as an inter-activity program. 

The graph of an LDL rule is created as usual with only 3 differences: 

1. Relations which create a set from the values of a field employ a pair of 
regulator edges through an intermediate node ‘<>’. 

2. Provider relations for attributes used as groupers are tagged with ‘g’. 
3. One of the attributes of the aggr function node consumes data from a constant 

that indicates which aggregate function should be used (e.g., avg, min, max). 

R16: aggregate1.a_in(skey,suppkey,date,qty,cost)<- 
 dw.partsupp(skey,suppkey,date,qty,cost) 
R17: temp(skey,day,<cost>) <- 
 aggregate1.a_in(skey,suppkey,date,qty,cost). 
R18: aggregate1.a_out(skey,day,min_cost) <- 
 temp(skey,day,all_costs), 
 aggr(min,all_costs,min_cost). 
R19: v1(skey,day,min_cost) <- 
 aggregate1.a_out(skey,day,min_cost). 

Fig. 3. LDL Specification for an activity involving aggregation 

Functions. Functions are treated as any other predicate in LDL, thus they appear as 
common nodes in the architecture graph. Nevertheless, there are certain special 
requirements for functions: 

1. The function involves a list of parameters, the last of which is the return value 
of the function. 

2. All function parameters referenced in the body of the rule either as homonyms 
with attributes, of other predicates or through equalities with such attributes, 
are linked through equality regulator relationships with these attributes. 

3. The return value is possibly connected to the output through a provider 
relationship (or with some other predicate of the body, through a regulator 
relationship). 

For example, observe Fig. 2 where a function involving the multiplication of 
attribute Sal with a constant is involved. Observe the part-of relationship of the 
function with its parameters and the regulator relationship with the first parameter and 
its populating attribute. The return value is linked to the output through a provider 
relationship. 

3   Different Levels of Detail of the Architecture Graph 

The Architecture Graph can become a complicated construct, involving the full detail 
of activities, recordsets, attributes and their interrelationships. Although it is important 
and necessary to track down this information at design time, in order to formally 
specify the scenario, it quite clear that this information overload might be cumbersome 
to manage at later stages of the workflow lifecycle. In other words, we need to provide 
the user with different versions of the scenario, each at a different level of detail. 
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We will frequently refer to these abstraction levels of detail simply, as levels. We 
have already defined the Architecture Graph at the attribute level. The attribute level is 
the most detailed level of abstraction of our framework. Yet, coarser levels of detail can 
also be defined. The schema level, abstracts the complexities of attribute 
interrelationships and presents only how the input and output schemata of activities 
interplay in the data flow of a scenario. In fact, due to the composite structure of the 
programs that characterize an activity, there are more than one variants that we can 
employ for this description. Finally, the coarser level of detail, the activity level, 
involves only activities and recordsets. In this case, the data flow is described only in 
terms of these entities.  

Architecture Graph at the Schema Level. Let GS(VS,ES) be the architecture graph 
of an ETL scenario at the schema level. The scenario at the schema level has schemata, 
functions, recordsets and activities for nodes. The edges of the graph are part-of 
relationships among structured entities and their corresponding schemata and provider 
relationships among schemata. The direction of provider edges is again from the 
provider towards the consumer and the direction of the part-of edges is from the 
container entity towards its components (in this case just the involved schemata). Edges 
are tagged appropriately according to their type (part-of or provider).  

Intuitively, at the schema level, instead of fully stating which attribute populates 
another attribute, we trace only how this is performed through the appropriate schemata 
of the activities. A program capturing the semantics of the transformations and 
cleanings that take place in the activity is the means through which the input and output 
schemata are interconnected. If we wish, instead of including all the schemata of the 
activity as they are determined by the intermediate rules of the activity’s program, we 
can present only the program as a single node of the graph, to avoid the extra 
complexity.  

There is a straightforward way to zoom out the Architecture Graph at the attribute 
level and derive its variant at the schema level. For each node x of the architecture 
graph G(V,E) representing a schema: 

1. for each provider edge (xa,y) or (y,xa), involving an attribute of x and an 
entity y, external to x, introduce the respective provider edge between x  and y 
(unless it already exists, of course); 

2. remove the provider edges (xa,y) and (y,xa) of the previous step; 
3. remove the nodes of the attributes of x and the respective part-of edges. 

We can iterate this simple algorithm over the different levels of part-of 
relationships, as depicted in Fig. 4. 

Architecture Graph at the Activity Level. In this paragraph, we will deal with the 
model of ETL scenarios as graphs at the activity level. Only activities and recordsets are 

part of a scenario at this level. Let GA(VA,EA) be the architecture graph of an ETL 
scenario at the activity level. The scenario at the activity level has only recordsets and 
activities for nodes and a set of provider relationships among them for edges. The 
provider relationships are directed edges from the provider towards the consumer entity.  

Intuitively, a scenario is a set of activities, deployed along a graph in an execution 
sequence that can be linearly serialized through topological ordering. There is a 
straightforward way to zoom out the Architecture Graph at the schema level and derive 
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its variant at the activity level. For each node x of the architecture graph GA(VA,EA) 
representing a structured entity (i.e., activity or recordset): 

1. for each provider edge (xc,y) or (y,xc), involving a schema of x and an 
entity y, external to x, introduce the respective provider edge between x  and y 
(unless it already exists, of course); 

2. remove the provider edges (xc,y) and (y,xc) of the previous step; 
3. remove the nodes of the schema(ta) and program (if x is an activity) of x and 

the respective part-of edges. 

(a) 

(b) 

 
(c) 

Fig. 4. Zooming in/out. (a) different levels of detail for ETL workflows; (b) an activity with 
two input schemata populating an output and a rejection schema as follows: a subprogram P1 is 
assigned the population of the output schema only and a subprogram P2 populates only the 
rejection schema using only one input schema; and (c) a single node abstracts the internal 
structure of the activity. 

Discussion. Navigating through different levels of detail is a facility that primarily 
aims to make the life of the designer and the administrator easier throughout the full 
range of the lifecycle of the data warehouse. Through this mechanism, the designer 
can both avoid the complicated nature of parts that are not of interest at the time of the 
inspection and drill-down to the lowest level of detail for the parts of the design that 
he is interested in.  

Moreover, apart from this simple observation, we can easily show how our graph-
based modeling provides the fundamental platform for employing software engineering 
techniques for the measurement of the quality of the produced design [9]. Zooming in 
and out the graph in a principled way allows the evaluation of the overall design both at 
different depth of granularity and at any desired breadth of range (i.e., by isolating only 
the parts of the design that are currently of interest). 
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4   Conclusions 

Previous research in the logical modeling of ETL workflows has identified graph-based 
techniques that capture the high-level structure of these workflows. In this paper, we 
have extended the semantics of the involved ETL activities to incorporate negation, 
aggregation and self-joins. Moreover, we have complemented this semantics in order to 
handle insertions, deletions and updates. Finally, we have provided a principled method 
for transforming the architecture graph of an ETL scenario to allow zoom-in/out at 
multiple levels of abstraction. This way, we can move from the detailed description of 
the graph at the attribute level to more compact variants involving programs, relations 
and queries and vice-versa. 

Research can be continued in more than one direction, e.g., towards the derivation of 
precise algorithms for the evaluation of the impact of changes in the Architecture Graph. 
Finally, a field-study of the usage of the Architecture Graph in all the phases of a data 
warehouse project can also be pursued. 
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Abstract. Data Warehouse (DWH) information is accessed by business proc-
esses. Today, no conceptual models exist that make the relationship between the 
DWH and the business processes transparent. In this paper, we extend a busi-
ness process modeling diagram, namely the UML 2 activity diagram with a 
UML profile, which allows to make this relationship explicit. The model is 
tested with example business processes. 

1   Introduction 

A Data Warehouse (DWH) is more than just another big database. It is defined as “a 
subject-oriented, integrated, time-variant, nonvolatile collection of data in support of 
management’s decision-making process“ [7]. In modern organisations, DWHs play a 
crucial role, as more and more business processes require information from the DWH. 
A business process is “a group of tasks that together create a result of value to a cus-
tomer” [6], and describes how work is done within an organization. When a person 
applies for a loan in a bank for example, the DWH is an integral part of the loan ap-
plication business process. The applicant is scrutinized to find out if she or he has 
caused a financial loss previously, or has changed identity and caused damage under a 
different name. The business processes of designing new products in a telecommuni-
cation company or an airline, or composing the product range of a supermarket for 
example, requires comprehensive information on the customer behavior covered by 
the DWH. There are lots of examples showing how important DWHs have become 
for business processes.  

Surprisingly, this knowledge – how dynamic business structures interact with the 
DWH and how the DWH is being used in every day business life – is not made ex-
plicit in existing models. There is a need for an integrated model of processes and 
DWHs to make the relationship between the DWH and the business processes more 
transparent. To bridge this gap, we extend a business process modeling diagram, 
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namely the UML 2 activity diagram [12], with a UML profile for Business Intelli-
gence (BI) Objects, to be able to create models that show  

• where and how business processes use a DWH environment, and 
• which parts of the business processes depend on which parts of the DWH. 

UML profiles provide an extension mechanism for building UML models for par-
ticular domains or purposes [12]. We utilize this extension mechanism, because the 
UML Profile for BI Objects provides the advantage that DWH people are able to view 
business process models and the interaction with a DWH in a well-known notation. In 
addition to the reuse of the UML notation, these models can be easily presented and 
edited with UML tools, as almost all UML tools support UML profiles. 

We use the term Business Intelligence (BI) instead of DWH, as it represents a 
broader approach to decision support data. We see BI as all kinds of applications and 
technologies for storing, analyzing, and accessing data to help enterprises to make 
better business decisions. BI objects cover a broad range of object types. We distin-
guish between data repositories (DWHs, data marts, or operational data stores), data 
objects representing data models of data repositories (entities or facts), and presenta-
tion objects representing tools (reports or analysis tools). These BI objects can be 
accessed by the activities of a business process, or in this case by the actions of the 
UML 2 activity diagram.  

The contribution of the UML profile for BI Objects is: 

• The model provides the bigger picture to DWH designers, as it shows how 
the DWH and other BI objects are accessed by business processes. 

• The model links static BI structures and dynamic business structures. 
• The UML Profile provides BI objects on different aggregation levels and 

thus enables the modeler to choose the right level of detail for different pur-
poses or target audiences. The modeler may model a high level data reposi-
tory access of a business process, e.g. the access of a data mart or DWH, or 
describe the access at a more detailed level, e.g. the access of a certain fact or 
entity. Furthermore, modelers may also show the access of an analysis tool. 

• The model can support the design phase of a BI project, by making it possi-
ble to describe the business requirements for the DWHs or data marts in a ‘to 
be business process model’. The DWH department can then prioritize the 
projects accordingly. 

• By relating DWHs or data marts to decisions in business processes, such a 
model can be used to justify the costs of BI projects.  

• The model can also be used to support estimates of the cost of usage, as well 
as for risk management: if the data quality in a certain area is bad, a data 
mart fails or data is corrupted, an integrated model enables better reactions 
because it is known which business processes will be affected. 

• Finally, the model also allows to discover parts of the DWH or data mart 
data model which are not accessed at all, permitting the DWH department to 
decide if these parts should be further maintained. 
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Based on the meta-model in Section 2, we have developed a UML Profile for BI 
Objects extending UML 2 activity diagrams in Section 3. The UML profile is tested 
by example business processes in Section 4. Section 5 covers related work. 

2   Meta-model of Business Intelligence Objects 

We extend the UML 2 activity diagram with a UML Profile for BI Objects to enable 
the creation of models that integrate information about where a business process 
makes use of data for decision support. These models make the otherwise hidden 
knowledge about the relationships between the business processes and BI explicit. 
This section describes the meta-model of BI Objects. 

What is a BI object? We have identified three main categories of BI objects: Data 
Repositories (representing the elements of the DWH architecture), Data Objects (rep-
resenting the data model of a certain repository), and Presentation Objects (represent-
ing the means of presentation, either a static report or an interactive analysis). The 
relationships between the BI objects are shown in Fig. 1.  

BI objects chosen for a model depend on the target audience and the level of detail 
of the model. In an overview business process model suited for DWH managers, one 
might show the DWH or individual data marts as a whole. In a more detailed model 
for developers, sub-processes can be described as accessing individual entities and 
facts. Additionally, decision makers often receive relevant data in form of reports, for 
instance a report on sales data for the past fiscal year, which may also be relevant for 
business process modeling. 

 

Fig. 1. Meta-model of Business Intelligence Objects 

2.1   Data Repositories 

Data Repositories are the first type of BI object that can be modeled in relation to a 
business process. They basically represent different types of databases as used in 
DWH settings. The types of data repositories occurring in a given situation depend on  
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the DWH architecture in an organization. Also, several different data repositories may 
exist in parallel. Our approach is not limited to any specific DWH architecture, but 
can be applied to a wide selection of architecture types. In order to allow the greatest 
possible flexibility and provide meaningful content in the models, we have identified 
three basic types of data repositories: the Data Warehouse (DWH), the Data Mart and 
the Operational Data Store (ODS). 

Depending on the architecture, different combinations of BI data repositories may 
occur in an organization. In large multinational organizations it is not uncommon to 
have more than one DWH. Within an organization a large DWH often co-exists with 
smaller data marts, departmental subsets of a DWH focused on selected subjects [2]. 
The data mart might be based on the DWH, obtaining its data from there, and acting 
as a kind of materialized view on the DWH. In another case, each data mart may be 
created individually by a department without an underlying DWH. To make opera-
tions spanning several data marts possible, they may later be integrated into an or-
ganization-wide DWH. Also, there may be none, one or more ODS, located between 
the operational systems and the DWH [5]. Depending on the architecture, end user 
applications may query individual data marts and/or the DWH, or even access the 
data in the ODS directly. 

2.2   Data Objects 

In order to provide a more detailed view on the data, we also want to model the indi-
vidual data entities contained in the data repositories. These Data Objects are gener-
ally represented in conceptual data models. For example, if a business process needs 
data on the revenue of a certain product range, it can be modeled to access the corre-
sponding data object directly. In BI settings, there are two common types of data 
models: entity-relationship (E/R) models [3] and multidimensional models [2][4][9]. 
Which model is used depends on the type of repository, the overall architecture, and 
the preferences of the designers. The data objects of an E/R model that can be ac-
cessed by an activity of a business process are Entities. In the case of the multidimen-
sional model, they are Facts.  

2.3   Presentation Objects 

In an organization employing BI techniques, there are usually tools and applications 
providing users with prepackaged information that has been compiled for them. We 
call these collections of information Presentation Objects, and have identified two 
different types: Report or Interactive Analysis. A report displays a predefined set of 
queries, for example a report on sales in the south region for the 4th quarter of 2004. 
The values contained in a report do not change over time. An interactive analysis is a 
tool, e.g. an OLAP tool. In this case, the queries or analysis operations are not prede-
fined but can be chosen by the user. The values are regularly updated and can be used 
for continuous performance monitoring. In a business process model we can for in-
stance show a certain report that is accessed by an activity. 
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3   The UML Profile for Business Intelligence Objects 

UML offers a possibility to extend and adapt its meta-model to a specific area of 
application through the creation of profiles. UML profiles are UML packages with the 
stereotype «profile». A profile can extend a meta-model or another profile [12] while 
preserving the syntax and semantic of existing UML elements. It adds elements which 
extend existing classes. UML profiles consist of stereotypes, constraints and tagged 
values.  

 

Fig. 2. Extending the UML2 Meta-Model with Stereotypes for BI Objects 

A stereotype is a model element defined by its name and by the base class(es) to 
which it is assigned. Base classes are usually meta-classes from the UML meta- 
model, for instance the meta-class «Class», but can also be stereotypes from another 
profile. A stereotype can have its own notation, e.g. a special icon. 

Constraints are applied to stereotypes in order to indicate restrictions. They specify 
pre- or post conditions, invariants, etc., and must comply with the restrictions of the 
base class [12]. Constraints can be expressed in any language, such as programming 
languages or natural language. We use the Object Constraint Language (OCL) [11] in 
our profile, as it is more precise than natural language or pseudocode, and widely 
used in UML profiles. 

Tagged values are additional meta-attributes assigned to a stereotype, specified as 
name-value pairs. They have a name and a type and can be used to attach arbitrary 
information to model elements. 

We extend the UML 2 activity diagram with a UML Profile for BI Objects, creat-
ing an integrated model of processes and BI objects to make the relationship between 
the DWH environment and the business processes more transparent. Activity dia-
grams are used in UML for modeling processes, workflows, and computations. In  
Fig. 2 we show a part of the UML 2 meta-model related to activity diagrams (light) to 
illustrate how the stereotypes we designed (dark) fit into to the existing meta-model. 

In an UML 2 activity diagram, a single activity, representing a process or part of  
a  process,  is modeled. An activity may include any number of activity nodes, such as  
individual actions, control nodes (e.g. splits and joins), and object nodes. These nodes 
can be arranged to form sequential or concurrent processes, and several activity dia-
grams can be connected to describe larger processes. 
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In the UML Profile for BI Objects, we use the class Object Node as base class for 
all stereotypes. The OMG has defined an object node as an “activity node that indi-
cates an instance of a particular classifier, possibly in a particular state, may be avail-
able at a particular point in the activity” [12]. Therefore, object nodes represent con-
crete instances of information objects, which are input or output parameters of an 
activity. They are suited for the purpose of showing when a (sub-)process accesses a 
BI object, as the BI objects amount to input parameters of activities. 

As described in the meta-model in Section 2, BI objects can be classified into three 
larger types. We therefore have defined three abstract top-level stereotypes, «DataRe-
pository», «DataObject», and «PresentationObject». The stereotypes «DataWare-
house», «OperationalDataStore» and «DataMart» are derived from «DataReposi-
tory». Their specifications are listed in Table 1. The stereotype «DataObject» can be 
further specialized into «Fact» and «Entity», as shown in Table 2. Finally, the stereo-
types «Report» and «InteractiveAnalysis» are specializations of «PresentationOb-
ject», as listed in Table 3. The semantics of the individual elements were described in 
greater detail in Section 2. 

Table 1. Data Repositories: Specification of Stereotypes 

Name DataRepository 
Base Class ObjectNode 
Description A data repository represents a type of database used in data warehouse environments. 

The stereotypes DataWarehouse, DataMart, and OperationalDataStore are derived 
from DataRepository. 

Constraints A DataRepository must be related to at least one DataObject:  
context DataRepository inv: 
Self.dataObject->size() >= 1 

Tagged Values isMultidimensional 
• Type: UML::Datatypes::Boolean 
• Multiplicity: 1 
• Description: Indicates whether the data model of the DataRepository 

is a multidimensional data model 
Name DataWarehouse 
Base Class DataRepository 
Description A data warehouse is a subject-oriented, integrated, time-

variant, nonvolatile collection of data in support of 
management’s decision-making process [7]. 

Tagged Values None 
Constraints None 

Notation 
 

 

 

Name DataMart 
Base Class DataRepository 
Description A data mart is a departmental subset of a DWH focused 

on a single subject area [2]. 
Tagged Values None 
Constraints None 

Notation 
 

 
Name OperationalDataStore 
Base Class DataRepository 
Description An operational data store is located between the opera-

tional systems and the DWH [5]. 
Tagged Values None 
Constraints None 

Notation 
 

 

 



 Extending UML 2 Activity Diagrams with Business Intelligence Objects 59 

Table 2. Data Objects: Specification of Stereotypes  

Name DataObject 
Base Class ObjectNode 
Description A data object is part of the data model contained in a data repository. The stereotypes 

Fact and Entity are derived from DataObject. 
Tagged Values  None 

A DataObject must belong to exactly one DataRepository: 
context DataObject inv: 
self.dataRepository.size() = 1 

Constraints 

The corresponding class must have at least one attribute: 
context DataObject inv:  
self.type.allAttributes()->size() >= 1 

Name Fact 
Base Class DataObject 
Description A fact is a data object of a multidimensional data model. 
Tagged Values None 

Notation 
 

 
Constraints The DataRepository containing a fact must have a multidimensional data model: 

context Fact inv: 
self.isType(Fact) implies 
self.dataRepository.isMultidimensional 

Name Entity 
Base Class DataObject 
Description An entity is a data object of an E/R model. 
Tagged Values None 

Notation 
 

 
Constraints The DataRepository containing an entity must not have a multidimensional data 

model: 
context Entity inv:  
self.isType(Entity) implies not 
self.dataRepository.isMultidimensional 

Table 3. Presentation Objects: Specification of Stereotypes  

Name PresentationObject 
Base Class ObjectNode 
Description A presentation object is a document or tool used to present information to a user. The 

stereotypes Report and InteractiveAnalysis are derived from PresentationObject. 
Tagged Values None 
Constraints A PresentationObject must have at least one DataObject: 

context PresentationObject inv: 
self.dataObject->size() >= 1 

Name Report 
Base Class PresentationObject 
Description A report displays a predefined set of queries. 
Tagged Values None 
Constraints None 

Notation 

 
Name InteractiveAnalysis 
Base Class PresentationObject 
Description An interactive analysis is a tool that allows the user  to 

freely explore information. 
Tagged Values None 
Constraints None 

Notation 
 

 
Name 
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4   Examples 

We present three examples that demonstrate the application of the UML Profile for BI 
Objects developed in Section 3, each illustrating a different aspect. The first example 
introduces a simple UML 2 activity diagram with BI objects, the second example 
illustrates how UML «selection» notes can be used in combination with BI objects to 
provide more detail on data access, and the third example demonstrates how a more 
complicated business process can be modeled on a higher level of abstraction. 

The example activity diagram in Fig. 3 describes the well-known process of a pas-
senger checking in at an airport. Two parties are involved in this activity, the passen-
ger and the check-in desk. The process starts with the action “present documents”: the 
passenger presents the travel documents at the check-in desk. Two items, the ticket 
and the passport, are passed to the “check identity” action performed by the check-in 
desk. In order perform its task, the action also needs access not only to the two docu-
ments but also to the entity “reservation”. Therefore, it only starts if all three neces-
sary inputs are available. After the identity check has concluded, the check-in desk 
decides on a possible upgrade. The action “decide on upgrade” needs data from the 
Customer Relationship Management (CRM) data mart. The data mart contains the 
frequent flyer status of the passenger in question. Data on the current flights situation, 
(e.g., whether another flight to the same destination is cancelled or overbooked, 
meaning that no upgrades are available) is provided by an interactive analysis tool. 
The “decide on upgrade” action therefore can only begin when the identity check has 
concluded and the two BI objects are available. It produces a boarding pass as output. 
The passenger can proceed to the gate as soon as he or she has received the boarding 
pass. Alternative paths, such as the identity check failing, were left out for sake of 
clarity of the example. 

 

 

Fig. 3. Airport Check-In Business Process 
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A large business process can be modeled by linking together several activity dia-
grams, each describing a small sub-process, such as the part of the process of design-
ing and organizing a promotion of a single product (e.g. a 30 percent discount on a 
brand of soap) shown in Fig. 4. In the initial step of choosing the product, a report on 
past promotions is analyzed in order to identify products suitable for a profitable pro-
motion. Therefore, the action “analyze past promotions” has a set of products, e.g., 
those that seem promising, as output. In the following “choose product” action, a 
product is chosen based on how many items of the product were sold in the past (i.e. 
the sales information provided by the “Sales” fact) and whether enough items are on 
stock (i.e. inventory information from the ODS system). Only data on the products 
selected before should be read from the fact table and the ODS. In an activity dia-
gram, a «selection» note attached to the object flow between an object node and an 
action can be used to specify selection behaviour. In the example presented here, the 
OCL statement checks whether a product in the BI object – the “Sales fact” or the 
ODS – is contained in the list of promising products. 

 

 

Fig. 4. Product Promotion: The Sub-Process of Choosing the Product 

 

Fig. 5. Fraud Detection Business Process 
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During a fraud detection process at an insurance company (Fig. 5), insurance claims 
are subjected to a three-step analysis, aimed at recognizing all potentially fraudulent 
claims before they might be processed and paid. The activity “fraud detection” is 
started by the arrival of an insurance claim. The claim is first exposed to an extensive 
automated check by the claim processing system. All claims judged as being suspi-
cious are forwarded to the fraud detection department, whereas the others are proc-
essed normally. The suspicious claims are then reviewed. In this action the results of 
the automated check as well as the history of the customer and the insurance policy are 
analyzed, to identify patterns and/or similar cases. Therefore, the action needs access to 
two fact tables: “Customers” and “Policy Transactions”. The claims that continue to be 
suspect are then formally investigated, whereas the claims re-established as genuine 
are returned to the claim processing system. The action “formal investigation” repre-
sents a thorough search for further clues in order to provide answers to any open ques-
tions. As the queries necessary in this step are different in every case and cannot be 
predicted, the action requires the whole data warehouse of the insurance company as 
input. All claims finally identified as fraudulent are rejected. 

5   Related Work 

There are a lot of conceptual modelling languages available for business processes or 
DWHs. But there are no models that focus on the relationship between these two 
domains. The conceptual DWH diagrams available for the different stages of the 
DWH process, e.g. for multidimensional models [10] or ETL processes [14], do not 
address the link to business processes at all. Business process diagrams that address 
the static structure of databases do not address the particularities of DWHs and BI. 

Event-Driven Process Chains (EPC) [8] incorporate a data view, targeting opera-
tional data bases. To provide the data view with a conceptual model, Chen’s entity-
relationship (ER) model was adopted, since it was the most widespread model in the 
area of data modelling. Today, the UML class diagram is also used. EPC functions 
perform read or write operations on E/R entities or UML classes. The UML Profile 
for BI Objects is based on a similar concept, but accounts for the particularities of 
DWH settings. 

In UML 2 activity diagrams [12], data store nodes represent data. A UML 2 action 
node can perform read or write operations, comparable to the EPC function. The data 
store node is not necessarily linked with a UML class or database. 

The Business Process Modeling Notation (BPMN) [1] provides data objects, which 
are used and updated during the process. The data object can be used to represent 
many different types of objects, both electronic or physical.  

6   Conclusion 

In this work, we have addressed the missing link in conceptual modeling between the 
static structures of the DWH and the dynamic structures of business processes. To 
bridge this gap, we have extended the UML 2 activity diagram with a UML Profile 
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for Business Intelligence (BI) Objects. The model shows where and how business 
processes use a DWH environment, and which parts of the business processes de-
pend on which parts of the DWH. The DWH environment is specified in terms of 
several types of BI objects, representing the different types of data repositories, their 
data models and the means of presentation. These BI objects can be accessed by 
actions of UML 2 activity diagrams. The profile was applied to several example 
processes.  
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Abstract. The queries defined on data warehouses are complex and use
several join operations that induce an expensive computational cost. This
cost becomes even more prohibitive when queries access very large vol-
umes of data. To improve response time, data warehouse administrators
generally use indexing techniques such as star join indexes or bitmap join
indexes. This task is nevertheless complex and fastidious. Our solution
lies in the field of data warehouse auto-administration. In this frame-
work, we propose an automatic index selection strategy. We exploit a
data mining technique ; more precisely frequent itemset mining, in order
to determine a set of candidate indexes from a given workload. Then,
we propose several cost models allowing to create an index configuration
composed by the indexes providing the best profit. These models evalu-
ate the cost of accessing data using bitmap join indexes, and the cost of
updating and storing these indexes.

1 Introduction

Data warehouses are generally modelled according to a star schema that con-
tains a central, large fact table, and several dimension tables that describe the
facts [10,11]. The fact table contains the keys of the dimension tables (foreign
keys) and measures. A decision–support query on this model needs one or more
joins between the fact table and the dimension tables. These joins induce an
expensive computational cost. This cost becomes even more prohibitive when
queries access very large data volumes. It is thus crucial to reduce it.

Several database techniques have been proposed to improve the computa-
tional cost of joins, such as hash join, merge join and nested loop join [14].
However, these techniques are efficient only when a join applies on two tables
and data volume is relatively small. When the number of joins is greater than
two, they are ordered depending on the joined tables (join order problem). Other
techniques, used in the data warehouse environment, exploit join indexes to pre-
compute these joins in order to ensure fast data access. Data warehouse ad-
ministrators then handle the crucial task of choosing the best indexes to create
(index selection problem). This problem has been studied for many years in
databases [1,4,5,6,7,12,18]. However, it remains largely unresolved in data ware-
houses. Existing research studies may be clustered in two families: algorithms

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2005, LNCS 3589, pp. 64–73, 2005.
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that optimize maintenance cost [13] and algorithms that optimize query response
time [2,8,9]. In both cases, optimization is realized under the constraint of the
storage space. In this paper, we focus on the second family of solutions, which
is relevant in our context because they aim to optimize query response time.

In addition, with the large scale usage of databases in general and data
warehouses in particular, it is now very important to reduce the database ad-
ministration function. The aim of auto-administrative systems is to administrate
and adapt themselves automatically, without loss (or even with a gain) in per-
formance. In this context, we proposed a method for index selection in databases
based on frequent itemset extraction from a given workload [3]. In this paper, we
present the follow-up of this work. Since all candidate indexes provided by the
frequent itemset extraction phase cannot be built in practice due to system and
storage space constraints, we propose a cost model–based strategy that selects
the most advantageous indexes. Our cost models estimate the data access cost
using bitmap join indexes, and their maintenance and storage cost.

We particularly focus on bitmap join indexes because they are well–adapted
to data warehouses. Bitmap indexes indeed make the execution of several com-
mon operations such as And, Or, Not or Count efficient by having them operating
on bitmaps, in memory, and not on the original data. Furthermore, joins are pre-
computed at index creation time and not at query execution time. The storage
space occupied by bitmaps is also low, especially when the indexed attribute
cardinality is not high [17,19]. Such attributes are frequently used in decision–
support query clauses such as Where and Group by.

The remainder of this paper is organized as follows. We first remind the
principle of our index selection method based on frequent itemset mining (Sec-
tion 2). Then, we detail our cost models (Section 3) and our index selection
strategy (Section 4). To validate our work, we also present some experiments
(Section 5). We finally conclude and provide research perspectives (Section 6).

2 Index Selection Method

In this section, we present an extension to our work about the index selection
problem [3]. The method we propose (Figure 1) exploits the transaction log
(the set of all the queries processed by the system) to recommend an index
configuration improving data access time.

We first extract from a given workload a set of so called indexable at-
tributes. Then, we build a “query-attribute” matrix whose rows represent work-
load queries and whose columns represent a set of all the indexable attributes.
Attribute presence in a query is symbolized by one, and absence by zero. It is
then exploited by the Close frequent itemset mining algorithm [16]. Each itemset
is analyzed to generate a set of candidate indexes. This is achieved by exploiting
the data warehouse metadata (schema: primary keys, foreign keys; statistics. . . ).
Finally, we prune the candidate indexes using the cost models presented in Sec-
tion 3, before effectively building a pertinent index configuration. We detail these
steps in the following sections.
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Fig. 1. Automatic index selection strategy

3 Cost Models

The number of candidate indexes is generally as high as the input workload is
large. Thus, it is not feasible to build all the proposed indexes because of system
limits (limited number of indexes per table) or storage space constraints. To
circumvent these limitations, we propose cost models allowing to conserve only
the most advantageous indexes. These models estimate the storage space (in
bytes) occupied by bitmap join indexes, the data access cost using these indexes
and their maintenance cost expressed in number of input/output operations
(I/Os). Table 1 summarizes the notations used in our cost models.

3.1 Bitmap Join Index Size

The space required to store a simple bitmap index linearly depends on the in-
dexed attribute cardinality and the number of tuples in the table on which the

Table 1. Cost model parameters

Symbol Description
| X | Number of tuples in table X or cardinality of attribute X
Sp Disk page size in bytes
pX Number of pages needed to store table X
Spointer Page pointer size in bytes
m B-tree order
d Number of bitmaps used to evaluate a given query
w(X) Tuple size in bytes of table X or attribute X
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index is built. The storage space of a bitmap index built on attribute A from ta-
ble T is equal to |A||T |

8 bytes [19,20]. Bitmap join indexes are built on dimension
table attributes. Each bitmap contains as many bits as the number of tuples in
fact table F . The size of their storage space is then S = |A||F |

8 bytes.

3.2 Bitmap Join Index Maintenance Cost

Data updates (mainly insert operations in decisions-support systems) systemi-
cally trigger index updates. These operations are applied either on a fact table
or dimensions. The cost of updating bitmap join indexes is presented in the
following sections.

Insertion cost in fact table. Assume a bitmap join index built on attribute
A from dimension table T . While inserting tuples in fact table F , it is first
necessary to search for the tuple of T that is able to be joined with them. At
worst, the whole table T is scanned (PT pages are read). It is then necessary
to update all bitmaps. At worst, all bitmaps are scanned: |A||F |

8Sp
pages are read,

where Sp denotes the size of one disk page. The index maintenance cost is then
Cmaintenance = pT + |A||F |

8Sp
.

Insertion cost in dimension tables. An insertion in dimension T may induce
or not a domain expansion for attribute A. When not expanding the domain, the
fact table is scanned to search for tuples that are able to be joined with the new
tuple inserted in T . This operation requires to read pF pages. It is then necessary
to update the bitmap index. This requires |A||F |

8Sp
I/Os. When expanding the

domain, it is necessary to add the cost of building a new bitmap ( |F |
8Sp

pages).
The maintenance cost of bitmap join indexes is then Cmaintenance = pF + (1 +
ξ) |A||F |

8Sp
, where ξ is equal to one if there is expansion and zero otherwise.

3.3 Data Access Cost

We propose two cost models to estimate the number of I/Os needed for data
access. In the first model, we do not take any hypothesis about how indexes are
physically implemented. In the second model, we assume that access to the index
bitmaps is achieved through a b-tree such as is the case in Oracle. Due to lack
of space and our experiments under Oracle we only detail here the second model
because of running our experiments. however, the first model is not detailed here
due to the lack of space.

In this model, we assume that the access to bitmaps is realized through a b-
tree (meta–indexing) in which leaf nodes point to bitmaps. The cost, in number
of I/Os, of exploiting a bitmap join index for a given query may be written as
follows: C = Cdescent + Cscan + Cread, where Cdescent denotes the cost needed
to reach the leaf nodes from the b-tree root, Cscan denotes the cost of scanning
leaf nodes to retrieve the right search key and the cost of reading the bitmaps
associated to this key, and Cread finally gives the cost of reading the indexed
table’s tuples.
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The descent cost in the b-tree depends on its height. The b-tree’s height built
on attribute A is logm|A|, where m is the b-tree’s order. This order is equal to
K + 1, where K represents the number of search keys in each b-tree node. K is
equal to Sp

w(A)+Spointer
, where w(A) and Spointer are respectively the size of the

indexed attribute A and the size of a disk page pointer in bytes. Without adding
the b-tree leaf node level, the b-tree descent cost is then Cdescent = logm|A| − 1.

The scanning cost of leaf nodes is |A|
m−1 (at worst, all leaf nodes are read).

Data access is achieved through bits set to one in each bitmap. In this case, it
is necessary to read each bitmap. The reading cost of d bitmaps is d |F |

8Sp
. Hence,

the scanning cost of the leaf nodes is Cscan = |A|
m−1 + d |F |

8Sp
.

The reading cost of the indexed table’s tuples is computed as follow. For a
bitmap index built on attribute A, the number of read tuples is equal to |F |

|A| (if
data are uniformly distributed). Generally, the total number of read tuples for
a query using d bitmaps is Nr = d |F |

|A| . Knowing the number of read tuples, the

number of I/Os in the reading phase is Cread = pF (1 − e
−Nr

pF ) [15], where pF

denotes the number of pages needed for store the fact table.
In summary, the evaluation cost of a query exploiting a bitmap join index is

Cindex = logm|A| − 1 + |A|
m−1 + d |F |

8Sp
+ pF (1 − e

−Nr
pF ).

3.4 Join Cost Without Indexes

If the bitmap join indexes are not useful while evaluating a given query, we
assume that all joins are achieved by the hash–join method. The number of
I/Os needed for joining table R with table S is then Chash = 3 (pS + pR) [14].

4 Bitmap Join Index Selection Strategy

Our index selection strategy proceeds in several steps. The candidate index set
is first built from the frequent itemsets mined from the workload (Section 2). A
greedy algorithm then exploits an objective function based on our cost models
(Section 3) to prune the least advantageous indexes. The detail of these steps and
the construction of the objective function are provided in the following sections.

4.1 Candidate Index Set Construction

From the frequent itemsets (Section 2) and the data warehouse schema (foreign
keys of the fact table, primary keys of the dimensions, etc.), we build a set of
candidate indexes.

The SQL statement for building a bitmap join index is composed of three
clauses: On, From and Where. The On clause is composed of attributes on which is
built the index (non–key attributes in the dimensions), the From clause contains
all joined tables and the Where clause contains the join predicates.

We consider a frequent itemset < Table.attribute1, ..., T able.attributen >
composed of elements such as Table.attribute. Each itemset is analyzed to de-
termine the different clauses of the corresponding index. We first extract the
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elements containing foreign keys of the fact table because they are necessary to
define the From and Where index clauses. Next, we retrieve the itemset elements
that contain primary keys of dimensions to form the From index clause. The
elements containing non–key attributes of dimensions form the On index clause.
If such elements do not exist, the bitmap join index cannot be built.

4.2 Objective Functions

In this section, we describe three objective functions to evaluate the variation of
query execution cost, in number of I/Os, induced by adding a new index. The
query execution cost is assimilated to computing the cost of hash joins if no
bitmap join index is used or to the data access cost through indexes otherwise.
The workload execution cost is obtained by adding all execution costs for each
query within this workload. The first objective function advantages the indexes
providing more profit while executing queries, the second one advantages the
indexes providing more benefit and occupying less storage space, and the third
one combines the first two in order to select at first all indexes providing more
profit and then keep only those occupying less storage space when this resource
becomes critical. The first function is useful when storage space is not limited, the
second one is useful when storage space is small and the third one is interesting
when this storage space is quite large. The detail of computing each function is
not given due to the lack of space.

4.3 Index Configuration Construction

The index selection algorithm is based on a greedy search within the candidate
index set I given as an input. The objective function F must be one of the
functions: profit (P ), profit/space ratio (R) or hybrid (H). If R is used, we add
to the algorithm’s input the space storage M allotted for indexes. If H is used,
we also add threshold α as input.

In the first algorithm iteration, the values of the objective function are com-
puted for each index within I. The execution cost of all queries in workload Q
is equal to the total cost of hash joins. The index imax that maximizes F , if it
exists, is then added to the set of selected indexes S. If R or H is used, the whole
space storage M is decreased by the amount of space occupied by imax.

The function values of F are then recomputed for each remaining index in
I − S since they depend on the selected indexes present in S. This helps taking
into account the interactions that probably exist between the indexes. We repeat
these iterations until there is no improvement or all indexes have been selected
(I −S = ∅). If functions R or H are used, the algorithm also stops when storage
space is full.

5 Experiments

In order to validate our bitmap join index selection strategy, we have run tests
on a data warehouse implemented within Oracle 9i, on a Pentium 2.4 GHz PC
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with a 512 MB main memory and a 120 GB IDE disk. This data warehouse
is composed of the fact table Sales and five dimensions Customers, Products,
Promotions, Times and Channels. We have measured for different value of the
minimal support parameterized in Close the workload execution time. In prac-
tice, the minimal support limits the number of candidate indexes to generate
and selects only those that are frequently used.

For computing the different costs from our models, we fixed the value of Sp

(disk page size) and Spointer (page pointer size) to 8 MB and 4 MB respectively.
These values are those indicated in the Oracle 9i configuration file. The work-
load is composed of forty decision–support queries containing several joins. We
measured the total execution time when building indexes or not. In the case of
building indexes, we also measured the total execution time when we applied
each objective function among of profit, ratio profit/space and hybrid. We also
measured the disk space occupied by the selected indexes. When applying the
cost models, we reduce the number of indexes and thereby the storage space
needed to store these indexes.

Profit function experiment. Figure 2 shows that the selected indexes im-
prove query execution time with and without application of our cost models
until the minimal support forming frequent itemsets reaches 47.5%. Moreover,
the execution time decreases continuously when the minimal support increases
because the number of indexes decreases. For high values of the minimal support
(greater than 47.5%), the execution time is closer to the one obtained without
indexes. This case is predictable because there is no or few candidate indexes
to create. The maximal gain in time in both cases is respectively 30.50% and
31.85%. Despite of this light drop of 1.35% in time gain when the cost models
are used (fewer indexes are built), we observe a significant gain in storage space
(equal to 32.79% in the most favorable case) as shown in figure 3. This drop
in number of indexes is interesting when the data warehouse update frequency
is high because update time is proportional to the number of indexes. On the

680,00

730,00

780,00

830,00

880,00

930,00

980,00

1030,00

1,
0%

5,
0%

10
,0%

15
,0%

17
,5%

20
,0%

25
,0%

40
,0%

45
,0%

>=
 47

,5%

Minimal support

R
es

po
ns

e 
tim

e 
(in

 s
ec

on
ds

)

Without indexes With indexes and w ithout cost models

With indexes and cost models

Fig. 2. Profit function

0

20

40

60

80

100

120

1,
00

%
5,

00
%

10
,0

0%

15
,0

0%

17
,5

0%

20
,0

0%

25
,0

0%

40
,0

0%

45
,0

0%

> 
= 4

7,5
%

Minimal support

S
iz

e 
of

 in
de

xe
s 

(in
 M

B
)

Without cost models With cost models

Fig. 3. Index storage space



Automatic Selection of Bitmap Join Indexes 71

other hand, the gain in storage space helps limiting the storage space allotted
for indexes by the administrator.

Profit/space ratio function experiment. In these experiments, we have fixed
the value of minimal support to 1%. This value gives the highest number of
frequent itemsets and consequently the highest number of candidate indexes.
This helps varying storage space within a wider interval. We have measured
query execution time according to the percentage of storage space allotted for
indexes. This percentage is computed from the space occupied by all indexes.
Figure 4 shows that execution time decreases when storage space occupation
increases. This is predictable because we create more indexes and thus better
improve the execution time. We also observe that the maximal time gain is equal
to 28.95% and it is reached for a space occupation of 59.64%. This indicates
that if we fix space storage to this value, we obtain a time gain close to the one
obtained with the profit objective function (30.50%). This case is interesting
when the administrator does not have enough space to store all the indexes.

Hybrid function experiment. We repeated the previous experiments with
the hybrid objective function. We varied the value of parameter α between 0.1
and 1 by 0.1 steps. The obtained results with α ∈ [0.1, 0.7] and α ∈ [0.8, 1] are re-
spectively equal to those obtained with α = 0.1 and α = 0.7. Thus, we represent
in figure 5 only the results obtained with α = 0.1 and α = 0.7. This figure shows
that for α = 0.1, the results are close to those obtained with profit/space ratio
the function ; and for α = 0.8, they are close to those obtained with the profit
function. The maximal gain in execution time is respectively equal to 28.95%
and 29.95% for α = 0.1 and α = 0.8. We explain these results by the fact that
bitmap join indexes built on several attributes need more storage space. How-
ever, as they pre–compute more joins, they better improve the execution time.
The space storage allotted for indexes then fills up very quickly after a few it-
erations of the greedy algorithm. This explains why the parameter α does not
significantly affect our algorithm and the experiment results.
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6 Conclusion and Perspectives

In this article, we presented an automatic strategy for bitmap index selection
in data warehouses. This strategy first exploits frequent itemsets obtained by
the Close algorithm from a given workload to build a set of candidate bitmap
join indexes. With the help of cost models, we keep only the most advantageous
candidate indexes. These models estimate data access cost through indexes, as
well as maintenance and storage cost for these indexes. We have also proposed
three objective functions: profit, profit/space ratio and hybrid that exploit our
cost models to evaluate the execution cost of all queries. These functions are
themselves exploited by a greedy algorithm that recommends a pertinent con-
figuration of indexes. This helps our strategy respecting constraints imposed by
the system (limited number of indexes per table) or the administrator (storage
space allotted for indexes). Our experimental results show that the application
of cost models to our index selection strategy decreases the number of selected
indexes without a significant loss in performance. This decrease actually guar-
antees a substantial gain in storage space, and thus a decrease in maintenance
cost during data warehouse updates.

Our work shows that the idea of using data mining techniques for data ware-
house auto-administration is a promising approach. It opens several future re-
search axes. First, it is essential to keep on experimenting in order to better eval-
uate system overhead in terms of index building and maintenance. It could also
be very interesting to compare our approach to other index selection methods.
Second, extending our approach to other performance optimization techniques
(materialized views, buffering, physical clustering, etc.) is another promising
perspective. Indeed, in a data warehouse environment, it is principally in con-
junction with other physical structures such as materialized views that indexing
techniques provide significant gains in performance. For example, our context
extraction may be useful to build clusters of queries that maximize the simi-
larity between queries within each cluster. Each cluster may be then a starting
point to materialize views. In addition, it could be interesting to design methods
to efficiently share the available storage space between indexes and views.
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Abstract. The industrial use of open source Business Intelligence (BI)
tools is not yet common. It is therefore of interest to explore which
possibilities are available for open source BI and compare the tools.

In this survey paper, we consider the capabilities of a number of open
source tools for BI. In the paper, we consider three Extract-Transform-
Load (ETL) tools, three On-Line Analytical Processing (OLAP) servers,
two OLAP clients, and four database management systems (DBMSs).
Further, we describe the licenses that the products are released under.

It is argued that the ETL tools are still not very mature for use
in industry while the DBMSs are mature and applicable to real-world
projects. The OLAP servers and clients are not as powerful as commercial
solutions but may be useful in less demanding projects.

1 Introduction

The use of Business Intelligence tools is popular in industry [25,29,30]. However,
the use of open source tools seems to be limited. The dominating tools are
closed source and commercial (see for example [25] for different vendors’ market
shares for OLAP servers). Only for database management systems (DBMSs),
there seems to be a market where open source products are used in industry,
including business-critical systems such as online travel booking, management
of subscriber inventories for tele communications, etc. [23]. Thus, the situation
is quite different from, for example, the web server market where open source
tools as Linux and Apache are very popular [38].

To understand the limited use of open source BI tools better, it is of inter-
est to consider which tools are available and what they are capable of. This is
the purpose of this paper. In the European Internet Accessibility Observatory
(EIAO) project, where accesibility data is collected, it is intended to build a
BI solution based on open source software. It is therefore of relevance for this
project to investigate the available products.

In the survey we will consider products for making a complete solution with
an Extract-Transform-Load (ETL) tool that loads data into a database managed
by a DBMS. On top of the DBMS, an On-Line Analytical Processing (OLAP)
server providing for fast aggregate queries will be running. The user will be
communicating with the OLAP server by means of an OLAP client. We limit
ourselves to these kinds of tools and do not consider, for example, data mining
tools or Enterprise Application Integration (EAI) tools. Use of data mining tools
would also be of relevance in many BI settings, but data mining is a more
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advanced feature which should be considered in future work. EAI tools may have
some similarities with ETL tools, but are more often used in online transactional
processing (OLTP) systems.

The rest of the paper is structured as follows. Section 2 gives a primer on
open source licenses. Section 3 presents the criteria used in the evaluation of
the different tools. Section 4 considers ETL tools. Section 5 deals with OLAP
servers, while Section 6 deals with OLAP clients. Finally, we consider DBMSs
in Section 7 before concluding and pointing to future work in Section 8.

2 Open Source Licenses

To make the findings on licenses more comprehensible, we include a description
of the open source licenses that will be referred to later in the paper. The GNU
General Public License (GPL) [11] is a classic, often used open source license. Any
user is free to make changes to the source code. If the changed version is only used
privately, it is not a requirement that its source code is released. If it, however, is
distributed in some way, then the source code must be made available under the
GPL (i.e. also released as open source that any user is free to change and copy). It
should be noted that a library released under the GPL will require any program
that uses it to be licensed under the GPL. This is not the case when using GNU
Library General Public License (LGPL) [12] which apart from that is much like the
GPL. The Common Public License (CPL) [7] was developed by IBM as an open
source license. Like the GPL, the CPL requires that the source code for a modified
version of a program is made publicly available if the new version is distributed
to anyone. Programs and libraries released under the CPL may be used from and
integrated with software released under other (also closed source) licenses.

The Mozilla Public License [22] is also an open source license that requires
the code for any distributed modified works to be made publicly available. It is
allowed to use a library under the Mozilla Public License from a closed source
application. Thus the license has some similarities with the LGPL. The Apache
License [1], [2] allows the code to be used both in open source, free programs and
in commercial programs. It is also possible to modify the code and redistribute
it under another license under certain conditions (e.g. the use of the original
code should be acknowledged). Version 1.0 and 1.1 of the Apache License [1]
included requirements about the use of the name “Apache” in documentation
and advertising materials. That meant that the license should be modified for use
in non-Apache projects. This was changed with version 2.0 [2]. The BSD License
[5] is a very liberal open source license. It is permitted to use source code from
a BSD licensed program in a commercial, closed source application. As long as
any copyright notices remain in the modified code, there are no requirements
saying that modifications of the code should be BSD licensed or open source.

3 Conduct of the Survey

In this section, we present the criteria used for the evaluation of the consid-
ered products. The criteria with a technical nature have been inspired by the
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functionality offered by the leading commercial BI tools. Other criteria, such
as the type of license, are interesting when looking at open source tools. Based
on the criteria given below, we collected data about the products (all found on
the Internet) by examining their source code, available manuals, and homepages
including any forums. The findings were collected in Nov-Dec. 2004.

Criteria for All Categories. When deciding between different products, a
potential user would most often prefer a product that is compatible with his1

existing operating system and hardware. Thus, for all the products, it is of inter-
est to investigate which hardware and software platforms the tools are available
for. In this survey we will only look at open source products. As described in
Section 2 there are, however, many different open source licenses that have dif-
ferent permissions and restrictions. Therefore, the license used by a product is
also of great interest.

Criteria for ETL Tools. When comparing ETL tools, there are several criteria
to consider. First, it should be considered which data sources and targets a given
tool supports. Here, it should be considered whether the tool is for loading data
into ROLAP or MOLAP systems, i.e. into relational tables or multidimensional
cubes [30]. In many practical applications, it should be possible to extract data
from different sources and combine the data in different ways. Further, it should
be possible to load the data into different tables/cubes. Therefore support for
these issues should be considered. It should also be considered which types of
data sources an ETL tool can extract data from and whether it supports in-
cremental load in an automatic fashion (not requiring two separate flows to be
specified). It is also of interest how the ETL process is specified by the user, i.e
whether a graphical user interface (GUI) exists and if the user can specify the
process directly by means of some specification language. Another important
issue for ETL tools is their capabilities for data cleansing. Here it should be
considered how data cleansing is supported, i.e. if predefined methods exist and
how the user can specify his own rules for data cleansing.

Criteria for OLAP Servers. For an OLAP server it is of interest to know
how it handles data. It should thus be considered whether the tool is ROLAP,
MOLAP, or HOLAP oriented, where HOLAP is short for Hybrid OLAP [30].
Further, it is of interest if the product is capable of handling large data sets
(for example, data sets greater than 10 gigabytes). It should also be taken into
account whether an OLAP server has to be used with a specific DBMS or if it
is independent of the underlying DBMS. Precomputed aggregates can in many
situations lead to significant performance gains. It is therefore relevant to see
whether an OLAP server can use aggregates and if so, whether the user can
specify which aggregates to use. Finally, it is of relevance to investigate which
application programming interfaces (APIs) and query languages an OLAP server
supports. A product that uses standards or de-facto standards is much more use-
ful with other tools than a product using a non-standard API or query language.

1 We use “his” as short for “his/her”.
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Criteria for OLAP Clients. For an OLAP client it should be considered
which OLAP server(s) the OLAP client can be used with. As for OLAP servers, it
should also be taken into account which API(s) and query language(s) the OLAP
client supports. With respect to reports, it is interesting to see if the OLAP
client supports prescheduled reports, perhaps through a server component. If
so, the user could, for example, make the OLAP client generate a sales report
every Friday afternoon. When a report has been generated (manually or as
prescheduled report), it is often useful to be able to export the report to some
common format that could be emailed to someone else. Therefore, it should be
investigated which export facilities an OLAP client offers. In generated reports,
different types of graphs are often used. It should thus also be considered how
well an OLAP clients supports different kinds of graphs.

Criteria for DBMSs. There are many possible criteria to consider for DBMSs.
In this survey we will, however, only look at criteria directly relevant for BI pur-
poses. First of all, a DBMS should be capable of handling large data sets if the
DBMS is to be used in BI applications. Thus this is an issue to investigate. When
choosing a DBMS for BI, it is also of relevance which performance improving
features the DBMS offers. In this survey we will look into the support for mate-
rialized views that can yield significant performance gains for precomputed ag-
gregates. Many commercial ROLAP systems use bitmap indices to achieve good
performance [30]. It is also of interest to find out whether these are supported
in the considered products. Further, in a typical schema for a data warehouse,
star joins may be a faster to use and, thus, the support for these is an issue.
Finally, we will consider partitioning which can yield performance improvements
and replication which may improve performance and reliability.

4 ETL Tools

In this section, we will consider the three ETL tools Bee, CloverETL, and Oc-
topus. These were all the available tools we found. We found many other open
source ETL projects that were not carrying any implementation, but more or
less only stated objectives. Examples of such projects are OpenSrcETL [27] and
OpenETL [26]. Another disregarded project, was cplusql [8] which had some
source code availble, but for which we did not find any other information.

Bee. Bee version 1.1.0 [3] is a package consisting of an ETL tool, an OLAP
server, and an OLAP client web interface. The ETL tool and the OLAP server
of Bee are ROLAP oriented. Bee is available under both an open source GPL
license and a commercial license. Bee is implemented mainly in Perl with parts
implemented in C. Therefore, the access to data is provided by the Perl module
DBI. Bee comes with its own driver for comma-separated files. To extract data,
Bee needs a small server application (included) to be running on the host holding
the data. Bee is primarily written for Linux, but is also running on Windows
platforms. The mentioned server application needed for extracting data runs on
different varieties of UNIX and Windows. The ETL process can be specified by
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means of a GUI. The GUI will create an XML file defining the process. It is thus
also possible for the user to use Bee without using the GUI by creating the XML
file manually. It is possible to have several flows and combine them. It is also
possible to insert into more than one table in the database. There seems to be
no support for automatic incremental loading. The possibility for data cleansing
is introduced by means of allowing the user to write custom transformations in
Perl. A standard library of transformations is not included. Thus the user needs
to program any needed transformation.

CloverETL. CloverETL version 1.1.2 [6] is also a ROLAP oriented ETL tool.
Parts of it are distributed under the GPL license whereas other parts are dis-
tributed under the LGPL license. CloverETL is implemented in Java and uses
JDBC to transfer data. The ETL process is specified in an XML file. In this
XML file, a directed graph representing the flow must be described. Currently,
CloverETL does not include a GUI, but work is in progress with respect to this.
CloverETL supports combination of several flows as well as import to several
tables in the database. There is no support for automatic incremental load. With
respect to cleansing, CloverETL supports insertion of a default value, but apart
from this, the user will have to implement his own transformations in Java.

Octopus. Octopus version 3.0.1 [9] is a ROLAP oriented ETL tool under the
LGPL license. It is implemented in Java and is capable of transferring data
between JDBC sources. Octopus is bundled with JDBC drivers for XML and
comma-separated files. Further, it is possible to make Octopus create SQL files
with insert and DDL statements that can be used for creating a database holding
the considered data. Like Bee, Octopus is shipped with a GUI that creates an
XML file specifying the ETL process. Octopus can also be used without the
GUI and as a library. Octopus is created for transferring data between one
JDBC source and another. It is apparently not possible to combine data from
one database with data extracted from another. It is possible to extract data
from more than one table in the same database as well as insert into more
than one table in the target database. There is no direct support for automatic
incremental loading. Basic data cleansing functionality is provided. It is possible
to make Octopus insert a default value, shorten too long strings, replace invalid
foreign key values, find and replace values, do numeric conversions, and change
date formats. These cleansings are done by predefined transformations. The user
can also implement transformations on his own in Java and JavaScript.

General Comments. The considered open source ETL tools are still not as
powerful as one could wish. For example, most of the data cleansing to be done
must be coded by the user (with the exception of Octopus which provides some
default transformations for very basic data cleansing). Further, the products do
not support automatic incremental load which would be very useful for everyday
use of the products. In general, the quality of the documentation for the described
products is not very good or comprehensive. Further, not much documentation
is available. An exception is again Octopus for which a manual of more than 120
pages is available. However, also this manual is not complete. For example, it
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explains how to set up which logger to use but does not tell about the differences
between the available loggers. Thus the quality of the open source ETL products
is still not as high as the quality of many commercially available products. Indeed
it would probably be difficult to use one of the open source ETL tools for a
demanding load job in an enterprise data warehouse environment.

5 OLAP Servers

In this section, we will consider the three OLAP servers Bee, Lemur, and Mon-
drian. Another possible candidate for consideration would be pocOLAP [31]
which, however, in the documentation is said not to be an OLAP server. It
provides access to data from DBMS through a web-interface but is not intended
provide advanced OLAP functionality or real-time data analysis. OpenRolap [28]
is a related tool which generates aggregate tables for a given database. Apart
from these tools we did not find any candidates. As for the ETL tool category,
there exist other projects that currently carry no code, but only state objectives.
An example of such a project is gnuOLAP [13].

Bee. The OLAP server of the Bee package is, as previously stated, a ROLAP
oriented server. It uses a MySQL system to manage the underlying database
and aims to be able to handle up to 50GB of data efficiently [4]. Despite this,
it does not seem to be possible to choose which precomputed aggregates to use.
From the documentation, it is not clear which query language(s) and API(s) Bee
supports. In general, there is not much English documentation available for Bee,
neither from the homepage [3], nor in the downloadables.

Lemur. Unlike the other OLAP servers considered in this paper, Lemur [17] is
a HOLAP oriented OLAP server. It is released under the GPL license and is
written in C++ for Linux platforms, but is portable. Lemur is a product under
development and still has no version number. The homepage for the Lemur
project [17] states that for now, the primary goal is to support the developers
research interests and that their goals are believed to be too ambitous to deliver
usable code now. This is also reflected in the fact that the API is still being
designed and in reality is not available for use from outside the Lemur package.
Further the user would need to implement methods to load data from a database
on his own. It is also not possible to specify the aggregates to be used. No
information on how well Lemur scales when applied to large data sets has been
found. In summary, the Lemur project is not of much practical use for industry
projects so far. However, the goal of eventually producing a HOLAP oriented
server outperforming Mondrian (see below) is interesting.

Mondrian. Mondrian 1.0.1 [19] is an OLAP server implemented in Java. It
is ROLAP oriented and can, unlike Bee, be used with any DBMS for which a
JDBC driver exists. Mondrian is released under the CPL license [7]. The current
version of Mondrian has an API that is similar to ADO MD from Microsoft [20].
Support for the standard APIs JOLAP [14] and XMLA [39] is planned. Further,
the MDX query language [35], known from Microsoft’s products, is supported by
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Mondrian. By default Mondrian will use some main memory for caching results
of aggregation queries. It is, however, neither possible for the user to specify
what should be cached nor which aggregates should exist in the database. The
documentation states that Mondrian will be able to handle large data sets if the
underlying DBMS is, since all aggregation is done by the DBMS.

General Comments. The Mondrian OLAP server seems to be the best of the
described products. Lemur is for the time being not usable for real world appli-
cations while it is difficult to judge Bee because of its lack of English documen-
tation. Mondrian is, however, a usable product which works with JDBC-enabled
DBMSs. For none of the products, it seems possible to choose which aggregates
to use. In most environments this feature would result in significant performance
improvements.

6 OLAP Clients

In this section, we will describe the OLAP clients Bee and JPivot. These were
the found open source OLAP clients that are actually implemented.

Bee. The Bee project also provides an OLAP client. The client is web-based
and is used with the Bee OLAP server. Currently, Microsoft Internet Explorer
and Mozilla browsers are explicitly supported in the downloadable code. Again,
it has not been possible to determine which API(s) and query language(s) Bee
supports. The Bee OLAP client can interactively present multidimensional data
by means of Virtual Reality Modeling Language (VRML) technology [37]. Bee
can generate different types of graphs (pie, bar, chart, etc.) in both 2D and 3D. It
is possible to export data from Bee to Excel, Portable Document Format (PDF),
Portable Networks Graphics (PNG), PowerPoint, text, and Extensible Markup
Language (XML) formats. Connection with the statistical package R [33] is also
evaluated. It does not seem to be possible to preschedule reports.

JPivot. JPivot version 1.2.0 [16] is a web-based OLAP client for use with the
Mondrian OLAP server. However, the architecture should allow for later de-
velopment of a layer for XMLA [39]. As Mondrian, JPivot uses MDX as its
query language. It is written in Java and JSP. JPivot generates graphs by means
of JFreeChart [15] which provides different kinds of 2D and 3D graphs. With
respect to export of reports, JPivot is limited to Portable Document Format
(PDF) and Excel format. Support for prescheduled reports has not been found.
JPivot is released under a license much like the Apache Software License Ver-
sion 1.1 [1] (but without restrictions regarding the use of the name “Apache”).
However, other software packages are distributed with JPivot and have other
software licenses, e.g. JFreeChart which uses the LGPL license.

General Comments. Both the considered OLAP clients are to be used with
specific OLAP servers, namely Bee with Bee and JPivot with Mondrian. Both of
them are web-based such that specific software does not have to be installed at
client machines already equipped with a browser. Both products are capable of
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exporting generated reports to other commonly used file formats such as PDF,
but neither of them supports prescheduled reports.

7 DBMSs

In this section we consider four open source DBMSs: MonetDB, MySQL,
MaxDB, and PostgreSQL. Other open source DBMSs are available, but these
four were chosen as they are the most visible, well-known high-performance
DBMSs.

MonetDB. MonetDB, currently in version 4.4.2, is developed as a research
project at CWI. MonetDB is “designed to provide high performance on com-
plex queries against large databases, e.g. combining tables with hundreds of
columns and multi-million rows” [21]. To be efficient, MonetDB is, among other
techniques, exploiting CPU caches and full vertical fragmentation (however, the
fragments must be placed on the same disk). It thus uses very modern and
often hardware-near approaches to be fast. MonetDB is mainly implemented
in C with some parts in C++. It is available for 32- and 64-bit versions of
Linux, Windows, MacOS X, Sun Solaris, IBM AIX, and SGI IRIX. MonetDB
comes with a license like the Mozilla Public License (references to “Mozilla”
are replaced by references to “MonetDB”) [21]. With respect to features of-
ten usable in a BI context, it is interesting to notice that MonetDB does not
support bitmap indices, materialized views (normal views are supported), repli-
cation, or star joins. However, this does not mean that MonetDB is not usable
for BI purposes. On the contrary, MonetDB has been successfully applied in
different BI contexts [21]. Currently, the developers are working on improv-
ing the scalability for OLAP and data mining in the 64-bit versions of Mon-
etDB.

MySQL. MySQL is a very popular open source database with more than five
millions installations [24]. The latest production release is version 4.1, and ver-
sion 5.0 is in the alpha stage. MySQL is implemented in C and C++ and is
available for a large variety of 32- and 64-bits platforms. Users of MySQL can
choose between an open source GPL license and a commercial license that gives
permissions not given by the GPL license. For BI purposes, MySQL lacks sup-
port of materialized views (even ordinary views are not available until version
5.0), bitmap indices and star joins. However, one-way replication (i.e. one mas-
ter, several slaves) is supported and partitioning is to some degree supported by
the NDB Cluster (NDB is a name, not an acronym) on some of the supported
platforms. Further, MySQL is capable of handling data sets with terabytes of
data as documented in case studies available from [24].

MaxDB. MaxDB [18] version 7.5 is another RDBMS distributed by the com-
pany MySQL AB which also develops MySQL. Formerly, MaxDB was known as
SAP DB (developed by SAP AG). MaxDB is developed to be used for OLTP
and OLAP in demanding environments with thousands of simultanous users. It
is implemented in C and C++ and is available for most major hardware plat-
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forms and operating system environments. As MySQL, it is licensed under two
licenses such that users can choose between an open source license (GPL) or a
commercial. MaxDB is designed to scale to databases in the terabyte sizes, but
there is no user controlled partitioning. It is, however, possible to specify sev-
eral physical locations for storage of data, and MaxDB will then automatically
divide table data between these partitions. There is no support for materialized
views (ordinary views are supported), bitmap indexes, or star joins. MaxDB
supports one-way replication, also with MySQL such that either of them can be
the master.

PostgreSQL. PostgreSQL [32] is also a very popular open source DBMS. At the
time of this writing, version 8.0 is just about to be released. PostgreSQL is imple-
mented in C and has traditionally only been available for UNIX platforms. From
version 8.0, Windows is, however, natively supported. Originally, PostgreSQL is
based on the POSTGRES system [36] from Berkeley and has kept using a BSD li-
cense. PostgreSQL supports large data sets (installations larger than 32 terabytes
exist) and one-way replication. A multiway solution for replication is planned.
There is no support for partitioning, bitmap indices or materialized views (ordi-
nary non-materialized views are supported). However, materializations of views
may be done in PostgreSQL by using handcoded triggers and procedures [10].
Further, in a research project at North Carolina State University, materialized
views are integrated into a derived version of PostgreSQL [34]. Bitmap indices
are planned to be supported in a future release.

General Comments. The considered DBMSs have different strengths and
weaknesses, and so there is not a single of them to be chosen as the best. In
general, these open source products support more advanced features such as
partitioning and replication. Further, the DBMSs are capable of handling very
large data sets, are available for a number of platforms, and are very reliable.
The category of DBMSs is thus the most mature of the considered categories.

8 Conclusion and Future Work

Of the considered categories of open source tools (ETL tools, OLAP clients,
OLAP servers, and DBMSs), DBMSs are the most mature. They offer advanced
features and are applicable to real-world situations where large data sets must be
handled with good performance. The ETL tools are the least mature. They do
still not offer nearly the same functionality as proprietary products. With respect
to the OLAP servers, there is a great difference in their maturity. A product like
Lemur is still very immature, while a product like Mondrian is usable in real-
world settings. However, important features, such as the opportunity to specify
which aggregates to use, are still missing. The OLAP clients are also usable in
practical applications. However, they are not very general and can only be used
with specific OLAP servers. In general, one of the largest problems for many of
the tools is the lack of proper documentation, often making it very difficult to
decide how a specific task is performed in a given product.
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If one were to create a complete BI installation with open source tools, it
would probably be created with JPivot and Mondrian as OLAP client and server,
respectively. Which one of the DBMSs should be used would depend on the
situation. The ETL tool would then probably be CloverETL, if one did not
handcode a specialized tool for the installation. In many BI installations, data
mining solutions would also be interesting to apply. The available open source
data mining applications should therefore be explored in future work.
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Abstract. Data warehouse architectural choices and optimization tech-
niques are critical to decision support query performance. To facilitate
these choices, the performance of the designed data warehouse must be
assessed. This is usually done with the help of benchmarks, which can ei-
ther help system users comparing the performances of different systems,
or help system engineers testing the effect of various design choices. While
the TPC standard decision support benchmarks address the first point,
they are not tuneable enough to address the second one and fail to model
different data warehouse schemas. By contrast, our Data Warehouse En-
gineering Benchmark (DWEB) allows to generate various ad-hoc syn-
thetic data warehouses and workloads. DWEB is fully parameterized to
fulfill data warehouse design needs. However, two levels of parameter-
ization keep it relatively easy to tune. Finally, DWEB is implemented
as a Java free software that can be interfaced with most existing rela-
tional database management systems. A sample usage of DWEB is also
provided in this paper.

1 Introduction

When designing a data warehouse, choosing an architecture is crucial. Since it
is very dependant on the domain of application and the analysis objectives that
are selected for decision support, different solutions are possible. In the RO-
LAP (Relational OLAP) environment we consider, the most popular solutions
are by far star, snowflake, and constellation schemas [7,9], and other modeling
possibilities might exist. This choice of architecture is not neutral: it always
has advantages and drawbacks and greatly influences the response time of de-
cision support queries. Once the architecture is selected, various optimization
techniques such as indexing or materialized views further influence querying and
refreshing performance. Again, it is a matter of trade-off between the improve-
ment brought by a given technique and its overhead in terms of maintenance
time and additional disk space; and also between different optimization tech-
niques that may cohabit. To help users make these critical choices of architecture
and optimization techniques, the performance of the designed data warehouse
needs to be assessed. However, evaluating data warehousing and decision support
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technologies is an intricate task. Though pertinent, general advice is available,
notably on-line [5,12], more quantitative elements regarding sheer performance
are scarce. Thus, we propose in this paper a data warehouse benchmark we
named DWEB (the Data Warehouse Engineering Benchmark). Different goals
may be achieved by using a benchmark: (1) compare the performances of various
systems in a given set of experimental conditions (users); (2) evaluate the im-
pact of architectural choices or optimisation techniques on the performances of
one given system (system designers). The Transaction Processing Performance
Council (TPC), a non-profit organization, defines standard benchmarks and pub-
lishes objective and verifiable performance evaluations to the industry. Out of
the TPC, few decision support benchmarks have been designed. Some do exist,
but their specification is not fully published [3]. Some others are not available
any more, such as the OLAP APB-1 benchmark that was issued in the late
nineties by the OLAP council, an organization whose web site does not exist
any more.

The TPC benchmarks mainly aim at the first benchmarking goal we identi-
fied. However, the database schema of TPC benchmarks TPC-H [15] and TPC-
R [16] is a classical product-order-supplier model, and not a typical data ware-
house schema such as a star schema and its derivatives. Furthermore, their work-
load, though decision-oriented, does not include explicit OLAP (On-Line Ana-
lytical Processing) queries either, and they do not address specific warehousing
issues such as the ETL (Extract, Transform, Load) process. These benchmarks
are indeed implicitely considered obsolete by the TPC that has issued some spec-
ifications for their successor: TPC-DS [13]. However, TPC-DS has been under
development for three years now and is not completed yet. Furthermore, al-
though the TPC decision support benchmarks are scaleable according to Gray’s
definition [4], their schema is fixed. It must be used “as is”. Different ad-hoc con-
figurations are not possible. There is only one parameter to define the database,
the Scale Factor (SF ), which sets up its size (from 1 to 100,000 GB). The user
cannot control the size of the dimensions and the fact tables separately, for in-
stance. Finally, the user has no control on the workload’s definition. The TPC
benchmarks are thus not well adapted to evaluate the impact of architectural
choices or optimisation techniques on global performance. For these reasons, we
decided to design a full data warehouse synthetic benchmark that would be able
to model various ad-hoc configurations of database (modeled as star, snowflake,
or constellation schemas) and workload, while being simpler to develop than
TPC-DS. We mainly seek to fulfill engineering needs (second benchmarking
objective).

This paper presents an overview the DWEB benchmark. First, we present
our benchmark’s database (metaschema, parameterization, and instiantiation
into an actual data warehouse) in Section 2. Then, we present the benchmark’s
workload (query model, parameterization, and workload generation) in Section 3.
We illustrate how our benchmark can be used in Section 4 and finally conclude
this paper and provide future research directions in Section 5.
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2 DWEB Database

2.1 Schema

Our design objective for DWEB is to be able to model the different kinds of data
warehouse architectures that are popular within a ROLAP environment: classical
star schemas; snowflake schemas with hierarchical dimensions; and constellation
schemas with multiple fact tables and shared dimensions. To achieve this goal,
we propose a data warehouse metamodel (represented as a UML class diagram
in Figure 1) that can be instantiated into these different schemas. We view this
metamodel as a middle ground between the multidimensional metamodel from
the Common Warehouse Metamodel (CWM [11]) and the eventual benchmark
model. Our metamodel is actually an instance of the CWM metamodel, which
could be qualified as a meta-metamodel in our context.

Fig. 1. DWEB data warehouse metaschema

Our metamodel is relatively simple, but it is sufficient to model the data
warehouse schemas we aim at (star, snowflake, and constellation schemas). Its
upper part describes a data warehouse (or a datamart, if a datamart is viewed
as a small, dedicated data warehouse) as constituted of one or several fact tables
that are each described by several dimensions. Each dimension may also describe
several fact tables (shared dimensions). Each dimension may be constituted of
one or several hierarchies made of different levels. There can be only one level if
the dimension is not a hierarchy. Both fact tables and dimension hierarchy levels
are relational tables, which are modeled in the lower part of Figure 1. Classically,
a table or relation is defined in intention by its attributes and in extension by
its tuples or rows. At the intersection of a given attribute and a given tuple lies
the value of this attribute in this tuple.
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2.2 Parameterization

DWEB’s database parameters help users selecting the data warehouse archi-
tecture they need in a given context. The main difficulty in producing a data
warehouse schema is parameterizing the instantiation of the metaschema. We
indeed try to meet the four key criteria that make a “good” benchmark, as de-
fined by Gray [4]: relevance: the benchmark must answer our engineering needs
portability: the benchmark must be easy to implement on different systems; scal-
ability: it must be possible to benchmark small and large databases, and to scale
up the benchmark; and simplicity: the benchmark must be understandable, oth-
erwise it will not be credible nor used. Relevance and simplicity are clearly two
orthogonal goals. Introducing too few parameters reduces the model’s expres-
siveness, while introducing too many parameters makes it difficult to apprehend
by potential users. Furthermore, few of these parameters are likely to be used in
practice. In parallel, the generation complexity of the instantiated schema must
be mastered. To solve this dilemna, we propose to divide the parameter set into
two subsets. The first subset of so-called low-level parameters allows an advanced
user to control everything about the data warehouse generation. However, the
number of low-level parameters can increase dramatically when the schema gets
larger. For instance, if there are several fact tables, all their characteristics, in-
cluding dimensions and their own characteristics, must be defined for each fact
table. Thus, we designed a layer above with much fewer parameters that may
be easily understood and set up (Table 1). More precisely, these high-level pa-
rameters are average values for the low-level parameters. At database generation
time, the high-level parameters are exploited by random functions (following a
gaussian distribution) to automatically set up the low-level parameters. Finally,
unlike the number of low-level parameters, the number of high-level parameters
always remains constant and reasonable (less than ten parameters). Users may
choose to set up either the full set of low-level parameters, or only the high-level
parameters, for which we propose default values that correspond to a snowflake
schema. These parameters control both schema and data generation.

Note that the cardinal of a fact table is usually lower or equal to the prod-
uct of its dimensions’ cardinals. This is why we introduce the notion of den-

Table 1. DWEB warehouse high-level parameters

Parameter name Meaning Def. val.
AV G NB FT Average number of fact tables 1
AV G NB DIM Average number of dimensions per fact table 5
AV G TOT NB DIM Average total number of dimensions 5
AV G NB MEAS Average number of measures in fact tables 5
AV G DENSITY Average density rate in fact tables 0.6
AV G NB LEV ELS Average number of hierarchy levels in dimensions 3
AV G NB ATT Average number of attributes in hierarchy levels 5
AV G HHLEV EL SIZE Average number of tuples in highest hierarchy levels 10
DIM SFACTOR Average size scale factor within hierarchy levels 10
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sity. A density rate of one indicates that all the possible combinations of the
dimension primary keys are present in the fact table. When the density rate
decreases, we progressively eliminate some of these combinations.This parame-
ter helps controlling the size of the fact table, independantly of the size of its
dimensions.Furthermore, within a dimension, a given hierarchy level normally
has a greater cardinality than the next level. For example, in a town-region-
country hierarchy, the number of towns must be greater than the number of
regions, which must be in turn greater than the number of countries. There is
also often a significant scale factor between these cardinalities (e.g., one thousand
towns, one hundred regions, ten countries). Hence, we model the cardinality of
hierarchy levels by assigning a “starting” cardinality to the highest level in the
hierarchy (HHLEV EL SIZE), and then by multiplying it by a predefined scale
factor (DIM SFACTOR) for each lower-level hierarchy. Finally, since some of
DWEB’s parameters might sound abstract, the data warehouse global size (in
megabytes) is assessed at generation time so that users retain full control over
it and may adjust the parameters to better represent the kind of warehouse
they need.

2.3 Generation Algorithm

The instantiation of the DWEB metaschema into an actual benchmark schema
is done in two steps: (1) build the dimensions; (2) build the fact tables. Due
to space constraints, the pseudo-code for these two steps is not provided here,
but it is available on-line [2]. Each of these steps is further subdivided, for each
dimension and each fact table, into generating its intention and extension. In
addition, hierarchies of dimensions are managed.

3 DWEB Workload

In a data warehouse benchmark, the workload may be subdivided into a load
of decision support queries (mostly OLAP queries) and the ETL (data gener-
ation and maintenance) process. To design DWEB’s workload, we inspire both
from TPC-DS’ workload definition and information regarding data warehouse
performance from other sources [1,6]. However, TPC-DS’ workload is very elabo-
rate and sometimes confusing. Its reporting, ad-hoc decision support and OLAP
query classes are very similar, for instance, but none of them include any spe-
cific OLAP operator such as Cube or Rollup. Since we want to meet Gray’s
simplicity criterion, we propose a simpler workload. Furthermore, we also have
to design a workload that is consistent with the variable nature of the DWEB
data warehouses. We also, in a first step, mainly focus on the definition of a
query model. Modeling the full ETL process is a complex task that we postpone
for now. We consider that the current DWEB specifications provide a raw load-
ing evaluation framework. The DWEB database may indeed be generated into
flat files, and then loaded into a data warehouse using the ETL tools provided
by the system.
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3.1 Query Model

The DWEB workload models two different classes of queries: purely decision-
oriented queries involving common OLAP operations, such as cube, roll-up, drill
down and slice and dice; and extraction queries (simple join queries). We define
our generic query model as a grammar that is a subset of the SQL-99 standard.
Due to space constraints, this query model is only available on-line [2].

3.2 Parameterization

DWEB’s workload parameters help users tailoring the benchmark’s load, which
is also dependent from the warehouse schema, to their needs. Just like DWEB’s
database paramameter set, DWEB’s workload parameter set (Table 2) has been
designed with Gray’s simplicity criterion in mind. These parameters determine
how the query model is instantiated. These parameters help defining the work-
load’s size and complexity, by setting up the proportion of complex OLAP queries
(i.e., the class of queries) in the workload, the number of aggregation operations,
the presence of a Having clause in the query, or the number of subsequent drill
down operations. Here, we have only a limited number of high-level parameters
Indeed, it cannot be envisaged to dive further into detail if the workload is as
large as several hundred queries, which is quite typical. Note that NB Q is only
an approximate number of queries because the number of drill down operations
after an OLAP query may vary. Hence we can stop generating queries only when
we actually have generated as many or more queries than NB Q.

Table 2. DWEB workload parameters

Parameter name Meaning Def. val.

NB Q Approximate number of queries in the workload 100
AV G NB ATT Average number of selected attributes in a query 5
AV G NB RESTR Average number of restrictions in the query 3
PROB OLAP Probability that the query type is OLAP 0.9
PROB EXTRACT Probability that the query is an extraction query 1 − P OLAP

AV G NB AGGREG Average number of aggregations in an OLAP query 3
PROB CUBE Probability of an OLAP query to use the Cube operator 0.3
PROB ROLLUP Probability of an OLAP query to use the Rollup operator 1 − P CUBE

PROB HAV ING Probability of an OLAP query to include an Having clause 0.2
AV G NB DD Average number of drill downs after an OLAP query 3

3.3 Generation Algorithm

Due to space constraints, the pseudo-code of DWEB’s workload generation algo-
rithm is only available on-line [2]. However, its principle follows. The algorithm’s
purpose is to generate a set of SQL-99 queries that can be directly executed on
the synthetic data warehouse defined in Section 2. It is subdivided into two steps:
(1) generate an initial query that may either be an OLAP or an extraction (join)
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query; (2) if the initial query is an OLAP query, execute a certain number of
drill down operations based on the first OLAP query. More precisely, each time
a drill down is performed, an attribute from a lower level of dimension hierarchy
is added to the attribute clause of the previous query. Step 1 is further subdi-
vided into three substeps: (1) the Select, From, and Where clauses of a query
are generated simultaneously by randomly selecting a fact table and dimensions,
including a hierarchy level within a given dimension hierarchy; (2) the Where
clause is supplemented with additional conditions; (3) eventually, it is decided
whether the query is an OLAP query or an extraction query. In the second case,
the query is complete. In the first case, aggregate functions applied to measures
of the fact table are added in the query, as well as a Group by clause that may
include either the Cube or the Rollup operator. A Having clause may optionally
be added in too. The aggregate function we apply on measures is always Sum
since it is the most common aggregate in cubes. Furthermore, other aggregate
functions bear similar time complexities, so they would not bring in any more
insight in a performance study.

4 Sample Usage of DWEB

In order to illustrate one possible usage for DWEB, we tested the efficiency of
bitmap join indices, which are well suited to the data warehouse environment,
on decision support queries under Oracle. The aim of this particular example is
to compare the execution time of a given workload on a given data warehouse,
with and without using bitmap join indices.

First, we generated a data warehouse modeled as a snowflake schema. This
schema is organized around one fact table that is described by five dimensions,
each bearing two to three hierarchy levels.The fact table contains about 140,000
tuples, the dimension hierarchy levels about ten tuples on an average, for a global
size of about 4 MB (this is a voluntarily small example and not a full-scale test).
We applied different workloads on this data warehouse. Workload#1 is a typical
DWEB workload constituted of fifty queries.10% of these queries are extraction
(join) queries and the rest are decision support queries involving OLAP operators
(Cube and Rollup). In Workload#1, we limited the queries to the dimensions’
lowest hierarchy levels, i.e., to the star schema constituted of the fact table and
the “closest” hierarchy levels.Workload#2 is similar to Workload#1, but it is
extended with drill down operations that scan the dimensions’ full hierarchies
(from the highest level to the lowest level). Thus, this workload exploits the whole
snowflake schema. To evaluate the efficiency of bitmap join indices, we timed the
execution of these two workloads on our test data warehouse (response time is our
only performance metric for now), first with no index, and then by forcing the use
of five bitmap join indices defined on the five dimensions (for the lowest hierarchy
levels in Workload#1 and for the whole hierarchies in Workload#2). To flaten
any response time variation in these experiments, we replicated each test ten
times and computed the average response times. We made sure a posteriori that
the standard deviation was close to zero. These tests have been executed on a
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PC with a Celeron 900 processor, 128 MB of RAM, an IDE hard drive, and
running Windows XP Professional and Oracle 9i.

The left-hand graph on Figure 2 represents the average response time
achieved for Workload#1 and #2, with and without bitmap join indices, re-
spectively. It shows a gain in performance of 15% for Workload#1, and 9.4%
for Workload#2. This decrease in efficiency was expected, since the drill down
operations added in Workload#2 are costly and need to access the data (bitmap
join indices alone cannot answer such queries). However, the overall performance
improvement we achieved was not as good as we expected. We formulated the
hypothesis that the extraction queries, which are costly joins and need to access
the data too, were not fully benefiting from the bitmap join indices. To confirm
this hypothesis, we generated two new workloads, Workload #3 and #4. They
are actually almost identical to Workload#1 and Workload#2, respectively,
but do not include any extraction (join) queries. Then, we repeated our experi-
ment following the same protocol. The right-hand graph on Figure 2 represents
the average response time achieved for Workload#3 and #4, with and without
bitmap join indices, respectively. This time, we obtained similar results than in
our previous experiment (in trend): response time clearly increases when drill
down operations are included into the workload. However, response time is now
much better and the gain in performance is 30.9% for Workload#3, and 19.2%
for Workload#4.
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Fig. 2. Test results

In conclusion, we want to point out that these experiments are not very sig-
nificant per se, and do not do justice to Oracle. However, we illustrated how
DWEB could be used for performance evaluation purposes. These experiments
could also be seen as a (very basic) performance comparison between two dif-
ferent data warehouse architectures (star schema and snowflake schema). Our
results indeed conform to the well-known fact that introducing hierarchies into
a star schema induces more join operations in the decision support queries, and
hence degrade their response time. Finally, we were also able to witness the im-
pact of costly join operations on a data warehouse structure that is not properly
indexed to answer such queries.



DWEB: A Data Warehouse Engineering Benchmark 93

5 Conclusion and Perspectives

We proposed in this paper a new data warehouse benchmark called DWEB (the
Data Warehouse Engineering Benchmark) that is aimed at helping data ware-
house designers to choose between alternate warehouse architectures and perfor-
mance optimization techniques. When designing DWEB, we tried to grant it the
characteristics that make up a “good” benchmark according to Gray: relevance,
portability, scalability, and simplicity. To make DWEB relevant for evaluating
the performance of data warehouses in an engineering context, we designed it to
generate different data warehouse schemas (namely star, snowflake and constel-
lation schemas) and workloads. Note that the database schema of TPC-DS, the
future standard data warehouse benchmark currently developped by the TPC,
can be modeled with DWEB. In addition, though DWEB’s workload is not cur-
rently as elaborate as TPC-DS’s, it is also much easier to implement. It will
be important to fully include the ETL process into our workload, though, and
the specifications of TPCD-DS and some other existing studies [10] might help
us. We now need to further test DWEB’s relevance on real cases. To achieve
this goal, we plan to compare the efficiency of various index and materialized
view selection techniques.We also made DWEB very tuneable to reach both the
relevance and scalability objectives. However, too many parameters make the
benchmark complex to use and contradict the simplicity requirement. Though it
is impossible to achieve both a high simplicity and a high relevance and scalabil-
ity, we introduced a layer of high-level parameters that are both simpler than the
potentially numerous low-level parameters, and in reduced and constant number.
DWEB might not be qualified as a simple benchmark, but our objective was to
keep its complexity as low as possible. Finally, portability was achieved through
a Java implementation. DWEB’s latest version is freely available on-line [8].
Finally, we also illustrated with a practical case how DWEB can be used.

This work opens up many perspectives for developing and enhancing DWEB.
In this paper, we assumed an execution protocol and performance metrics were
easy to define for DWEB (e.g., using TPC-DS’ as a base) and focused on the
benchmark’s database and workload model. A more elaborate execution proto-
col must be designed, especially since two executions of DWEB using the same
parameters produce different data warehouses and workloads. This is interesting
when, for instance, one optimization technique needs to be tested against many
databases. However, note that it is also possible to save a given warehouse and
its associated workload to run tests on different systems and/or with various op-
timization techniques. Defining sound metrics (beside response time) would also
improve DWEB’s usefulness. In this area, we could inspire from metrics designed
to measure the quality of data warehouse conceptual models [14]. We are also
currently working on warehousing complex, non-standard data (including multi-
media data, for instance). Such data may be stored as XML documents. Thus, we
also plan a “complex data” extension of DWEB that would take into account the
advances in XML warehousing. Finally, more experiments with DWEB should
also help us propose sounder default parameter values. We also encourage other
people to report on their own experiments.
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Abstract. The quality of Data Warehouses is absolutely relevant for organizations 
in the decision making process. The sooner we can deal with quality metrics (i.e. 
conceptual modelling), the more willing we are in achieving a data warehouse 
(DW) of a high quality. From our point of view, there is a lack of more objective 
indicators (metrics) to guide the designer in accomplishing an outstanding model 
that allows us to guarantee the quality of these data warehouses. However, in 
some cases, the goals and purposes of the proposed metrics are not very clear on 
their own. Lately, quality indicators have been proposed to properly define the 
goals of a measurement process and group quality measures in a coherent way. In 
this paper, we present a framework to design metrics in which each metric is part 
of a quality indicator we wish to measure. In this way, our method allows us to 
define metrics (theoretically validated) that are valid and perfectly measure our 
goals as they are defined together a set of well defined quality indicators. 

Keywords: Quality indicators, quality metrics, conceptual modelling, data 
warehouses, multidimensional modelling 

1   Introduction 

Data Warehouses (DWs), which are the core of current decision support systems, 
provide companies with many years of historical information for the decision making 
process [10]. The term data warehouse is defined as “a subject-oriented, integrated, 
time-variant, non-volatile collection of data supporting management’s decisions” [8]. A 
lack of quality in the data warehouse can be disastrous consequences from both a 
technical and organizational point of view. Therefore, it is crucial for an organization to 
guarantee the quality of the information contained in these DWs. The information 
quality of a DW is determined by (i) the quality of the DBMS (Database Management 
System), (ii) the quality of the data models used in their design, (iii) the quality of the 
data themselves contained in the data warehouse (see figure 1). 
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Fig. 1. Quality of the information and the data warehouse 

In order to guarantee the quality of the DBMS, we can use an International 
Standard such as ISO/IEC 9126 [9] or one of the comparative studies of existing 
products. The quality of the datawarehouse model also strongly influences 
information quality. The model can be considered at three levels: conceptual, logical 
and physical. Due to space constraints, we refer the reader to [1] for a deep 
comparison of conceptual, logical and physical models proposed for data warehouses. 
At the logical level several recommendations exist in order to create a good 
dimensional data model [11] and in recent years we have proposed and validated both 
theoretically and empirically several metrics that enable the evaluation of the 
complexity of star models. At the physical model depends on each system and consist 
of selecting the physical tables, indexes, data partitions, etc. [2] [11].  

However, from our point of view, we claim that design guidelines or subjective 
quality criteria are not enough to guarantee the quality of multidimensional models 
for DWs. Therefore, we believe that a set of formal and quantitative measures should 
be provided to reduce subjectivity and bias in evaluation, and guide the designer in his 
work. However, we cannot assure that quality measures interpret a measurable 
concept on their own with guarantee. So, lately, quality indicators have been proposed 
to define the concept to be measured and group the quality measures needed to 
measure that indicator [7]. Otherwise, we may propose metrics that cannot measure 
what they are defined for and they may overlap the measurable concept.  

In this paper, we firstly propose a set of quality indicators to measure the quality of 
conceptual schemas for DWs. Then, once these indicators clearly establish the set of 
concepts to be measured, we define the set of the corresponding quality metrics that 
will measure that indicator. On defining these indicators and quality metrics, we use 
our conceptual modelling approach, based on the Unified Modelling Language 
(UML), to properly accomplish the conceptual modelling of data warehouses [13]. In 
this paper, we have focused in the first step of the conceptual modelling of DWs and 
we will use the package diagrams to model complex and huge DWs thereby 
facilitating their modelling and understanding [13]. Then, we use our quality 
indicators and measures to an example to show the benefit of our proposal. Due to 
space constraints, we cannot provide the theoretical validation we have accomplished 
using both the (i) axiomatic approach and (ii) the measure theory. 

The rest of the paper is structured as follow: section 2 presents the method we 
follow for defining and obtaining correct quality indicators and metrics. Section 3 
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presents a summary of UML package diagrams we use in this paper for the 
conceptual modelling of data warehouses. In Section 4, we define the proposed 
quality indicators and metrics and present some examples to show how to apply them. 
Finally, section 5 draws conclusions and immediate future works arising from the 
conclusions reached in this work. 

2   A Method to Define Quality Indicators and Metrics  

A measurable concept is an abstract relation between attributes of one or more 
entities, and a necessity of information. Some examples of measurable concepts are: 
quality, reliability, accessibility and so on. Metrics cannot interpret on their own a 
measurable concept, and therefore, it is essential to use quality indicators [7]. A 
metric assess a characteristic of an object while an indicator will use one or more 
metrics to measure something. Thus, indicators are the basis for (i) quantify 
measurable concepts for a necessity of information, (ii) quantitative methods of 
evaluation or prediction, and (iii) to provide information to take decisions. 

The definition of quality indicators and metrics has to be accomplished in a 
methodological way, which makes necessary to accomplish a set of stages to be able 
to assure their liability. Next, we will present a modification of the methods proposed 
in [5] to define quality metrics, and the method proposed in MMLC (Measure Model 
Life Cycle) [6]; to allow us to incorporate the definition of quality indicators and 
metrics in an overall approach.  

This method can be structured into three main phases: (i) creating the indicator, (ii) 
defining the required metrics for the indicator and (iii) applying these metrics to 
measure a conceptual schema. In the first phase, we have to find the main objective 
that we pursue, and then, define the corresponding indicator to achieve that objective. 
Next, in the second phase, we define the list of required metrics that will allow us to 
measure the indicator. On creating a metric, we will firstly define it, and then, we 
have to accomplish the theoretical and empirical validation [5]. At the end of this 
paper, we will present a summary of the frameworks we use for the theoretical 
validation of our metrics. 

To accomplish the empirical validation of metrics, we need to set a family of 
experiments [5], from which we will obtain a set of thresholds that will be later 
applied to the indicator algorithm. Once the metric has been properly defined, we pass 
to the third phase by applying the obtained metrics to a conceptual schema. With the 
valid metrics and the thresholds obtained from the empirical validation, we will define 
the algorithm to measure the indicator. Finally, after analyzing the results obtained by 
the indicator algorithm, we will store and communicate these results. 

2.1   Indicator Template  

There are some organizations that do not achieve the expected benefits of applying 
quality indicators due to the fact that these quality indicators have not been properly 
specified or they are not properly interpreted [7]. Therefore, we will document the 
specification of indicators, their interpretation and use as proposed in [7], in order to 
avoid inconsistencies in their definitions. 
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Fig. 2. Method for defining quality indicators and metrics 

The Software Engineering Institute (SEI) has found that an indicator template can 
help an organization to improve its software measurement processes and 
infrastructure [7]. In this work, authors describe a template that can be used to 
precisely describe, document, and report who, what, when, where, why, and how to 
define organization’s indicators. Moreover, they also describe the use of the indicator 
template within the context of the Goal-Driven Software Measurement (GQ(I)M) 
methodology and the Capability Maturity Model Integration (CMMI) framework. 

Therefore, due to the high importance of quality indicators in our proposal, in the 
following, we will present the indicator template we have followed – proposed in 
[7]. Thus, our indicator template consists of: 

• Indicator objective: the objective or purpose of the indicator 
• Questions: the questions that the user of the indicator is trying to answer 
• Visual display: a graphical view of the indicator 
• Perspective or viewpoint: the description of the audience for whom the indicator 

is intended 
• Inputs: the list of the measures required to construct the indicator and its 

definitions 
• Algorithms: the description of the algorithm used to construct the indicator from 

the measures 
• Assumptions: the list of assumptions about the organization, its processes, life-

cycle model, and so on that are important conditions for collecting and using the 
indicator. 

• Data collection information: information pertaining to how, when, how often, 
by whom, etc. the data elements required to construct the indicator are collected. 

• Data reporting information: information on who is responsible for reporting the 
data, to whom, and how often. 

• Data storage: information on storage, retrieval, and security of the data. 
• Analysis and interpretation of results: information on how to analyze and 

interpret as well as to not misinterpret the indicator. 

At this point, we have stated the reason why we use quality indicators and the 
corresponding template use to define them. Thus, in Table 1, we match each relevant 
step of our method (see Figure 2) with the corresponding indicator template issue.  
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Table 1. Correspondence between our indicator template issues and method phases 

Indicator Template Phase Method 
Indicator Name / Title Indicator 
Objective Indicator 
Questions Indicator 
Visual Display Communicate results 
Inputs Create metrics 
Data Collection Apply multidimensional model 
Data Reporting Communicate results 
Data Storage Store results 
Algorithm Define algorithm indicator 
Interpretation Store results 
Analysis Analyze Data 

3   Multidimensional Modelling with Package Diagrams of UML 

In previous works, we have proposed a DW development method [12], based on the 
Unified Modelling Language (UML) and the Unified Process (UP), to properly 
design all aspects of a DW. More specifically, we have dealt with the modelling of 
different aspects of a DW by using the UML: MD modelling [13] (i.e. the aim of 
this paper), modelling of the ETL processes, modelling data mappings between data 
sources and targets [12], modelling physical aspects of DWs at the conceptual level 
etc. In this section, we outline our approach of using UML package diagrams for 
the conceptual modelling of large data warehouses [13], which is the approach in 
which we based on in this paper for the definition of quality indicators and metrics. 
Based on our experience in real-world cases, we have developed a set of design 
guidelines for using UML packages in MD modelling. Our approach proposes the 
use of UML packages in order to group classes together into higher level units 
creating different levels of abstraction, and therefore, simplifying the final 
multidimensional (MD) model. In this way, when modelling complex and large DW 
systems, the designer is not restricted to use flat UML class diagrams. We refer to 
[13] for a complete description of all design guidelines we have defined. 

In Figure 3, we summarize the three main levels in which we structure the 
conceptual modelling of large data warehouses. At level 1, we define one package for 
each different star schema1 we consider in our design and we call them star package. 
A dependency between two packages at this level represents that they share at least 
one dimension or one fact. Then, at level 2 we define one package for each dimension 
and fact considered in our design and we call them dimension package and fact 
package, respectively. There is always a dependency between the fact package and 
the dimension packages meaning that one fact consists on the corresponding 
dimensions. A dependency between two dimension packages means that they share at 
least one classification hierarchy level. Finally, at level 3, we specify the whole 
content of both dimension and fact packages. As seen in this Figure 3, at level 3, each 
                                                           
1  Although star schema is a logical schema, we refer to star schema to the abstract definition of 

one fact and several dimensions. 
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dimension package will contain the definition of the corresponding dimension and 
their classification hierarchy levels. We should notice that the dependencies between 
packages allow us to define one element (package, fact or dimension) just once in our 
design and then re-utilise it whenever convenient. 

 

Fig. 3. The three levels of our MD modelling approach with UML package diagrams 

Our whole approach for the conceptual modelling of DWs has been specified by 
means of a UML profile that contains the necessary stereotypes in order to carry out 
conceptual modelling successfully. Due to space constraints, we refer the reader to 
[13] for further details on the profile. 

4   Quality Indicators and Metrics 

Prior to the definition of an indicator we must clearly and precisely know the goal 
of what we want to measure. The structural properties such as the structural 
complexity of a schema have an impact on its cognitive complexity [4] and on the 
mental burden of the persons who have to deal with the artefact. High cognitive 
complexity leads an artefact to reduce their understandability, analyzability and 
modifiability. Leading to undesirable external quality attributes [9] [4]. For this 
reason, it is desirable that a schema has excellent structural properties to be able to 
achieve good quality. In this paper, our goal will be to minimize the structural 
complexity of the conceptual schemas to guarantee their quality. 

Once the main goal has been set, we have to define the corresponding indicator 
to measure it. As in this paper, we work with levels 1 and 2 or our package diagram 
proposal (see Figure 2), we need to define one indicator for each level. If we are 
able to obtain the minimum structural complexity in both levels, we will therefore 
obtain the minimum structural complexity in the final conceptual schema. 

After having defined the indicators, we must establish the elements we need to 
measure to further define the corresponding metrics to measure them:  

Number of input and output relationships per package.  
Number of input and output relationships between two packages 
Number of output relationships of a package with regard to the total relationships 
that exist on the model.  

Thus, we will proceed with the definition of the required metrics. These metrics 
will be applied at level 1 (diagram) and 2 (package) of our approach (Figure 2). 
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Table 2. Diagram level metrics  

Metric Description 
NP(S) Number of packages of the diagram S 

NRES1(S) Number of input and output relationships of the diagram level 
NRESP(S) Number of input and output relationships between two packages 

RESP(S) Ratio of input and output relationships per number of packages 
RESP(S) = NERS1(S) / NP(S) 

Table 3. Package level metrics  

Metric Description 
NRS(P) Number of output relationships of a package P 

RST(P) Ratio of output relationships of a package P by the total relationships of this package 
RST(P) = NRS(P) / NRES1(S) 

As one of the goals was to obtain the minimum complexity of diagrams at level 
2, we define an indicator to measure the structural complexity of diagrams at this 
level. On defining the indicator, the next step is to know what we need to measure: 

Number of output relationships of a dimension package with regard to the total input 
and output relationships of this package.  
Number of input and output relationships between two packages. 
Number input and output relationships between two dimension packages by the 
number of dimension packages that exits.  

In tables 4 and 5 we can find the metrics we have defined:  

Table 4. Package level metrics  

Metric Description 
NREDP(P) Number of input relationships to a package dimension P 
NRSDP(P) Number of output relationships of a package dimension P 

RSDT(P) 
Ratio of relationships out of a dimension package P with regard to the total number 
of input and output relationships to this package 
RSDT(P) = NRSDP(P) / (NREDP(P) + NRSDP(P)) 

Table 5. Diagram level metrics 

Metric Description 
NIDP(S) Number of dimension packages imported from  another diagrams 
NDDP(S) Number of dimension packages defined in the diagram 
NDP(S) Number total of packages of the diagram S   NDP(S) = NIDP(S) + NDDP(S) + 1 

NRTDP(S) Number of input and output relationships between dimension packages  
NRESDP(S) Number of input and output relationships between two dimension packages  

RDP(S) 
Ratio of input and output relationships between dimension packages by the number 
of the dimension packages. 
RDP(S) = NRTDP(S) / (NDP(S) -1) 
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4.1   Example 

In this section we apply the previously-defined metrics to an example. We have 
applied our package diagram approach to a supply value chain example completely 
developed  in  [13].  In  Figure 4, we show the level 1 of the model that is composed  

Purchase 
Orders Star

Deliveries Star

Materials 
Inventory Star

Process 
Monitoring Star

Bill of Materials 
Star

Finished Goods 
Inventory Star

Manufacturing 
Plans Star

 

Fig. 4. Level 1: different star schemas of the supply value chain example 

Table 6. Level (level 1) package metrics Table 7. Metric NERSP2 

 NRS RST 
Deliveries 1 1/10 
Process Monitoring 2 2/10 
Purchase Orders 0 0/10 
Materials Inventory 2 2/10 
Manufacturing Plans 2 2/10 
Bill of Materials 1 1/10 
Finished Inventory 2 2/10  

NERSP Value 
Deliveries – Process Monitoring 1 
Deliveries – Purchase Orders 1 
Deliveries – Materials Inventory 1 
Purchase Orders – Materials Inventory 1 
Purchase Orders – Process Monitoring 1 
Purchase Orders – Manufacturing Plans 1 
Purchase Orders –Bill of materials 1 
Purchase Orders – Finished Inventory 1 
Manufacturing Plans – Bill of materials 1 
Bill of materials – Finished inventory 1 

Deliveries Fact

Ship Mode 
Dimension

Plant 
Dimension

Supplier Dimension

Deal Dimension

Time Dimension

 

Fig. 5. Level 2: Deliveries Star 

                                                           
2 Only represent the metrics that value NERSP is different zero. 
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by seven packages that represent the different star schemas. Then, in Tables 6, 7 
and 8 we present the obtained values for the proposed metrics.  

In Figure 5, we show the content of the package Deliveries Star (level 2). Tables 
9, 10 and 11 show the values for the proposed metrics. 

The theoretical validation helps us to know when and how apply the metrics. There 
are two main tendencies in metrics validation: the frameworks based on axiomatic 
approaches [15] [3] and the ones based on the measurement theory [14][16]. We have 
validated our metrics by using both frameworks. However, due to space constraints, 
we cannot provide these theoretical validations in this paper.  

Table 8. Level (level 1) diagram metrics Table 9. Metric NERSP3 
 

 Value 
NP(S) 7 
NRES1(S) 10 
RESP(S) 10/7 

 

NERSP Value 
Plant - Supplier 1 

Table 10. Level (level 2) package metrics Table 11. Level (level 2) diagram 
metrics 

 
 NREPD NRSPD RSDT 
Ship Mode 1 0 0/1 
Deal 1 0 0/1 
Time 1 0 0/1 
Plant 1 1 1/2 
Supplier 2 0 0/2 

 
 Value 
NIDP 3 
NDDP 2 
NDP 6 
NRTDP 1 
RDP(S) 1/5 

6   Conclusions 

In this paper we have focused on the quality of the conceptual models of data 
warehouses. We have mainly focused on those models that use UML packages to 
model data warehouses. We have proposed a set of quality indicators and the metrics 
on which they are based on in order to assure the quality of the data warehouses 
conceptual models. These quality indicators have allowed us to clearly define 
quantifiable elements in which we based on for measuring the quality of the models. 
In order to obtain high confidence indicators, we have defined the metrics for each 
indicator we have defined.  

Those metrics have been theoretically validated using two formal frameworks, 
each of them representing a validating approach: axiomatic approaches and those 
approaches based on measurement theory. This paper has presented the first steps in 
obtaining a valid set of quality indicators. We are now focusing on develop the 
empirical validation with the proposed indicators and metrics in order to obtain a 
valid and useful set of quality indicators for data warehouse conceptual models. 

                                                           
3 Only represent the metrics that value NERSP is different zero. 
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Abstract. In this paper we describe the design of a tool supporting
the integration of independently developed data warehouses, a problem
that arises in several common scenarios. The basic facility of the tool is
a test of the validity of a matching between heterogeneous dimensions,
according to a number of desirable properties. Two strategies are then
provided to perform the actual integration. The first approach refers to
a scenario of loosely coupled integration, in which we just need to iden-
tify the common information between sources and perform drill-across
queries over them. The goal of the second approach is the derivation of a
materialized view built by merging the sources, and refers to a scenario
of tightly coupled integration in which queries are performed against the
view. We illustrate architecture and functionality of the tool and the
underlying techniques that implement the two integration strategies.

1 Introduction

Today, a common practice for building a data warehouse is to develop a series
of individual data marts, each of which provides a dimensional view of a single
business process. These data marts should be based on common dimensions and
facts, but very often they are developed independently, and it turns out that
their integration is a difficult task. Indeed, the need for combining autonomous
(i.e., independently developed and operated) data marts arises in other common
cases. For instance, when different companies get involved in a federated project
or when there is the need to combine a proprietary data warehouse with external
data, perhaps wrapped from the Web.

We have studied this problem from a conceptual point of view, by introducing
the notion of dimension compatibility underlying data mart integration [4], which
extends an earlier notion proposed by Kimball [7]. Intuitively, two dimensions
(belonging to different data marts) are compatible if their common information
is consistent. Building on this study, in this paper we illustrate the design of
a practical integration tool for multidimensional databases, similar in spirit to
other tools supporting heterogeneous data transformation and integration [9].

The basic facility of the tool is the integration of a pair of autonomous di-
mensions. We have identified a number of desirable properties that a matching
between dimensions (that is, a one-to-one correspondence between their levels)

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2005, LNCS 3589, pp. 105–114, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



106 R. Torlone and I. Panella

should satisfy: the coherence of the hierarchies on levels, the soundness of the
paired levels, according to the members associated with them, and the consis-
tency of the functions that relate members of different levels within the matched
dimensions. The tool makes use of a powerful technique, the chase of dimensions,
to test for these properties.

Two different integration strategies are supported by the system. The first
one refers to a scenario of loosely coupled integration, in which we need to
identify the common information between sources (intuitively, the intersection),
while preserving their autonomy. This approach supports drill-across queries [7],
based on joining data over common dimension, to be performed over the original
sources. The goal of the second approach is rather merging the sources (intu-
itively, making the union) and refers to a scenario of tightly coupled integration,
in which we need to build a materialized view that embeds the sources. Under
this approach, queries are performed against the view built from the sources.

The integration of heterogenous databases has been studied in the litera-
ture extensively (see, for instance, [5,8,12]). In this paper, we take apart the
general aspects of the problem and concentrate our attention on the specific
problem of integrating multidimensional data. Differently from the general case,
this problem can be tackled in a more systematic way for two main reasons.
First, multidimensional databases are structured in a rather uniform way, along
the widely accepted notions of dimension and fact. Second, data quality in data
warehouses is usually higher than in generic databases, since they are obtained
by reconciling several data sources. To our knowledge, the present study is the
first systematic approach to this problem. Some work has been done on the
problem of integrating data marts with external data, stored in various formats:
XML [6,10] and object-oriented [11]. This is related to our tightly coupled ap-
proach to integration, in that dimensions are “enriched” with external data.
Moreover, our loosely coupled approach to integration is related to the problem
of drill-across [1]. However, the goal of these studies is different from ours.

The rest of the paper is organized as follows. In Section 2 we provide the
basic notions underlying our approach. In Section 3 we illustrate the techniques
for dimension integration and describe how they can be used to integrate au-
tonomous data marts. In Section 4 we present architecture and functionality of
the tool and finally, in Section 5, we sketch some conclusions.

2 Matching Autonomous Dimensions

In this section we illustrate the basic issues of dimension matching and provide
a fundamental technique, the d-chase, for the management of matchings.

2.1 The Framework of Reference

We refer to a very general data model for multidimensional databases based
on the basic notions of dimension and data mart. A dimension represents a
perspective under which data analysis can be performed and consists of entities
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Fig. 1. Sales data mart

called members. Members of a dimension can be the days in a time interval or
the products sold by a company. Each dimension is organized into a hierarchy
� of levels, corresponding to domains grouping dimension members at different
granularity. Levels in a product dimension can be the category and the brand of
the items sold. The members of the bottom element of a dimension (with respect
to �) represent real world entities that are called ground. Within a dimension,
members at different levels are related through a family of roll-up functions
that map members having a finer grain (e.g., a product) to members having a
coarser grain (e.g., a brand) according to �. A data mart associates measures
to members of dimensions and is used to represent factual data. As an example,
Figure 1 shows a Sales data mart that has the quantity, the income and the
cost of a sale as measures and is organized along the dimensions Product, Time,
Store, and Promotion.

2.2 Properties of Dimension Matchings

The basic problem of the integration of two autonomous data marts is the defi-
nition of a matching between their dimensions, that is, a (one-to-one) injective
partial mapping between the corresponding levels. An example is illustrated in
Figure 2, which shows a matching between two heterogeneous geographical
dimensions.

We have identified a number of desirable properties that a matching μ be-
tween two dimensions d1 and d2 should satisfy.

Location
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store

district

city

state zone

country

shop

town
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region

state

Fig. 2. A matching between two dimensions
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– Coherence: μ is coherent if, for each pair of levels l, l′ of d1 on which μ is
defined, l �1 l′ if and only if μ(l) �2 μ(l′);

– Soundness: μ is sound if, for each level l of d1 on which μ is defined, there
exists a bijection between the members of l and μ(l);

– Consistency: μ is consistent if, for each pair of levels l �1 l′ of d1 on which μ
is defined, the roll-up function from l to l′ coincides with the roll-up function
from μ(l) to μ(l′).

A total matching that is coherent, sound and consistent is called a perfect match-
ing. Clearly, a perfect matching is very difficult to achieve in practice. In many
cases however, autonomous dimensions actually share some information. The
goal of the tool we have developed is the identification of this common informa-
tion to perform drill-across operations between heterogeneous data marts.

2.3 Chase of Dimensions

The d-chase is a powerful technique inspired by an analogous procedure used
for reasoning about dependencies in the relational model [2], which can be used
to test for consistency and to combine the content of heterogeneous dimensions.
Given a matching μ between two dimensions d1 and d2, this procedure takes as
input a special matching tableau Tμ[d1, d2], built over the members of d1 and
d2, and generates another tableau that, if possible, satisfies the roll-up functions
defined for d1 and d2.

A matching tableau Tμ[d1, d2] has a tuple for each ground member m of d1
and d2 and includes members associated with m by roll-up functions and possibly
variables denoting missing information. An example of a matching tableau for
the matching between dimensions in Figure 2 is the following.

store district city prov. region zone state country
1st v1 NewYork v2 v3 v4 NY USA
2nd Melrose LosAng. v5 v6 U2 CA USA
1er Marais Paris v7 v8 E1 v9 France
1mo v10 Rome RM Lazio E1 v11 Italy
1st v12 NewYork v13 v14 U1 v15 USA
1er v16 Paris 75 IledeFr E1 v17 France

In this example, the first three tuples represent members of d1 and the others
members of d2. Note that a variable occurring in a tableau may represents an
unknown value (for instance, in the third row, the region in which the store 1er
is located, an information not available in the instance of d1) or an inapplicable
value (for instance, in the last row, the district in which the store 1er is located,
a level not present in the scheme of d2). The value of a tuple t over a level l will
be denoted by t[l].

The d-chase modifies values in a matching tableau, by applying chase steps. A
chase step applies when there are two tuples t1 and t2 in T such that t1[l] = t2[l]
and t1[l′] = t2[l′] for some roll up function from l to l′ and modifies the l′-values
of t1 and t2 as follows: if one of them is a constant and the other is a variable
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then the variable is changed (is promoted) to the constant, otherwise the values
are equated. If a chase step tries to identify two constants, then we say that the
d-chase encounters a contradiction and the process stops.

By applying the d-chase procedure to the matching tableau above we do not
encounter contradictions and obtain the following tableau in which, for instance,
v4 has been promoted to U1 and v16 to Marais.

store district city prov. region zone state country
1st v1 NewYork v2 v3 U1 NY USA
2nd Melrose LosAng. v5 v6 U2 CA USA
1er Marais Paris 75 IledeFr E1 v9 France
1mo v10 Rome RM Lazio E1 v11 Italy

The d-chase provides an effective way to test for consistency since it is pos-
sible to show a matching μ between two dimensions d1 and d2 is consistent if
and only if the chase Tμ[d1, d2] terminates without encountering contradictions.
Moreover, it turns out that if we apply the d-chase procedure over a matching
tableau that involves a dimension d and then project the result over the levels
of d, we obtain the original instance and, possibly, some additional information
that has been identified in the other dimension.

3 Integration Techniques

In this section we illustrate two different approaches to the problem of the inte-
gration of autonomous data marts.

3.1 A Loosely Coupled Approach

In a loosely coupled integration scenario, we need to identify the common in-
formation between various data sources and perform drill-across queries over
the original sources. Therefore, our goal is just to select data that is shared be-
tween the sources. Thus, given a pair of dimensions d1 and d2 and a matching
μ between them, the approach aims at deriving two expressions that makes μ
perfect.

We have elaborated an algorithm that generates two expressions of dimension
algebra that describe, in an abstract way, data manipulations over dimensions [4].
This algorithm is based on three main steps: (i) a test for coherence that takes
advantage of the transitivity of �, (ii) a test for consistency based on the appli-
cation of the d-chase, and (iii) the derivation of the selections, projections and
aggregations to be performed on the input dimensions in order to select common
information.

As an example, the application of this algorithm to the dimension matching
reported in Figure 2 returns a pair of expressions that, applied to the original
dimensions, generates the dimensions reported on the left hand side of Figure 3.

We have proved that the execution of this algorithm always returns two
expressions that correctly compute the intersection of two dimensions if and
only if the dimensions are compatible [4].
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Dimension E2(d2)Dimension E1(d1)

store

city

zone

country

shop

town

area

state

New Store
Dimension (d)

zone

province

region

province

region

state

store

district

city

state

store and shop

shop

Fig. 3. The dimensions generated by the first algorithm (left) and by the second algo-
rithm (right) on the matching in Figure 2

3.2 A Tightly Coupled Approach

In a tightly coupled integration, we want to build a materialized view that com-
bines different data sources and perform queries over this view. In this case,
given a pair of dimensions d1 and d2 and a matching μ between them, the in-
tegration technique aims at deriving a new dimension obtained by merging the
levels involved in μ and including, but taking apart, all the other levels.

We have elaborated an algorithm that performs this task [4]. This algorithm
is also based on three main steps: (i) a test for coherence that takes advantage
of the transitivity of �, (ii) a test for consistency based on the application of the
d-chase, and (iii) the derivation of a new dimension obtained by projecting the
result of the d-chase over the “union” of the schemes of the input dimensions.
If the union of the schemes produces two minimal levels, the algorithm is more
involved since it generates an auxiliary bottom level.

As an example, consider again the matching between dimensions in Figure 2
but assume that the level store does not map to the level shop. This means
that the corresponding concepts are not related. It follows that the union of
the schemes of the two dimensions produces two minimal levels. In this case,
the application of algorithm to this matching introduces a new bottom level
below store and shop. The scheme of the dimension generated by the algorithm
is reported on the right hand side of Figure 3.

We have proved that the execution of this algorithm always returns a dimen-
sions d that “embeds” the original dimensions, in the sense that they can be
obtained by applying a dimension expression over d [4].

3.3 Data Mart Integration

Drill-across queries are usually used to combine and correlate data from multiple
data marts [7]. These queries are based on joining different data marts over
common dimensions and so the existence of shared information between data
marts is needed in order to obtain meaningful results.
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Fig. 4. A weather data mart and a matching between its dimensions and the dimensions
of the data mart in Figure 4

The loosely coupled approach supports drill-across queries between data
marts in that it aims at identifying the intersection between their dimensions.
Assume, for instance, that we wish to correlate the Sales data mart reported in
Figure 1 with the data mart storing weather information reported in Figure 4,
according to the matchings between the time and the location dimensions as
indicated on the right hand side of Figure 4.

The application of algorithm illustrated in the previous section to this input
checks for compatibility of dimensions and returns two pairs of expressions that
select the members in common in the matched dimensions. It turns out that we
can join the two data marts to extract daily and city-based data, but hourly or
store-based data can not be computed. Moreover, if we apply these expressions to
the underlying dimensions before executing the drill-across operation we prevent
inconsistencies in subsequent aggregations over the result of the join. It follows
that drill-across queries can be defined over the virtual view shown in Figure 5.

The tightly coupled approach aims at combining data from different dimen-
sions by computing their union rather than their intersection. Consider again the
example above. If we apply the corresponding algorithm over the same input we
obtain two new dimensions that can be materialized and used for both data
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Fig. 5. A virtual view over the Sales and the Weather data marts
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Fig. 6. A materialized view over the merged dimensions

marts. Hence, we can then refer to the homogenous scheme reported in Figure 6
to perform drill-across queries.

4 The Integration Tool

The various techniques described in the previous section have been implemented
in an interactive tool (screenshots are reported in Figure 7).

Fig. 7. The integration tool

The tool allows the user to:

1. access to data marts stored in a variety of systems (DB2, Oracle, SQL Server,
among others);

2. import from these systems metadata describing cubes and dimensions and
translate these descriptions into a uniform internal format;
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3. specify matchings between heterogeneous dimensions, by means of a graph-
ical interface;

4. suggest possible matching between levels of heterogeneous dimensions;
5. test for coherence, consistency, and soundness of matchings;
6. generate the intersection of two dimensions, according to the the loosely

integration approach;
7. merge two dimensions, according to the tightly integrated approach;
8. perform drill-across queries over heterogeneous data marts whose dimensions

have been matched according to either the tightly coupled approach or the
loosely coupled one.

Function 4 relies on a number of heuristics that try to infer whether two levels
of different dimensions can refer to the same concept. Currently, we have followed
a rather simple approach based on the name of the levels and on the existence of
shared members. We are currently investigating more involved techniques based
on the use of data dictionaries. This is however outside the original goal of our
project.

The basic components of the tool architecture are reported in Figure 8.

Import/Export
Manager

DW 1

DWMS 1

DW Interface 1

User inteface

DW k

DWMS k

Query
Processor

Dimension
Manager

Integrator

Data
Dictionary

Data
Dictionary

DW Interface k

Data
Repository

Fig. 8. The architecture of the integration tool

A number of external data warehouses stored in different systems are ac-
cessed by the tool through DW Interfaces that are able to: (i) extract meta data
describing the sources, (ii) translate these descriptions into an internal repre-
sentation that is based on the multidimensional model described in Section 2,
and (iii) store this representation in a data dictionary. The Dimension Manager
is in charge to specify and verify matching between dimensions. The Integra-
tor module performs the actual integrations of pair of dimensions according to
the either the loosely coupled approach or the tightly coupled one. In the latter
case, a new dimension is built and the corresponding members are stored in
a local data repository. Finally, the Query Processor receives requests of drill-
across queries over autonomous data marts and, on the basis of the information
available in the internal repositories, performs queries to the external systems
through the corresponding DW interfaces.
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5 Conclusion

We have illustrated in this paper the development of a tool for the integration of
heterogeneous multidimensional databases. We have first addressed the problem
from a conceptual point of view, by introducing the desirable properties of co-
herence, soundness and consistency that “good” matchings between dimensions
should enjoy. We have then presented two practical approaches to the problem
that refer to the different scenarios of loosely and tightly coupled integration.
We have then presented a practical tool that implements the various techniques
and can be effectively used to perform drill-across queries between heterogeneous
data warehouses. The first experimentations demonstrate the effectiveness of the
approach and show a reasonable efficiency. We are currently working to further
improve the performance of the tool.

We believe that the techniques presented in this paper can be generalized to
much more general contexts in which, similarly to the scenario of this study, we
need to integrate heterogenous sources and we possess a taxonomy of concepts that
describe their content (e.g., an ontology). This is subject of current investigation.
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Abstract. The problem of selecting an optimal fragmentation schema
of a data warehouse is more challenging compared to that in relational
and object databases. This challenge is due to the several choices of par-
titioning star or snowflake schemas. Data partitioning is beneficial if and
only if the fact table is fragmented based on the partitioning schemas
of dimension tables. This may increase the number of fragments of the
fact tables dramatically and makes their maintenance very costly. There-
fore, the right selection of fragmenting schemas is important for better
performance of OLAP queries. In this paper, we present a genetic algo-
rithm for schema partitioning selection problem. The proposed algorithm
gives better solutions since the search space is constrained by the schema
partitioning. We conduct several experimental studies using the APB-1
release II benchmark for validating the proposed algorithm.

1 Introduction

The main characteristics of data warehouses are (1) their data complexity due
to the presence of hierarchies between attributes, (2) the huge amount of data,
and (3) the complexity of their queries due to the presence of join and aggregate
operations. Several queries optimization techniques were proposed in the litera-
ture and supported by commercial systems. These techniques can be classified
into two categories: (1) redundant-structures and (2) non redundant-structures.
Techniques in the first category compete for the same resource representing the
storage cost and incur maintenance overhead in the presence of updates [12]. We
can cite: materialized views and indexes. Techniques in the second category do
not require an extra space compare to those in the first category. We can cite
vertical and horizontal partitioning [11]. Horizontal partitioning (HP) allows ac-
cess methods such as tables, indexes and materialized views to be partitioned
into disjoint sets of rows that are stored and accessed separately. On the other
hand, vertical partitioning allows a table to be partitioned into disjoint sets of
columns. Like indexes and materialized views, both kinds of partitioning can
significantly impact the performance of the workload i.e., queries and updates
that execute against the database system, by reducing cost of accessing and
processing data. In this paper, we are interesting to a non redundant structure,
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which is the HP. Several work and commercial systems show its utility and im-
pact in optimizing OLAP queries [11,3,2,8,13]. But none study has formalized
the problem of selecting a HP schema to speed up a set of queries and proposed
selection algorithms. In this paper, we use fragmentation and partitioning in-
terchangeably. HP in relational data warehouses is more challenging compared
to that in relational and object databases. This challenge is due to the several
choices of partitioning schemas 1 that can be found:

1. partition only the dimension tables using simple predicates defined on these
tables 2. This scenario is not suitable for OLAP queries, because the sizes of
dimension tables are generally small compare to the fact table. Therefore, any
partitioning that does not take into account the fact table is discarded.
2. partition only the fact table using simples predicates defined on this table.
Note that a fact relation stores foreign keys and raw data which is usually never
contain descriptive (textual) attributes because it is designed to perform arith-
metic operations. On the other hand, in a relational data warehouse, most of
OLAP queries access dimension tables first and then the fact table. This choice
is also discarded.
3. partition some/all dimension tables using their predicates, and then partition
the fact table based on the fragmentation schemas of dimension tables. This ap-
proach is best in applying partitioning in data warehouses. Because it takes into
consideration star join queries requirements (these queries impose restrictions
on the dimension values that are used for selecting specific facts; these facts
are further grouped and aggregated according to the user demands. The major
bottleneck in evaluating such queries has been the join of a large fact table with
the surrounding dimension tables [13]). In our study, we opt for last solution.

To show the procedure to fragment a fact table using this scenario, suppose
that a dimension table Di is fragmented into mi fragments: {Di1, Di2, ..., Dimi},
where each fragment Dij is defined as: Dij = σclij

(Di), where clij (1 ≤ i ≤ g, 1 ≤
j ≤ mi) represents a conjunction of simple predicates. Thus, the fragmentation
schema of the fact table F is defined as follows: Fi = F � D1i � D2i � ... � Dgi,
with � represents the semi join operation. In order to illustrate this procedure,
let consider a star schema with three dimension table (Customer, Time and
Product) and one fact table Sales. Suppose that the dimension table Customer
is fragmented into two fragments Cust 1 and Cust 2 defined by the following
clauses: Cust 1 = σSex=‘M ′ (Customer) and Cust 2 = σSex=‘F ′(Customer).
Therefore the fact table Sales can be fragmented using the fragmentation schema
of the dimension table Customer into two fragments Sales 1 and Sales 2 such as:
Sales 1 = Sales � Cust 1 and Sales 2 = Sales � Cust 2.

The initial star schema (Sales, Customer, Product, Time) is represented as
the juxtaposition of two sub star schemas S1 et S2 such as: S1 : (Sales 1, Cust 1,

1 The fragmentation schema is the result of the data partitioning process.
2 A simple predicate p is defined by: p : Ai θ V alue, where Ai is an attribute,

θ ∈ {=, <, >, ≤, ≥}, and value ∈ Dom(Ai)
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Product, Time) (sales activities for only male customers) et S2 : (Sales 2, Cust 2,
Product, Time) (sales activities for only female customers).

To the best of our knowledge, the proposed work is the first article that
addresses horizontal fragmentation schema selection problem in relational data
warehouses and uses a genetic algorithm to select a right solution that minimizes
the performance of OLAP queries, and reduces the maintenance cost.

This paper is divided in five sections: The section 2 formalizes the fragmenta-
tion selection problem in data warehouses modeled using star schemas. Section
3 presents a genetic algorithm with its four steps (selection, coding, mutation,
and fitness function). Section 4 gives the experimental results using benchmark
APB-1 release II benchmark. The Section 5 concludes the paper by summarizing
the mains results and suggesting future work.

2 Complexity of Generated Fragments of the Fact Table

Let a star schema with d dimension tables and a fact table. Let g (g ≤ d) be the
number of fragmented dimension tables. The number of horizontal fragments
of the fact table (denoted by N) is given by: N =

∏g
i=1 mi, where mi is the

number of fragments of dimension table Di. This fragmentation technique gen-
erates a large number of fragments of the fact table. For example, suppose we
have: Customer dimension table partitioned into 50 fragments using the State
attribute3, Time into 36 fragments using the Month attribute, and Product into
80 fragments using Package type attribute, therefore the fact table will be frag-
mented into 144 000 fragments (50×36×80). Consequently, instead of managing
one star schema, we will manage 144 000 sub star schemas. It will be very hard for
the data warehouse administrator (DWA) to maintain all these sub-star schemas.

Therefore it is necessary to reduce the number of fragments of the fact table
in order to guarantee two main objectives: (1) avoid an explosion of the number
of the fact fragments and (2) ensure a good performance of OLAP queries. To
satisfy the first objective, we give to DWA the possibility to choose the number
of fragment maximal that he/she can maintain (threshold W ). For the second
one, we can increase the number of fragment so that the global performance will
be satisfied. The problem of selecting an optimal fragmentation schema consists
in finding a compromise between the maintenance cost and the performance cost.

In order to satisfy this compromise, we use genetic algorithms [1,4] since they
explore a large search space. Our problem is similar to the problems multiproces-
sor document allocation [6], and data replication [9], where genetic algorithms
gave good results.

3 Genetic Algorithms

Genetic algorithms (GAs) [7], are search methods based on the evolutionary
concept of natural mutation and the survival of the fittest individuals. Given a
3 case of 50 states in the U.S.A.
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well-defined search space they apply three different genetic search operations,
namely, selection, crossover, and mutation, to transform an initial population of
chromosomes, with the objective to improve their quality. Fundamental to the
GA structure is the notion of chromosome, which is an encoded representation of
a feasible solution, most commonly a bit string. Before the search process starts,
a set of chromosomes is initialized to form the first generation. Then the three
genetic search operations are repeatedly applied, in order to obtain a population
with better characteristics. An outline of a generic GA is as follows:

Generate initial population ;
Perform selection step;
while stopping criterion not met do

Perform crossover step;
Perform mutation step;
Perform selection step ;

end while.

Report the best chromosome as the final solution. We demonstrate the design
of our algorithm in details by presenting our encoding mechanism and then the
selection, crossover and mutation operators.

3.1 Representation of Solutions

Representation of solution or chromosome is one of the key issues in problem
solving. In our study, a solution represents a fragmentation schema. Note that
any fragmentation algorithm needs application information defined on the tables
that have to be partitioned. The information is divided into two categories [10]:
quantitative and qualitative. Quantitative information gives the selectivity fac-
tors of selection predicates and the frequencies of queries accessing these tables
(Q = {Q1, , Qn}). Qualitative information gives the selection predicates defined
on dimension tables. Before representing each solution, the following tasks should
be done:

1. extraction of all simple predicates used by the n queries,
2. assignment to each dimension table Di(1 ≤ i ≤ d), its set of simple predicates
(SSPDi),
3. each dimension table Di having SSPDi = φ cannot be fragmented. Let
Dcandidate be the set of all dimension tables having a non-empty SSPDi. Let g
be the cardinality of Dcandidate (g ≤ d),
4. use the COM MIN algorithm [10] to each dimension table Di of Dcandidate.
This algorithm takes a set of simple predicates and then generates a set of com-
plete and minimal.

Representation of Horizontal Fragments Note each fragmentation pred-
icate has a domain values. The clauses of simple predicates representing hori-
zontal fragments defines partitions of each attribute domain into sub domains.
The cross product of partitions of an attribute by all predicates determines a
partitioning of the domains of all the attributes into sub domains.
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Example 1. Consider three fragmentation attributes 4 Age, Gender and City of
dimension table Customer and one attribute Season of dimension table Time.
The domains of these attributes are defined as follows: Dom(Age) = ]0, 120],
Dom(Season) = {“Summer′′, “Spring′′, “Autumn′′, “Winter′′}, and
Dom(Gender) = {‘M ′, ‘F ′}. Suppose that on attribute Age, three simple predi-
cates are defined as follows: p1 : Age ≤ 18, p2 : Age ≥ 60, and p3 : 18 < Age < 60.
The domain of this attribute (]0, 120]) is then partitioned into three sub domains
(p1, p2, and p3). Dom(Age) = d11 ∪ d12 ∪ d13, with d11 = ]0, 18], d12 = ]18, 60[,
d13 = [60, 120]. Similarly, the domain of Gender attribute is decomposed into
two sub domains: Dom(Gender) = d21 ∪ d22, with d21 = {‘M ′}, d22 = {‘F ′}.
Finally, domain of Season is partitioned into four sub domains : Dom(Season)
= d31 ∪ d32 ∪ d33 ∪ d34, where d31 = {“Summer”}, d32 = {“Spring”}, d33 =
{“Autumn”}, and d34 = {“Winter”}.

Each fragmentation attribute can be represented by an array with n cells,
where n corresponds to number of its sub domains. The values of these cells are
between 1 and n. If two cells have the same values, then they will be merged to
form only one. Each fragmentation schema is represented by a multi-dimensional
arrays. Suppose we have the following representation Gender: (1, 1), Season(2,
1, 3, 3) and Age (2, 1, 2). We can deduce that the fragmentation of the data
warehouse is not performed using the attribute Gender, because all its sub do-
mains have the same value. Consequently, the warehouse will be fragmented
using only Season and Age. For Season attribute, three simple predicates are
possible: P1 : Season = ”Spring”, P2 : Season = ”Summer”, and P3 : Season =
”autumn” ∨ Season = ”Winter”. For Age attribute, two predicates are possible:
P4 : Age ≤ 18 ∨ Age ≥ 60 et P5 : 18 < Age < 60 With these simple predicates,
the data warehouse can be fragmented into six fragments defined by the follow-
ing clauses: Cl1 : P1∧P4; Cl2 : P1∧P5; Cl3 : P2∧P4; Cl4 : P2∧P5; Cl5 : P3∧P4;
and Cl6 : P3 ∧ P5. The coding that we proposed satisfies the correctness rules
(completeness, reconstruction and disjointness [10]) and the new chromosomes
generated by cross over operations belong to the relevant sub domains (it does
not generate invalid solutions). This coding can be used to represent fragments
of dimension tables and fact table.

3.2 Selection Mechanism

Selection in genetic algorithms determines the probability of individuals being
selected for reproduction. The principle here is to assign higher probabilities to
filter individuals. The roulette wheel method is used in our algorithm (it allocate
a sector of the wheel equaling to the ith chromosome and creating an offspring
if a generated number in the range of 0 to falls inside the assigned sector of
the string). In this method, each chromosome is associated with its fitness value
calculated using the cost model defined in section 3.4. The chromosomes with
high fitness values have chances to be selected.

4 A fragmentation attribute is an attribute participating in the fragmentation process
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3.3 Types of Crossover

We selected a two-point crossover mechanism to include in our GA for the fol-
lowing reason: note that fragments are represented by arrays. The chromosomes
are crossed over once for each predicate. If the crossover is done over one chromo-
some, the predicates with high number (example of city) will have a probability
greater than predicate with small predicate like gender. This operation is applied
till none reduction of the number of suitable fragments of fact table (W ). The
rationale behind crossover operation, is that after the exchange of genetic ma-
terials, it is very likely that the two newly generated chromosomes will possess
the good characteristics of both their parents (building-block hypothesis [7]).

3.4 Fitness Value

The quality of each chromosome is measured by computing its fitness value.
This function gives a percentage for each performance parameters (respect of
threshold and performance of queries). A number of points is assigned to these
two parameters: (1) threshold : 55 points over 100 are assigned (by default). If the
number of obtained fragments is equal plus or minus 5 per cent of the threshold,
then all points will be assigned. Otherwise, less points will be assigned to this
parameter, and (2) performance of queries : a number of points (45) is assigned
to all queries in an uniform manner (we have used 15 queries). To compute the
cost of each query, we developed a cost model calculating the number of inputs
and outputs. As in the previous case, we assign all points (3 per query) if the
cost of a query is less than a given number. If the number of IOs increases, less
we assign points, following a linearly decreasing function. When the number of
IOs of a given query is very high, none point is assigned.

To estimate the cost of queries, we assume that all dimension tables are in
the main memory. Let Dsel = {Dsel

1 , ..., Dsel
k } be the set of dimension tables

having selection predicates, where each selection predicate pj (defined on a di-
mension table Di) has a selectivity factor denoted by Sel

pj

Di
(Sel

pj

Di
∈ [0, 1]). For

each predicate pj , we define its selectivity factor on the fact table, denoted by
Sel

pj

F (Sel
pj

Di
= Sel

pj

F ). For example, if we consider the selection predicate Gen-
der=”Female” defined on the dimension table. Suppose that its selectivity factor
is 0.4. This is means that 40% of salespersons are female and 60% are male. But,
female sales activities may represent 70% of the whole sales. To execute a query Q
over a partitioned star schema {S1, S2, ..., SN}, we shall identify the relevant sub
star schema(s). To do so, we introduce a boolean variable denoted by valid(Q, Si)
and defined as follows: valid(Q, Si) = 1 if the sub star schema Si is relevant for
Q, 0 otherwise. The number of IOs for executing a query Q over a partitioned star
schema is given by: Cost(Q) =

∑N
j=1 valid(Q, Sj)

∏Mj

i=1(
(Sel

pi
F ×||F ||×L)

PS ), where,
Mj, F , L and PS represent the number of selection predicates defining the fact
fragment of the sub star schema SDEj , the number of tuples present in a fact
table F , the width, in bytes, of a tuple of a table F and the page size of the file
system (in bytes), respectively. In this study, the selectivity factors are chosen
using an uniform distribution (UD) and a non uniform distribution (NUD).
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3.5 The Mutation

Although crossover can put good genes together to generate better offspring. It
cannot generated new genes. Mutation is needed to create new genes that may
not be present in any member of a population and enables the algorithm to reach
all possible solutions (in theory) in the search space. Mutation is an operation
aiming at restoring lost genetic material and is performed in our algorithm by
simply flipping every bit with a certain probability, called the mutation rate.
We have chosen a mutation rate between 30 and 6 percent (rate often used).
Mutations are done for fragmentation attributes. Initialization of the first gen-
eration is performed by randomly generating half of the population while the
rest is obtained from the solutions previously found by algorithm. In practice,
there could be more intervals distinct or a merged intervals. In the same way,
mutations could occur on several attributes of the individual.

4 Experimental Studies

In our experiments, we use the dataset from the APB1 benchmark [5]. The star
schema of this benchmark has one fact table Actvars (||Actvars|| = 24786000
tuples, with a width = 74) and four dimension tables: Prodlevel (||Prodlevel||
= 9 000 tuples, with a width = 72), Custlevel (||Custlevel|| = 900 tuples, with
a width = 24), Timelevel (||T imelevel|| = 24 tuples, with a width = 36), and
Chanlevel (||Chanlevel|| = 9 tuples, with a width = 24). This warehouse has
been populated using the generation module of APB1. Our simulation software
was built using Visual C performed under a Pentium IV 2,8 Ghz microcomputer
(with a memory of 256 Mo). We have considered 15 queries. Each query has
selection predicates, where each one has its selectivity factor. The crossover and
mutations rates used in our experiments are 70% and 30% in the beginning.
After several generation, the mutation rate of 6% was used to avoid a redundant
search. We have used 1 500 generations (40 chromosomes per generation). 9
fragmentation attributes were considered.

If the DWA chooses the threshold as 2000, the dimension tables will be
fragmented as follows: table Prodlevel in 48 fragments, table Timelevel in 7
fragments, table Custlevel in 2 fragments, table Chanlevel in 3 fragments,and
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the fact table in 2016 fragments. Figure 1 shows the evolution of IOs over the
number of fragmentation attributes. The results show the impact of this number
on the performance of queries. We note also that the non uniform distribution
gives better performance than the uniform distribution.

In Figure 2, we have studied the effect of the number of fragmentation at-
tributes over the number of fact table. We realize that the type of distribution
does not have an effect on the total number of fragments.
Figure 3 shows the effect of the horizontal fragmentation and its role in reducing
the global cost of executing a set of queries. These results confirmed the existing
theoretical studies.

In Figure 4, we have studied the effect of the dimension tables participating
on the fragmentation process. The performance of OLAP queries is proportional
with the number of these tables. Figure 5 shows that the number of fragments of
the fact table increases when the the number of dimension tables participating
on the fragmentation process increases. But our algorithm controls this augmen-
tation. When we used less than six fragmentation attributes, the rate between
the number of fragments return by the algorithm and the possible number of
fragment is high (more than 35%) because the possible number of fragments is
small. From six attributes, this rate is small (less than de 2%) when we used 9
attributes (Figure 6). To get a better performance of queries, the threshold is
varied, and experiments show that this performance is obtained when threshold
is equals 4000.
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Note that the number of fragments increases when the threshold increases,
but it remains closer to the threshold (Figure 8).

In Figures 9, 10 and 11 we changed the selectivity factors of predicates in
order to see their effect on the number of fragments and performance of queries.
We realized that when we increase these factors, the number of IOs increases.
This is due to the fact that an high selectivity implies a large number of tuples
satisfying predicates. But the selectivity factors do not have a strong effect on
the final number of fragments.
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5 Conclusion

In this paper, we have formalized the problem of selecting an horizontal frag-
mentation schema in relational data warehousing environments. First we have
developed a methodology for fragmenting a star schema using the fragmentation
schemas of the dimension tables. We have also shown the complexity of the gen-
erated fragments of the fact table. This number can be very huge and then it will
be difficult for the data warehouse administrator to maintain all fragments. To
reduce this number and guarantee a good performance, we proposed a genetic
algorithm. Before applying this algorithm, we presented a coding mechanism for
all possible solutions. A cost model for evaluating the cost of a set of frequently
queries performed on a fragmented star schema is developed. This model is also
used to measure the quality of the final solution. Finally, we conducted experi-
ments to show the utility of the horizontal fragmentation and capture different
points that can have effect on the performance of OLAP queries and respecting
the threshold fixed by the administrator.

It will be interested to develop or adapt our algorithm to take into account
the dynamic aspect of a warehouse due to the evolution of the schema and
queries.
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1. T. Bäck. Evolutionnary algorithms in theory and practice. Oxford University Press,
New York, 1995.

2. L. Bellatreche, K. Karlapalem, and M. Mohania. What can partitioning do for
your data warehouses and data marts. Proceedings of the International Database
Engineering and Application Symposium (IDEAS’2000), pages 437–445, September
2000.

3. L. Bellatreche, M. Schneider, H. Lorinquer, and M. Mohania. Bringing together
partitioning, materialized views and indexes to optimize performance of relational
data warehouses. Proceeding of the International Conference on Data Warehousing
and Knowledge Discovery (DAWAK’2004), pages 15–25, September 2004.

4. K. P. Bennett, M. C. Ferris, and Y. E. Ioannidis. A genetic algorithm for database
query optimization. in Proceedings of the 4th International Conference on Genetic
Algorithms, pages 400–407, July 1991.

5. OLAP Council. Apb-1 olap benchmark, release ii.
http://www.olapcouncil.org/research/bmarkly.htm, 1998.

6. O. Frieder and H.T. Siegelmann. Multiprocessor document allocation : A genetic
algorithm approach. IEEE Transactions on Knowledge and Data Engineering,
9(4):640–642, July 1997.

7. J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan
Press, Ann Arbor, Michigan, 1975.

8. P. Kalnis and D. Papadias. Proxy-server architecture for olap. Proceedings of the
ACM SIGMOD International Conference on Management of Data, 2001.

9. T. Loukopoulos and I. Ahmad. Static and adaptive distributed data replica-
tion using genetic algorithms. in Journal of Parallel and Distributed Computing,
64(11):1270–1285, November 2004.



An Evolutionary Approach to Schema Partitioning Selection 125

10. M. T. Özsu and P. Valduriez. Principles of Distributed Database Systems : Second
Edition. Prentice Hall, 1999.

11. A. Sanjay, V. R. Narasayya, and B. Yang. Integrating vertical and horizontal
partitioning into automated physical database design. Proceedings of the ACM
SIGMOD International Conference on Management of Data, pages 359–370,
June 2004.

12. A. Sanjay, C. Surajit, and V. R. Narasayya. Automated selection of material-
ized views and indexes in microsoft sql server. Proceedings of the International
Conference on Very Large Databases, pages 496–505, September 2000.
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Abstract. With the increasing amount and diversity of information available on
the Internet, there has been a huge growth in information systems that need to
integrate data from distributed, heterogeneous data sources. Incrementally main-
taining the integrated data is one of the problems being addressed in data ware-
housing research. This paper presents an incremental view maintenance approach
based on schema transformation pathways. Our approach is not limited to one
specific data model or query language, and would be useful in any data transfor-
mation/integration framework based on sequences of primitive schema transfor-
mations.

1 Introduction

Data warehouses collect data from distributed, autonomous and heterogeneous data
sources into a central repository to enable analysis and mining of the integrated infor-
mation. When data sources change, the data warehouse, in particular the materialised
views in the data warehouse, must be updated also. This is the problem of view main-
tenance in data warehouses. In contrast to operational database systems handling day-
to-day operations of an organisation and dealing with small changes to the databases,
data warehouses support queries by non-technical users based on long-term, statistical
information integrated from a variety of data sources, and do not require the most up to
date operational version of all the data. Thus, data warehouses are normally refreshed
periodically and updates to the primary data sources do not have to be propagated to the
data warehouse immediately.

AutoMed1 is a heterogeneous data transformation and integration system which of-
fers the capability to handle data integration across multiple data models. In the Au-
toMed approach, the integration of schemas is specified as a sequence of primitive
schema transformation steps, which incrementally add, delete or rename schema con-
structs, thereby transforming each source schema into the target schema. We term the
sequence of primitive transformations steps defined for transforming a schema S1 into
a schema S2 a transformation pathway from S1 to S2.

In previous work (see [7]), we discussed how AutoMed metadata can be used to ex-
press the schemas and the cleansing, transformation and integration processes in hetero-
geneous data warehousing environments. In this paper, we will describe how AutoMed
metadata can be used for maintaining the warehouse data.

1 See http://www.doc.ic.ac.uk/automed/

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2005, LNCS 3589, pp. 126–135, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Materialised warehouse views need to be maintained either when the data of a data
source changes, or if there is an evolution of a data source schema. In previous work (see
[8]), we showed that AutoMed transformation pathways can be used to handle schema
evolutions in a data warehouse. In this paper, we will focus on refreshing materialised
warehouse views at the data level.

Materialised views can be refreshed by recomputing from scratch or, on the other
hand, by only computing the changes to the views rather than all the view data, which
is termed incremental view maintenance (IVM). Incrementally refreshing a view can be
significantly cheaper than fully recomputing the view, especially if the size of the view
is large compared to the size of the change.

The problem of view maintenance at the data level has been widely discussed in the
literature. Dong and Gupta et al give good surveys of this problem [6,10]. Colby et al,
Griffin et al and Quass present propagation formulae based on relational algebra oper-
ations for incrementally maintaining views with duplicates and aggregations [5,9,16].
Zhuge et al consider the IVM problem for a single-source data warehouses and defines
the ECA algorithm [20]. The IVM approaches for a multi-source data warehouse in-
clude the Strobe algorithm [21], and the SWEEP and Nested SWEEP algorithms [1].
The view maintenance approach discussed by Gupta and Quass et al is to make views
self-maintainable, which means that materialised views can be refreshed by only using
the content of the views and the updates to the data sources, and not requiring to ac-
cess the data in any underlying data source [11,17]. Such a view maintenance approach
usually needs auxiliary materialised views to store additional information.

Our IVM approach presented in this paper is based on AutoMed schema transfor-
mation pathways, which is not limited to one specific data model or query language, and
would be useful in any data transformation/integration framework based on sequences
of primitive schema transformations.

The outline of this paper is as follows. Section 2 gives an overview of AutoMed, as
well as a data integration example. Section 3 presents our IVM formulae and algorithms
using AutoMed schema transformations. Section 4 gives our concluding remarks and
directions of further work.

2 Overview of AutoMed

AutoMed supports a low-level hypergraph-based data model (HDM). Higher-level
modelling languages are defined in terms of this HDM. For example, previous work
has shown how relational, ER, OO [13], XML [18], flat-file [3] and multidimensional
[7] data models can be so defined. An HDM schema consists of a set of nodes, edges
and constraints, and each modelling construct of a higher-level modelling language is
specified as some combination of HDM nodes, edges and constraints. For any mod-
elling language M specified in this way, via the API of AutoMed’s Model Definitions
Repository [3], AutoMed provides a set of primitive schema transformations that can
be applied to schema constructs expressed in M. In particular, for every construct of
M there is an add and a delete primitive transformation which add to/delete from a
schema an instance of that construct. For those constructs of M which have textual
names, there is also a rename primitive transformation.
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In AutoMed, schemas are incrementally transformed by applying to them a se-
quence of primitive transformations t1, . . . , tr. Each primitive transformation adds,
deletes or renames just one schema construct, expressed in some modelling language.
Thus, the intermediate (and indeed the target) schemas may contain constructs of more
than one modelling language.

Each add or delete transformation is accompanied by a query specifying the extent
of the new or deleted construct in terms of the rest of the constructs in the schema. This
query is expressed in a functional query language IQL2. The queries within add and
delete transformations are used by AutoMed’s Global Query Processor to evaluate an
IQL query over a global schema in the case of a virtual data integration scenario. In the
case that the global schema is materialised, AutoMed’s Query Evaluator can be used
directly on the materialised data.

2.1 Simple IQL

In order to illustrate our IVM algorithm, we use a subset of IQL, Simple IQL (SIQL), as
the query language in this paper. More complex IQL queries can be encoded as a series
of transformations with SIQL queries on intermediate schema constructs. We stress
that although illustrated within a particular query language syntax, our IVM algorithms
could also be applied to schema transformation pathways involving queries expressed
in other query languages supporting operations on set, bag and list collections.

Supposing D, D1 . . . , Dn denote bags of the appropriate type (base collections),
SIQL supports the following queries: group D groups a bag of pairs D on their first
component. distinct D removes duplicates from a bag. f D applies an aggregation
function f (which may be max, min, count, sum or avg) to a bag. gc f D groups
a bag D of pairs on their first component and applies an aggregation function f to the
second component. ++ is the bag union operator and −− is the bag monus operator
[2]. SIQL comprehensions are of three forms: [x|x1 ← D1; . . . ;xn ← Dn;C1; ...;Ck],
[x|x ← D1; member D2 y], and [x|x ← D1; not(member D2 y)]. Here, each x1,
..., xn is either a single variable or a tuple of variables. x is either a single variable or
value, or a tuple of variables or values, and must include all of variables appearing in
x1, ..., xn. Each C1, ..., Ck is a condition not referring to any base collection. Also, each
variable appearing in x and C1, ..., Ck must also appear in some xi, and the variables in
y must appear in x. Finally, a query of the form map (λx.e) D applies to each element
of a collection D an anonymous function defined by a lambda abstraction λx.e and
returns the resulting collection.

Comprehension syntax can express the common algebraic operations on collection
types such as sets, bags and lists [4] and such operations can be readily expressed
in SIQL. In particular, let us consider selection (σ), projection(π), join (�	), and ag-
gregation (α) (union (

⋃
) and difference (−) are directly supported in SIQL via the

++ and −− operators). The general form of a Select-Project-Join (SPJ) expression is
πA(σC(D1 �	 ... �	 Dn)) and this can be expressed as follows in comprehension syn-
tax: [A|x1 ← D1; . . . ;xn ← Dn;C]. However, since in general the tuple of variables A

2 IQL is a comprehensions-based functional query language. Such languages subsume query
languages such as SQL and OQL in expressiveness [4]. We refer the reader to [12,15] for
details of IQL and references to work on comprehension-based functional query languages.
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may not contain all the variables appearing in x1, ...,xn (as is required in SIQL), we
can use the following two transformation steps to express a general SPJ expression in
SIQL, where x includes all of the variables appearing in x1, . . . .xn:

v1 = [x|x1 ← D1; . . . ;xn ← Dn;C]
v = map (λx.A) v1

The algebraic operator α applies an aggregation function to a collection and this func-
tionality is captured by the gc operator in SIQL. E.g., supposing the scheme of a col-
lection D is D(A1,A2,A3), an expression αA2,f(A3)(D) is expressed in SIQL as:

v1 = map (λ{x1,x2,x3}.{x2,x3}) D
v = gc f v1

2.2 An Example Data Integration

In this paper, we will use schemas expressed in a simple relational data model to illus-
trate our techniques. However, we stress that these techniques are applicable to schemas
defined in any data modelling language having been specified within AutoMed’s Model
Definitions Repository, including modelling languages for semi-structured data [3,18].

In our simple relational model, there are two kinds of schema construct: Rel and
Att. The extent of a Rel construct 〈〈R〉〉 is the projection of relation R onto its primary
key attributes k1, ..., kn. The extent of each Att construct 〈〈R, a〉〉 where a is a non-key
attribute of R is the projection of R onto k1, ..., kn, a. We refer the reader to [13] for an
encoding of a richer relational data model, including the modelling of constraints.

Suppose that MAtab(CID, SID, Mark) and IStab(CID, SID, Mark) are two source
relations for a data warehouse respectively storing students’ marks for two departments
MA and IS, in which CID and SID are the course and student IDs. Suppose also that a
relation Course(Dept, CID, Avg) is in the data warehouse which gives the average mark
for each course of each department.

The following transformation pathway expresses the schema transformation and
integration processes in this example. Due to space limitations, we have not given
the steps for removing the source relation constructs (note that this ‘growing’ and
‘shrinking’ of schemas is characteristic of AutoMed schema transformation pathways).
Schema constructs 〈〈Details〉〉 and 〈〈Details, Mark〉〉 are temporary ones which are cre-
ated for integrating the source data and then deleted after the global relation is created.

addRel 〈〈Details〉〉 [{’MA’,k1,k2}|{k1,k2}←〈〈MAtab〉〉]
++[{’IS’,k1,k2}|{k1,k2}←〈〈IStab〉〉];

addAtt 〈〈Details, Mark〉〉 [{’MA’,k1,k2,x}|{k1,k2,x}←〈〈MAtab, Mark〉〉]
++[{’IS’,k1,k2,x}|{k1,k2,x}←〈〈IStab, Mark〉〉];

addRel 〈〈Course〉〉 distinct [{k,k1}|{k,k1,k2}←〈〈Details〉〉];
addAtt 〈〈Course, Avg〉〉 [{x,y,z}|{{x,y},z}← (gc avg

[{{k,k1},x}|{k,k1,k2,x}←〈〈Details, Mark〉〉])];
delAtt 〈〈Details, Mark〉〉 [{’MA’,k1,k2,x}|{k1,k2,x}←〈〈MAtab, Mark〉〉]

++[{’IS’,k1,k2,x}|{k1,k2,x}←〈〈IStab, Mark〉〉];
delRel 〈〈Details〉〉 [{’MA’,k1,k2}|{k1,k2}←〈〈MAtab〉〉]

++[{’IS’,k1,k2}|{k1,k2}←〈〈IStab〉〉];
...

Note that some of the queries appearing in the above transformation steps are not
SIQL but general IQL queries. In such cases, for the purposes of IVM, we decom-
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pose a general IQL query into a sequence of SIQL queries by means of a depth-first
traversal of the IQL query tree. For example, the IQL query [{x,y,z}|{{x,y},z}←
(gc avg [{{k,k1},x}| {k,k1,k2,x} ← 〈〈Details, Mark〉〉])] is decomposed into fol-
lowing sequence of SIQL queries, where v1 and v2 are virtual intermediate views:

v1 = map (λ{k,k1,k2,x}.{{k1,k2},x}) 〈〈Details, Mark〉〉
v2 = gc avg v1
v = map (λ{{x,y},z}.{x,y,z}) v2

From now on, we assume that all queries in transformation steps are SIQL queries.

3 IVM with AutoMed Schema Transformations

Our IVM algorithms use the individual steps of a transformation pathway to compute
the changes to each intermediate construct in the pathway, and finally obtain the changes
to the view created by the transformation pathway in a stepwise fashion. Since no con-
struct in a global schema is contributed by delete and contract transformations, we
ignore these transformations in our IVM algorithms. In addition, computing changes
based on a transformation rename(O′, O) is simple — the changes to O are the same
as the changes to O′. Thus, we only consider add transformations here.

We can express a single add transformation step as an expression v=q(D), in
which v is the schema construct created by the transformation and q is the SIQL query
over the data source D. In order to incrementally maintain the global schema data, we
develop a set of IVM formulae for each SIQL query, and apply these IVM formulae on
each transformation step to compute the changes to the construct created by the step.
By following all the steps in the transformation pathway, we compute the intermediate
changes step by step, finally ending up with the final changes to the global schema data.

3.1 IVM Formulae for SIQL Queries

We use �C/�C to denote a collection of data items inserted into/deleted from a collec-
tion C. There might be many possible expressions for �C and �C but not all are equally
desirable. For example, we could simply let �C = C and �C =�Cnew, but this is
equivalent to recomputing the view from scratch [16]. In order to avoidsuch definitions,
we use the concept of minimality [9] to ensure that no unnecessary data are produced.

Minimality Conditions. Any changes (�C/�C) to a data collection C, including the
data source and the view, must satisfy the following minimality conditions:

(i) �C ⊆ C: We only delete tuples that are in C;
(ii) �C ∩ �C = Ø: We do not delete a tuple and then reinsert it.

We now give the IVM formulae for each SIQL query, in which v denotes the
view, D denotes the data sources, �v/�v and �D/�D denote the collections inserted
into/deleted from v and D, and Dnew denotes the source collect D after the update. We
observe that these formulae guarantee that the above minimality conditions are satisfied
of �v and �v provided they are satisfied by �D and �D.

1. IVM formulae for distinct, map, and aggregate functions;
Table 1 illustrates the IVM formulae for these functions. We can see that the IVM

formulae for distinct/max/min/avg function require accessing the post-update data
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Table 1. IVM formulae for distinct, map, and aggregate functions

v �v �v
distinct D distinct [x|x ←�D; distinct [x|x ← �D;

not(member v x)] not(member Dnew x)]
map λe1.e2 D map λe1.e2 �D map λe1.e2 �D

let r1 = max �D; r2 = max �D

max D

⎧⎨⎩
max �D, if (v < r1);
ø, if (v ≥ r1)&(v 	= r2);
max Dnew , if (v > r1)&(v = r2).

⎧⎨⎩
v, if (v < r1);
ø, if (v ≥ r1)&(v 	= r2);
v, if (v > r1)&(v = r2).

let r1 = min �D; r2 = min �D

min D

⎧⎨⎩
min �D, if (v > r1);
ø, if (v ≤ r1)&(v 	= r2);
min Dnew , if (v < r1)&(v = r2).

⎧⎨⎩
v, if (v > r1);
ø, if (v ≤ r1)&(v 	= r2);
v, if (v < r1)&(v = r2).

count D v+ (count �D) − (count �D) v
sum D v+ (sum �D) − (sum �D) v
avg D avg Dnew v

Table 2. IVM formulae for bag union and monus

v �v �v
D1 ++ D2 (�D1 −− �D2) ++ (�D2 −− �D1) (�D1−− �D2) ++ (�D2−− �D1)
D1−− D2 ((�D1−− �D2) ++ (�D2 −− �D1)) ((�D1 −− �D2) ++ (�D2−− �D1))

−−(D2 −− D1) ∩ v

source and using the view data; the formulae for count/sum function need to use the
view data; and the formulae for map function only use the updates to the data source.

2. IVM formulae for grouping functions such as group D and gc f D;
Grouping functions group a bag of pairs D on their first component, and may apply

an aggregate function f to the second component. For the IVM of a view defined by a
grouping function, we firstly find the data items in D, which are in the same groups of
the updates, i.e. have the same first component with the updates. Then this smaller data
collection can be used to compute the changes to the view, so as to save time and space
overheads. For example, the IVM formulae for v = gc f D are as follows:

�v = gc f [{x, y}|{x, y} ← Dnew; member [p|{p, q} ← (�D ++ �D)] x]
�v = [{x, y}|{x, y} ← v;member [p|{p, q} ← (�D ++ �D)] x]

The IVM formulae for grouping functions require accessing the updated data source
and using the view data.

3. IVM formulae for bag union and monus;
Table 2 illustrates IVM formulae for bag union and monus (see [9]), in which ∩ is

an intersection operator with the following semantics: D1∩D2 = D1−−(D1−−D2) =
D2−− (D2−−D1). The IVM formulae for bag union only use the changes to the data
sources, while the formulae for bag monus have to use the view data and require an
auxiliary view D2−−D1. This auxiliary view is similarly incrementally maintained by
using the IVM formulae for bag monus with D1−− D2.
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Algorithm IVM4Comp()
Begin:

tempV iew = D1new ;
�v =�D1;
�v = �D1;
for i = 2 to n, do

if (�Di or �Di is not empty)
tempV iew = tempV iew �� . . . ��c(i−1) Dnew

(i−1);
�v = (�v ��ci Di

new −− �v ��ci�Di) ++ �v ��ci �Di
++(tempV iew ��ci �Di−− �v ��ci �Di);

�v = (�v ��ci Di
new−− �v ��ci�Di) ++ tempV iew ��ci�Di;

else
�v =�v ��ci Di

new ;
�v = �v ��ci Di

new ;
return �v and �v;

End

Fig. 1. The IVM4Comp Algorithm

4. IVM formulae for comprehension [x|x1 ← D1; . . . ; xn ← Dn; C1; C2; ...; Ck];
For ease of discussion, we use the join operator �	 to express this comprehension.

In particular, (D1 �	c D2) = [{x, y}|x ← D1; y ← D2; c] where c = C1; ...; Ck.
More generally, (D1 �	c1,c2 D2 �	c3 . . . �	cn Dn) = [x|x1 ← D1; . . . ; xn ←
Dn; c1; c2; ...; cn] in which ci is the conjunction of those predicates from C1, ..., Ck

which contain variables appearing in xi but without any variable appearing in xj , j > i.
We firstly give the IVM formulae of a view v = D1 �	c D2 as follows. These IVM

formulae can be derived from the propagation rules described in [9,5].

�v = (�D1 ��c Dnew
2 −− �D1 ��c�D2) ++ Dnew

1 ��c�D2
�v = (�D1 ��c Dnew

2 −− �D1 ��c�D2) ++ �D1 ��c �D2
++(Dnew

1 ��c �D2−− �D1 ��c �D2)
Then, the IVM algorithm, IVM4Comp, for incrementally maintaining the view v =
(D1 �	c1,c2 D2 �	c3 . . . �	cn Dn) is given in Figure 1. This IVM algorithm for the
comprehension needs to access all the post-update data sources.

The IVM4Comp algorithm is similar to the IVM algorithms discussed in [21] and
[1], i.e. the Strobe and SWEEP algorithms, in the context of maintaining a multi-source
data warehouse. Both the Strobe and the SWEEP algorithm perform an IVM procedure
for each update to a data source so as to ensure the data warehouse is consistent with
the updated data source. For both algorithms, the cost of the messaging between the
data warehouse and the data sources for each update is O(n) where n is the number
of data sources. However, in practice, warehouse data are normally long-term and just
refreshed periodically. Our IVM4Comp algorithm is able to handle a batch of updates
and is specifically designed for a periodic view maintenance policy. The message cost
of our algorithm for a batch of updates to any of the data sources is O(n).

5. IVM formulae for member and not member functions;
For ease of discussion, we use ∧ and � to denote expressions with member and

not member functions, i.e. D1∧D2 = [x|x ← D1;member D2 x] and D1�D2 =
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[x|x ← D1;not (member D2 x)]. The IVM formulae for these two functions are
given below, in which the function countNum a D returns the number of occurrences
of the data item a in D, i.e. countNum a D = count [x|x ← D;x=a]. We can
see that all post-update data sources are required in the IVM formulae.

v = [x|x ← D1;member D2 x]
let r1 = [x|x ←�D2; (countNum x �D2) = (countNum x D2new)]

r2 = �D2 � D2new

�v = (�D1 ∧ D2new−− �D1 ∧ r1]) ++ D1new ∧ r1
�v = (�D1 ∧ D2new −− �D1 ∧ r1) ++ (D1new ∧ r2−− �D1 ∧ r2) ++ �D1 ∧ r2

v = [x|x ← D1;not(member D2 x)]
let r1 = [x|x ←�D2; (countNum x �D2) = (countNum x D2new)]

r2 = �D2 � D2new

�v = (�D1 � D2new−− �D1 ∧ r2) ++ D1new ∧ r2
�v = (�D1 � D2new −− �D1 ∧ r2) ++ (D1new ∧ r1−− �D1 ∧ r1) ++ �D1 ∧ r1

3.2 IVM for Schema Transformation Pathways

Having defined the IVM formulae for each SIQL query, the update to a construct
created by a single add transformation step is obtained by applying the appropriate
formulae to the step’s query. Our IVM procedure for a single transformation step is
IVM4AStep(cd, ts) and its output is the change to the construct created by step ts
based on the changes cd to ts’s data sources. After obtaining the change to all the con-
structs created by a transformation pathway, the view created by the transformation
pathway is incrementally maintained.

However, as discussed above, the post-update data sources and the view itself are
required by some IVM formulae. In a general transformation pathway, some interme-
diate constructs might be virtual. If a required data collection is unavailable, i.e. not
materialised, the IVM4AStep procedure cannot be applied.

Thus, in order to apply the IVM4AStep procedure along a transformation pathway,
we have to precheck each add transformation in the pathway. If a virtual data collection
is required by the IVM formula for a transforation step, we must firstly recover this data
collection and store it in the data warehouse. This precheck only needs to be performed
once for each transformation pathway in a data warehouse, unless the transformation
pathway evolves due to the evolution of a data source schema. This materialisation
increases the storage overhead of the data warehouse, but does not increase the message
cost of the IVM process since these materialised constructs are also maintainable by
using the IVM process along the transformation pathway.

Alternatively, we can use AutoMed’s Global Query Processor (GQP) to evaluate the
extent of a virtual construct during the IVM process so as to avoid increasing persistent
storage overheads. However, since it is based on post-update data sources, AutoMed’s
GQP can only recover a post-update view. If a view is used in an IVM formula, this
means the view is before the update, which cannot be recovered by AutoMed’s GQP.

We now give an example of prechecking a transformation pathway. In Section
2.2, the transformation pathway generating the construct 〈〈Course, Avg〉〉 in the global
schema can be expressed as the following sequence of view definitions, where the in-
termediate constructs v1, . . ., v4 and 〈〈Details, Mark〉〉 are virtual:
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v1 = [{’IS’,k1,k2,x}|{k1,k2,x} ← 〈〈IStab,Mark〉〉]
v2 = [{’MA’,k1,k2,x}|{k1,k2,x} ← 〈〈MAtab, Mark〉〉]
〈〈Details, Mark〉〉 = v1 ++ v2
v3 = map (λ{k,k1,k2,x}.{{k,k1},x}) 〈〈Details, Mark〉〉
v4 = gc avg v3
〈〈Course, Avg〉〉 = map (λ{{x,y},z}.{x,y,z}) v4

In order to incrementally maintain 〈〈Course, Avg〉〉, the intermediate views v3 and
v4 must be materialised (based on the IVM formulae for grouping functions). For ex-
ample, supposes that an update to the data sources is a tuple inserted into 〈〈IStab,Mark〉〉,
�〈〈IStab, Mark〉〉 = {’ISC01’,’ISS05’,80}. Following on the transformation
pathway, we obtain the changes to the intermediate views as follows:

�v1 = {’IS’,’ISC01’,’ISS05’,80}
�〈〈Details, Mark〉〉 = {’IS’,’ISC01’,’ISS05’,80}
�v3 = {’IS’,’ISC01’,80}

Since the extents of v3 and v4 are recovered, changes to v4 can be obtained by
using the IVM formulae for grouping functions, and then be used to compute changes
to 〈〈Course, Avg〉〉 by using the IVM formulae for map.

However, the post-update extent of v3 can be recovered by AutoMed’s GQP, and
using the inverse query of map (λ{{x,y},z}.{x,y,z}) v4, the pre-update extent
of v4 can also be recovered as v4 = map (λ{x,y,z}.{{x,y},z}) 〈〈Course, Avg〉〉.
Thus, in practice, no intermediate view needs to be materialised for incrementally main-
taining 〈〈Course, Avg〉〉 along the pathway. In the future, we will investigate these avoid-
able materializations more generally, so as to apply them in our IVM algorithms.

4 Concluding Remarks

AutoMed schema transformation pathways can be used to express data transformation
and integration processes in heterogeneous data warehousing environments. This paper
has discussed techniques for incremental view maintenance along such pathways and
thus addresses the general IVM problem for heterogeneous data warehouses. We have
developed a set of IVM formulae. Based on these formulae, our algorithms perform an
IVM process along a schema transformation pathway. We are currently implementing
the algorithms as part of a broader bioinformatics data warehousing project (BIOMAP).

One of the advantages of AutoMed is that its schema transformation pathways can
be readily evolved as the data warehouse evolves [8]. In this paper we have shown how
to perform IVM along such evolvable pathways.

Although this paper has used IQL as the query language in which transformations
are specified, our algorithms are not limited to one specific data model or query lan-
guage, and could be applied to other query languages involving common algebraic op-
erations such as selection, projection, join, aggregation, union and difference.

Finally, since our algorithms consider in turn each transformation step in a transfor-
mation pathway in order to compute data changes in a stepwise fashion, they are useful
not only in data warehousing environments, but also in any data transformation and
integration framework based on sequences of primitive schema transformations. For
example, Zamboulis and Poulovassilis present an approach for integrating heteroge-
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neous XML documents using the AutoMed toolkit [18,19]. A schema is automatically
extracted for each XML document and transformation pathways are applied to these
schemas. McBrien and Poulovassilis also discusses how AutoMed can be applied in
peer-to-peer data integration settings [14]. Thus, the IVM approach we have discussed
in this paper is readily applicable in peer-to-peer and semi-structured data integration
environments.
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2 INESC-ID and Instituto Superior Técnico, Avenida Prof. Cavaco Silva,

Tagus Park, 2780-990 Porto Salvo, Portugal
hig@inesc-id.pt, joao@inesc-id.pt

Abstract. Transforming data is a fundamental operation in application
scenarios involving data integration, legacy data migration, data cleaning,
and extract-transform-load processes. Data transformations are often im-
plemented as relational queries that aim at leveraging the optimization
capabilities of most RDBMSs. However, relational query languages like
SQL are not expressive enough to specify an important class of data
transformations that produce several output tuples for a single input tu-
ple. This class of data transformations is required for solving the data
heterogeneities that occur when source data represents an aggregation
of target data.

In this paper, we propose and formally define the data mapper op-
erator as an extension of the relational algebra to address one-to-many
data transformations. We supply an algebraic rewriting technique that
enables the optimization of data transformation expressions that com-
bine filters expressed as standard relational operators with mappers. Fur-
thermore, we identify the two main factors that influence the expected
optimization gains.

1 Introduction

In general, data transformations aim at integrating data from multiple sources,
migrating legacy data, cleaning data or performing ETL processes that support
data warehousing. When putting in place such initiatives, data represented by
a fixed source schema must be transformed into a fixed target data schema.
In this context, we frequently face the problem of data heterogeneities, i.e., the
use of different representations of the same data in source and target schemas
[14,11]. Several factors cause the existence of data heterogeneities, for example:
(i) different units of measurement, (ii) different representations of compound
data (e.g. multiple attributes representing day, month and year information vs a
single date attribute), or (iii) distinct representations of the same data domain
(e.g. {true, false} vs {yes, no} for boolean values). Another important source of
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A Min Tjoa and J. Trujillo (Eds.): DaWaK 2005, LNCS 3589, pp. 136–145, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



An Operator for Expressing One-to-Many Data Transformations 137

data heterogeneities is the representation of data according to different aggrega-
tion levels (e.g. hourly vs daily). When the source data represents an aggregation
of the target data (e.g., yearly aggregated data in the source and monthly data
in the target), the data transformation that has to take place needs to generate
several output tuples for each input tuple. This class of data transformations
will be henceforth designated as one-to-many data transformations.

Relational algebra (RA) expressions are often used to implement data trans-
formations. In fact, simple data transformations can be naturally expressed as
RA queries. Moreover, data often resides in RDBMSs and data transformations
specified as relational expressions can take direct advantage of their optimization
capabilities. However, due to the limitations in the expressive power of RA [1],
relational queries are insufficient for expressing many interesting data transfor-
mations [12,13].

The normalization theory underlying the relational model imposes the or-
ganization of data according to several relations in order to avoid duplication
and inconsistency of information. Therefore, data retrieved from the database is
mostly obtained by selecting, joining and unioning relations. Data transforma-
tion applications bring a new requirement to RA as their focus is no more limited
to the idea of selecting information [1] but also involves the production of new
data items. In particular, RA is not powerful enough to represent one-to-many
data transformations.

In this paper, we propose to extend the RA with the mapper operator, which
significantly increases its expressive power by representing one-to-many data
transformations. Informally, a mapper is applied to an input relation and pro-
duces an output relation. It iterates over each input tuple and generates one or
more output tuples, by applying a set of domain-specific functions. This way,
it supports the dynamic creation of tuples based on a source tuple contents.
This kind of operation also appears implicitly in most languages aiming at im-
plementing schema and data transformations but, as far as we know, has never
been properly handled as a first-class operator. Considering the mapper operator
an extension to the RA brings new optimization opportunities as shown in [5].

The main contributions of this paper are the following:

– a formal definition of a new primitive operator, named data mapper, that
allows expressing one-to-many data mappings;

– an algebraic rewriting technique for optimizing expressions involving map-
pers and filters expressed as relational operators;

– the identification of two important factors that influence the gains obtained
when applying the proposed optimization.

The remainder of the paper is organized as follows. The formalization of
the mapper is presented in Section 2. Section 3 presents the algebraic rewriting
technique that enables the optimization of expressions involving the mapper
operator. Practical evidence that shows the advantage of the optimization is
presented in Section 4. Finally, related work is summarized in Section 5 and
conclusions are presented in Section 6.
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1.1 Motivation

As mentioned above, there is a considerable amount of data transformations
that require one-to-many data mappings. In this section, we motivate the reader
by presenting an example based on a real-world legacy-data migration scenario,
that has been intentionally simplified for illustration purposes.

Relation LOANS Relation PAYMENTS

ACCT AM
12 20.00

3456 140.00
901 250.00

ACCTNO AMOUNT SEQNO
0012 20.00 1
3456 100.00 1
3456 40.00 2
0901 100.00 1
0901 100.00 2
0901 50.00 3

Fig. 1. (a) On the left, the LOANS relation and, (b) on the right, the PAYMENTS relation

Example 1. Consider the source relation LOANS[ACCT, AM] (represented in Figure
1) that stores the details of loans requested per account. Suppose LOANS data
must be transformed into PAYMENTS[ACCTNO, AMOUNT, SEQNO], the target relation,
according to the following requirements:

1. In the target relation, all the account numbers are left padded with zeroes.
Thus, the attribute ACCTNO is obtained by (left) concatenating zeroes to the
value of ACCT.

2. The target system does not support payment amounts greater than 100. The
attribute AMOUNT is obtained by breaking down the value of AM into multiple
parcels with a maximum value of 100, in such a way that the sum of amounts
for the same ACCTNO is equal to the source amount for the same account.
Furthermore, the target field SEQNO is a sequence number for the parcel. This
sequence number starts at 1 for each sequence of parcels of a given account.

The implementation of data transformations similar to those requested for
producing the target relation PAYMENTS of Example 1 is challenging, since solu-
tions to the problem involve the dynamic creation of tuples based on the value
of attribute AM.

2 The Mapper Operator

We start by introducing some preliminary notation. Let R(A1, ..., An) be a re-
lation schema. The domain of the relation schema R is represented as Dom(A),
where A represents the relation schema composed by the attributes A1, ..., An. A
relation instance (or relation, for short) of R(A) is written as r(A) or simply r.
Each element t of r is called a tuple or r-tuple and can be regarded as a function
that associates a value of Dom(Ai) to each Ai ∈ A; we denote this value by
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t[Ai]. Given a set of distinct attributes B = {B1, ..., Bk} where each Bi ∈ A, we
denote by t[B], the tuple 〈t[B1], ..., t[Bk]〉. We assume two fixed relation schemas
S(X1, ..., Xn) and T (Y1, ..., Ym). We refer to S and T as the source and the target
relation schemas, respectively.

A mapper is a unary operator μF that takes a relation instance of the source
relation schema as input and produces a relation instance of the target relation
schema as output. The mapper operator is parameterized by a set F of special
functions, which we designate as mapper functions.

Roughly speaking, each mapper function allows one to express a part of the
envisaged data transformation, focused on one or more attributes of the target
schema. Although the idea is to apply mapper functions to tuples of a source
relation instance, it may happen that some of the attributes of the source schema
are irrelevant for the envisaged data transformation. The explicit identification
of the attributes that are considered relevant is then an important part of a
mapper function. Mapper functions are formally defined as follows.

Definition 1. Let A be a non-empty list of distinct attributes in Y1, ..., Ym.
An A−mapper function for transforming the data of S into T consists of a
non-empty list of distinct attributes B in X1, ..., Xn and a computable function
fA:Dom(B)→P(Dom(A)).

Let t be tuple of a relation instance of the source schema. We define fA(t) to
be the application of the underlying function fA to the tuple t, i.e., fA(t[B]).

We shall freely use fA to denote both the mapper function and the function
itself. In this way, mapper functions describe how a specific part of the target
data can be obtained from the source data. The intuition is that each mapper
function establishes how the values of a group of attributes of the target schema
can be obtained from the attributes of the source schema. Another key point is
that, when applied to a tuple, a mapper function can produce a set of values of
Dom(fA), rather than a single value.

As mentioned before, a mapper operator is parameterized by a set of mapper
functions. This set is said to be proper for transforming the data from the source
to the target schemas if it specifies, in a unique way, how the values of every
attribute of the target schema are produced.

Definition 2. A set F = {fA1, ..., fAk
} of mapper functions is said to be proper

(for transforming the data of S into T) iff every attribute Yi of the target relation
schema is an element of exactly one of the Aj lists, for 1 ≤ j ≤ k.

The mapper operator μF puts together the data transformations of the input
relation defined by the mapper functions in F . Given a tuple s of the input
relation, μF (s) consists of the tuples t in Dom(Y ) such that, for every i, to
the attributes in Ai, associate the values given by fAi(s). Formally, the mapper
operator is defined as follows.

Definition 3. Given a relation s(X) and a proper set of mapper functions
F = {fA1, ..., fAk

}, the mapper of s with respect to F , denoted by μF (s), is
the relation instance of the target relation schema defined by
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μF (s) def= {t ∈ Dom(Y ) | ∃u ∈ s s.t. t[Ai] ∈ fAi(u), ∀1 ≤ i ≤ k}
The semantics of the mapper operator can be given also as a Cartesian prod-

uct of the results of each mapper function. Definition 3 is more abstract than
the definition in terms of Cartesian product operations in the sense that it does
not impose any particular ordering on the attributes. For further details about
the properties and expressiveness of the mapper operator, please refer to [5]. In
order to illustrate this new operator, we revisit Example 1.

Example 2. The requirements presented in Example 1 can be described by the
mapper μacct,amt, where acct is an ACCT-mapper function that returns a singleton
with the account number ACCT properly left padded with zeroes and amt is the
[AMOUNT,SEQNO]-mapper function s.t., amt(am) is given by
{(100, i) | 1 ≤ i ≤ (am/100)} ∪ {(am%100, (am/100) + 1) | am%100 = 0}

where we have used / and % to represent the integer division and modulus
operations, respectively.

For instance, if t is the source tuple (901, 250.00), the result of evaluating
amt(t) is the set {(100, 1), (100, 2), (50, 3)}. Given a source relation s including
t, the result of the expression μacct,amt(s) is a relation that contains the set of
tuples {〈’0901’, 100, 1〉, 〈’0901’, 100, 2〉, 〈’0901’, 50, 3〉}.

3 Optimization of Sequences of Filters and Mappers

In this section, we present a logical optimization technique that comprises two al-
gebraic rewriting rules for optimizing expressions that combine filters expressed
as relational selection operators with mappers. The first rule presented allevi-
ates the cost of performing the Cartesian product operations that are used to
implement the mapper operator. The second rule avoids superfluous function
evaluations by pushing selections to the sources, thus reducing the number of
tuples fed to the mapper as early as possible. Each rule is presented as an equiv-
alence between terms. This equivalence is complemented by a text that describes
the semantic pre-conditions that guarantee its correctness.

3.1 Pushing Selections to Mapper Functions

When applying a selection to a mapper we can take advantage of the mapper
semantics to introduce an important optimization. Given a selection σCAi

applied
to a mapper μfA1 ,...,fAk

, this optimization consists of pushing the selection σCAi
,

where CAi is a condition on the attributes produced by some mapper function
fAi , directly to the output of the mapper function.

Rule 1: Let F = {fA1 , ..., fAk
} be a set of multi-valued mapper functions, proper

for transforming S(X) into T (Y ). Consider a condition CAi dependent on a list
of attributes Ai such that fAi ∈ F . Then,

σCAi
(μF (s)) = μF\{fAi

}∪{σCAi
◦fAi

}(s)

where (σCAi
◦ fAi)(t) = {fAi(t) | CAi(t)}.
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Note that when CAi(t) does not hold, the function σCAi
(fAi)(t) returns the

empty set. Whenever a mapper function fAi applied to a tuple t returns an empty
set, the result of the mapper will also be an empty set. Hence, we may skip the
evaluation of all mapper functions fAj , such that j = i. Physical execution
algorithms for the mapper operator can take advantage of this optimization by
evaluating fAi before any other mapper function1.

3.2 Pushing Selections Through Mappers

An alternative way of rewriting expressions of the form σC(μF (s)) consists of
replacing the attributes that occur in the condition C with the mapper functions
that compute them. Suppose that, in the selection condition C, attribute A is
produced by the mapper function fA. By replacing the attribute A with the
mapper function fA in condition C we obtain an equivalent condition.

In order to formalize this notion, we first need to introduce some notation. Let
F = {fA1 , ..., fAk

} be a set of mapper functions proper for transforming S(X)
into T (Y ). The function resulting from the restriction of fAi to an attribute
Yj ∈ Ai is denoted by fAi ↓ Yj . Moreover, given an attribute Yj ∈ Y , F ↓ Yj

represents the function fAi ↓ Yj s.t. Yj ∈ Ai. Note that, because F is a proper
set of mapper functions, the function F ↓ Yj exists and is unique.

Rule 2: Let F = {fA1 , ..., fAk
} be a set of single-valued mapper functions, proper

for transforming S(X) into T (Y ). Let B = B1 · ... · Bk be a list of attributes in
Y and s a relation instance of S(X). Then,

σCB (μF (s)) = μF (σC[B1,...,Bk←F↓B1,...,F↓Bk](s))

where CB means that C depends on the attributes of B, and the condition
that results from replacing every occurrence of each Bi by Ei is represented as
C[B1, ..., Bn ← E1, ..., En].

This rule replaces each attribute Bi in the condition C by the expression
that describes how its values are obtained.

4 Practical Validation

In order to validate the optimizations proposed in Section 3, we have imple-
mented the mapper operator and conducted a number of experiments contrast-
ing expressions consisting of mappers and selections with their optimized equiv-
alents. Due to space limitations we only focus on the optimization obtained by
applying Rule 1.

We have identified the mapper function fanout and the predicate selectivity
[16], as two important factors that influence the gain obtained when applying
1 This optimization can be generalized to first evaluate those functions with higher

probability of yielding an empty set. Fundamentally, this is the same as finding the
optimal predicate ordering addressed in [10].
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the proposed optimization. Similarly to [6], we designate the average cardinality
of the output values produced by a mapper function for each input tuple as
function fanout. Our experiments only address the influence of the two above
mentioned factors by employing cheap functions. Other factors that influence
the mapper execution cost are the I/O cost and the function evaluation cost2.

The experiments apply a mapper μf1,f2,f3,f4 to synthetic data where, unless
otherwise stated, each mapper function has a fanout factor of 2.0. In all ex-
periments, we test the original expression σpi(μf1,f2,f3,f4(r)) and the optimized
expression μf1,σpi

◦f2,f3,f4(r), where predicate pi has some predefined selectivity
and r is an input relation with a predefined size. Each experiment measures total
work, i.e., the sum of the time taken to read the input tuples, to compute the
output tuples, and to materialize them.
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Fig. 2. Evolution of total work for the original and optimized expressions with 1 million
tuples. (a) On the left, the effect of increasing selectivity factors for a mapper with four
functions with a fanout factor of 2.0 (b) On the right, the effect of increasing mapper
function fanout factors with a predicate selectivity fixed to 2.5%.

The Influence of Predicate Selectivity. To understand the effect of the
predicate selectivity, a set of experiments was carried out using a different pi

predicate with selectivity factor ranging from 0.1% to 100%. The tests were
executed over an input relation with 1 million input tuples. Figure 2a shows the
evolution of the total work for different selectivities.

As expected, the highest gains brought by the optimization were obtained
for smaller selectivity factors. More concretely, for a selectivity of 0.1%, the op-
timized expression was 2.16 times faster than the original one. As the selectivity
factor decreases, more results are filtered out from function f2 and, therefore,
the cost of computing the Cartesian product involved in the mapper is lower.
As the selectivity tends to 100%, the gain drops since the results filtered out
from f2 tend to 0%. Nevertheless, there is still, albeit small, a gain due to the
reduction on the number of predicate evaluations (recall that each function has
a fanout of 2). This gain is small since the cost of a predicate evaluation is, in
our experiments, low.

2 We do not take into account these factors in our experiments, since Rule 1 is not
able to optimize them.
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The Influence of Function Fanout. To understand the effects of the function
fanout on the optimization proposed, we tracked the evolution of total work for
the original and optimized expressions when the fanout factor varies. Function
f2 was replaced by a function that guarantees a predefined fanout factor rang-
ing from 0.001 (unusually small) to 1000. To isolate the effect of the fanout,
the fanout factors of the remaining functions were set to 1.0 and the selectiv-
ity of the predicate was kept constant at 2.25%. The results are depicted in
Figure 2b.

For small values of fanout, the gain brought by the optimization remains
mostly constant (an improvement of ≈ 61%). This is due to the fact that for
low values of fanout, the cost of performing the Cartesian product is lower than
the combined costs of I/O and evaluation of the mapper functions. Notice that
the cost of the Cartesian product increases with the fanout, since the higher
the fanout, the more tuples have to be produced by the Cartesian product for
each input tuple. Thus, for high fanout values, the cost of performing the Carte-
sian product becomes the dominant factor. Hence, the gain of the optimization
increases with the fanout factor since our optimization reduces the cost of the
Cartesian product.

5 Related Work

Data transformation is an old problem and the idea of using a query language
to specify such transformations has been proposed back in the 1970’s with two
prototypes, Convert [17] and Express [18], both aiming at data conversion. More
recently, three efforts, Potter’s Wheel [15], Ajax [7] and Data Fusion [3], have
proposed operators for data transformation and cleaning purposes.

Potter’s Wheel fold operator is capable of producing several output tuples
for each input tuple. The main difference w.r.t. the mapper operator lies in the
number of output tuples generated. In the case of the fold operator, the number
of output tuples is bound to the number of columns of the input relation, while
the mapper operator may generate an arbitrary number of output tuples.

The semantics of the Ajax map operator represents exactly a one-to-many
mapping, but it has not been proposed as an extension of the relational alge-
bra. Consequently, the issue of semantic optimization, as we propose in this
paper, has not been addressed for the Ajax map. Data Fusion implements the
semantics of the mapper operator as it is presented here. However, the current
version of Data Fusion is not supported by an extended relational algebra as we
propose.

Our decision of adopting database technology as a basis for data transfor-
mation is not completely revolutionary (see, e.g., [9,2]). Several RDBMSs, like
Microsoft SQL Server, already include additional software packages specific for
ETL tasks. However, to the best of our knowledge, none of these extensions
is supported by the corresponding theoretical background in terms of existing
database theory. Therefore, the capabilities of relational engines, for example, in
terms of optimization opportunities are not fully exploited for ETL tasks.



144 P. Carreira et al.

Recently, [19] has proposed a rigorous approach to the problem of optimiz-
ing an ETL process defined as a workflow of data transformation activities. The
authors model the ETL optimization problem as a global state-space search prob-
lem. In our approach, we use local optimization, since an ETL transformation
program must be represented by a set of extended relational algebra expressions
to be optimized one at a time.

A preliminary version of this work [4] has presented the idea of performing
the logical optimization of queries involving mappers and standard relational
operators. However, the formal aspects concerning the mapper operator and the
optimization rules were not detailed. In [5], we analyzed the optimization of
expressions that combine mappers with other relational algebra operators and
presented the formal correctness proofs for the rules.

6 Conclusions and Future Work

In this paper, we have addressed the problem of specifying one-to-many data
transformations that are frequently required in data integration, data cleaning,
legacy-data migration, and ETL scenarios. Practical evidence gathered from
the Ajax [8] data cleaning prototype and from Data Fusion [3] legacy-data
migration tool, which has been used commercially in large legacy-data migra-
tion projects, corroborates the need of supporting data transformations that
require one-to-many mappings. Since one-to-many data transformations are not
expressible through standard RA queries, we proposed the mapper operator.
This new operator allow us to naturally express one-to-many data transforma-
tions, while extending the expressive power of RA at the same time. We show
in [5] that RA extended with the mapper operator is more expressive than stan-
dard RA.

We presented a simple formal semantics for the mapper operator that can
be implemented using Cartesian product operations. We then introduced two
provenly correct algebraic rewriting rules that aim at optimizing queries that
combine standard relational filters and data transformations encoded as map-
pers. To assess the effectiveness of our approach, we have implemented the map-
per operator and conducted a set of experiments for observing the behavior of
the rewriting rule that consists of pushing selection conditions to the output
of mapper functions. Our experiments indicate that substantial performance
improvements are obtained by employing the proposed rewriting, even in the
presence of cheap functions. Furthermore, we were able to isolate two important
factors, the predicate selectivity and the mapper function fanout, which strongly
influence the performance gains obtained.

Currently, we are developing and experimenting different physical execution
algorithms for the mapper operator. This way, we intend to complement the
logical optimization technique presented with physical optimizations that can
be integrated into an RDBMS optimizer. We strongly believe that this solution
will definitely contribute to the application of the current relational database
technology for enhancing the performance of data transformation engines.
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Abstract. Data warehouses can be considered as materialized views
which maintain the online analytical information extracted from dis-
tributed data sources. When data sources are changed, materialized
views should be maintained correspondingly to keep the consistency be-
tween data sources and materialized views. If a view is defined through
joining several source relations, an update in one source relation invokes
a set of join subqueries thus the view maintenance takes much time
of processing. In this paper, we propose a view maintenance algorithm
processing these join subqueries in parallel by using referential integrity
constraints over source relations. A relation which has several foreign
keys can be joined with referenced relations independently. The pro-
posed algorithm processes these join operations in parallel then it merges
their results. With the parallel processing, the algorithm can maintain
materialized views efficiently. We show the superiority of the proposed
algorithm using an analytical cost model.

1 Introduction

Data Warehouses (DW) are composed of materialized views which maintain on-
line analytical information extracted from data sources located physically at
different sites. These materialized views can be used to process users’ OLAP
queries efficiently without accessing data sources [1,2,3]. Whenever data sources
are changed, the materialized views defined on the sources should be maintained
to keep them up-to-date. This process is called view maintenance. Of view main-
tenance methods, incremental maintenance has been widely used, because it in-
crementally maintains views by using only the updated portion of each source
relation [4,5].

Data sources for data warehouses can be stored in remote areas and they can
be changed independently. It is difficult to maintain views consistently over the
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changes of data sources. Thus we need a technique which maintains views as the
same sequence of changes and the same state as data sources. We call it view
consistency maintenance [3,4]. There have been several algorithms for view con-
sistency maintenance, such as ECA [5], Strobe [6], SWEEP [7], and PVM [8]. The
ECA algorithm was developed for view maintenance in single source site. The
Strobe and SWEEP algorithms proposed a view consistency maintenance for
join views on source relations distributed at multiple sites. The PVM suggested
a parallel processing algorithm for view maintenance, which handles multiple up-
dates occurred in source relations concurrently. When any change (i.e., insertion
or deletion) occurs in a source relation, all of these algorithms has to process a
sequence of join operations serially which combine the update with the tuples of
other source relations. From the results of these join operations, we can get the
values to modify views. Because each source relation can be stored in different
sites, the join operations take much processing time. In this paper, we develop
a parallel view maintenance algorithm, called PSWEEP/RI (Parallel SWEEP
with Referential Integrity) which executes these join operations in parallel.

Let’s suppose that a source relation has several referential integrity con-
straints and a materialized view is defined as joining it with other source rela-
tions through foreign keys. The join operations are independent from each other
thus they can be executed in parallel to build the view. By using this property
of referential integrity constraints, this paper proposes a parallel processing al-
gorithm, PSWEEP/RI, for view consistency maintenance, which processes join
operations for view maintenance in parallel. This can reduce the processing time
for view maintenance. Furthermore, this can also lessen the problem that view
maintenance cost increases linearly when the number of source relations does.
The remainder of this paper is organized as follows. Section 2 describes the
related works and the motivation of this paper. Section 3 presents the basic
concepts of the proposed PSWEEP/RI algorithm. Section 4 analyzes the per-
formance evaluation then, finally, Section 5 concludes this paper.

2 Related Works and Motivation

Materialized views in data warehouse are defined as join views on source re-
lations distributed over several sites. When one of source relations is changed,
the corresponding materialized views should be maintained to accommodate the
source updates. For this view maintenance, data warehouse has to execute join
operations of the changed source relation and all other source relations used to
define the views.

For example, suppose there is a data warehouse view defined on four source
relations shown in Figure 1. When some changes U1 (i.e., ΔR2) happen at the
source relation r2 and they are sent to data warehouse, the data warehouse
has to execute the following view maintenance query Query1 to compute the
information (ΔV ) changing its view. In order to execute Query1, as shown in
the Figure 1, the subqueries to join δR2 and other source relations (R1, R3, and
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Fig. 1. View maintenance process over distributed sources

R4) are sent in turn to the source sites and are executed [1,4] as follows. (Here,
Answer1 1 is the result of SubQuery1 1).

Query1 = R1 �� R2 �� R3 �� R4
SubQuery1 1 = R1 �� R2
SubQuery1 2 = Answer1 1 �� R3

· · · · · · · · ·
These source relations are stored in different sites each other and they can

be changed independently at the same time. Thus it is very difficult to keep
the consistency between materialized views and source relations. For example,
when the source relation r3 happens some changes U2 (i.e., ΔR3) before the
Answer1 2 is computed at the site, the answer of the SubQuery1 2 can involve
the state that the updates U2 had already occurred, which is different from
the state of source relation r1. Thus the views may not be maintained consis-
tently. Therefore, we need view maintenance techniques to guarantee the con-
sistency between data warehouse views and distributed source relations. For
these techniques, ECA, Strobe, SWEEP, and PVM algorithms have been pro-
posed [5,6,7,8].

Zhuge et al. [5] introduced ECA algorithms ensuring the consistency of views
for the cases that source relations are stored at a single source site. The Strobe
algorithm [6] considers distributed data sources, requiring materialized views to
contain a key for each of base relations and also requiring quiescence before
installing any changes in materialized views. The SWEEP algorithms are in-
troduced by executing serially view maintenance queries for updates in source
relations as the order of their arrivals [7]. In the SWEEP algorithm, the join op-
erations included in each view maintenance query are executed sequentially like
Figure 1. It can incur much processing time when many resource relations are
involved and/or source relation updates happen very frequently. In order to solve
the problems of the SWEEP, the PVM algorithm [8] extends the SWEEP by in-
voking and parallelizing multiple threads for view maintenance, one thread for
a view maintenance query. However, each thread executes the join operations
of its query sequentially as same as the SWEEP does. Therefore, this paper
proposes another approach for view consistency maintenance executing the join
subqueries in parallel. By doing this, we can process efficiently view maintenance
queries and we can also reduce the problem that view maintenance cost increases
as linear as the number of source relations increases.
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3 PSWEEP/RI Algorithm

This chapter describes the basic concepts of PSWEEP/RI which we propose.
The algorithm processes join operations among source relations in parallel or
it filters out view maintenance operation without processing any join among
them [1].

3.1 Strategies in the SWEEP Algorithm

Let’s suppose that there are referential integrity constraints on source relations
and materialized views are defined as the joins among them. These referential
integrity constraints can be represented by a graph as shown in the Figure 2. In
the figure, ENROL relation refers to STUDENT, COURSE, and PROFESSOR
relations. We call that it has referring relationship. When a relation refers to
multiple relations, it is called multiple referring. Some relations such as STU-
DENT, COURSE, and PROFESSOR can be referred by others. We call they
have referred relationships. When a relation is referred by several relations, it is
called multiple referred.

1( )RSTUDENT

3( )RCOURSE

2( )RENROL

4( )RPROFESSOR

5( )RProfessor_Community 6( )RResearch_Association

RI

RI
RI

RI RI

Fig. 2. Referential Integrity (RI) graph

When some changes(i.e., ΔR2) occurs in a relation R2 (i.e., ENTROL), in
this example, data warehouse has to perform the following query to get the
information for maintaining its views:

ΔV = R1 �� ΔR2 �� R3 �� R4 �� R5 �� R6

In the existing SWEEP algorithm, this query is executed as follows: the join
operations in the left-hand side of ΔR2 are processed at first then the rest join
operations in the right side of ΔR2 are done. (Refer to the following procedure.)
These join operations are executed in sequential order. In order to perform each
join operation, furthermore, a subquery is sent to the site storing the relation
to be joined. If the number of source relations defining a view increases, the
number of join operations to execute increases thus the processing time for view
maintenance increases too.

Left Sweep: ΔVleft = R1 �� ΔR2

Right Sweep: ΔV = ΔVleft �� R3 �� R4 �� R5 �� R6
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3.2 Maintenance Strategy for Multiple Referring Relation

Suppose some changes (i.e., ΔR2) occur at a multiple referring relation (i.e., R2)
as shown in the above example. From RI graph described above section, we can
identify that the relation R2 refers to R1, R3, and R4. In order to get the view
maintenance information(ΔV ), the join operations between ΔR2 and R1, R3, or
R4 should be executed. To prove it, we present some lemmas and a theorem in the
below. Here we assume that r1, r2, r3, and r4 relations are defined the schema R1,
R2, R3, and R4 respectively, and r1 → r2 indicates that relation r1 refers to r2.

Lemma 1. Self-join of an identical relation r1 using its primary key, produces
the same relation as the original one. That is, π

R1
(r1 �� r1) = r1 holds.

Lemma 2.(commutative rule) [9] Join operation is commutative. That is, r1 ��
r2 = r2 �� r1 holds.

Lemma 3.(associative rule) [9] Join operation is associative. That is, (r1 ��
r2) �� r3 = r1 �� (r2 �� r3) holds.

Theorem 1.(parallel join using referential integrity) Let referential integrity
constraints r1 → r2, r1 → r3, and r1 → r4 exist and Δr1 be some changes of
a referring relation r1. Then Δr1 �� r2 �� r3 �� r4 = πR1,R2,R3,R4

(Δr1 �� r2) ��
(Δr1 �� r3) �� (Δr1 �� r4) holds.

Proof: Let Δr1 be r1 for the simplicity, then the theorem is proved as follows.

(r1 �� r2) �� (r1 �� r3) �� (r1 �� r4)
= (r1 �� r2 �� r1) �� r3 �� (r1 �� r4) by Lemma 3
= (r1 �� r1 �� r2) �� r3 �� (r1 �� r4) by Lemma 2
= (πR1

(r1 �� r1) �� r2) �� r3 �� (r1 �� r4)
= (r1 �� r2) �� r3 �� (r1 �� r4) by Lemma 1
= (r1 �� r2) �� (r1 �� r4) �� r3 by Lemma 2
= (r1 �� r2 �� r1) �� r4 �� r3 by Lemma 3
= (r1 �� r1 �� r2) �� r4 �� r3 by Lemma 2
= (π

R1
(r1 �� r1) �� r2) �� r4 �� r3

= (r1 �� r2) �� r4 �� r3 by Lemma 1
= r1 �� r2 �� r3 �� r4 by Lemma 2

By the above Theorem 1, we can observe that the result of sequential exe-
cution for the join operations between ΔR1 and R2, R3, or R4 is equal to the
one of parallel execution for them. Therefore, we process the view maintenance
query in parallel as follows.

1R(a) 2RΔ

3R(b) 2RΔ

4R(c) 2RΔ

That is, the join subqueries (a), (b), and (c) are executed in parallel then their
results are merged in turn to get the final result. (For the simplicity of explana-
tion, merging was represented by a join operation.)
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3.3 Maintenance Strategy for Referred Relation

This section describes the strategies for changes on a referred relation, which is
referred by other relations.

Theorem 2.(filtering equijoin using referential integrity) Suppose that r1 → r2
exist and the changes on the referred relation r2 is Δr2. Then r1 �� Δr2 =
φ, where Δr2 is the combination of insertions (notated by �r2) and deletions
(notated by �r2).

Proof:
1) When some insertions occurred at r2, if r1 �� �r2 	= φ, then it means that the

referring relation r1 has tuples satisfying r1.FK = �r2.PK. These tuples violate
the referential integrity constraint (i.e., r1 → r2), it contradicts the definition of
referential integrity.

2) When some deletions occurred at r2,
2.1) if there is any tuple in r1 that the deleted tuples in �r2 refer to, it will be auto-

matically deleted or changed into another value according to the options (i.e.,
cascade, set null, set default, or restrict) given to the referential integrity con-
straint. Therefore r1 doesn’t have any tuple to join with �r2 thus r1 �� �r2 = φ.
Otherwise,�r2 couldn’t be performed.

2.2) if there are no tuples in r1 that refer to the tuples deleted from r2, there are
no tuples to join with �r2. Therefore r1 �� �r2 = φ must be true.

With both 1) and 2) above, r1 �� Δr2 = φ is true.

As proved in the Theorem 2, even though any tuple is inserted into or deleted
a referring relation, the result of join operations for view maintenance queries is
always null. In the proposed PSWEEP/RI algorithm, the maintenance queries
for the changes of referred relations are filtered without executing any operations
because they have no affection to the view updates.

4 Performance Evaluation

In this chapter, we present the results of performance evaluation comparing the
proposed PSWEEP/RI and the previous SWEEP. For the evaluation, we use the
materialized view example in Figure 2. In Section 4.1, we present an analytical
cost model based on the example in Figure 2. In Sections 4.2∼4.4, we show the
evaluation results computed by using the cost model.

4.1 PSWEEP/RI Cost Model

To design the analytical cost model for the example in Figure 2, we use the
parameters described in Table 1. And, we also use the following assumptions to
analyze the proposed algorithm.

– Since referential integrity constraints are enforced, the index join method will be
used if a join has a referential integrity constraint.

– The nested loop join method will be used if a join has not any referential integrity
constraint.
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Table 1. Summary of parameters

Parameters Definition/Meaning
Ccom Bandwidth for transmitting data
N(Ri) Number of tuples in relation Ri

W (Ri) Average size of a tuple in relation Ri

N(dRi) Number of tuples in Ri delta relation
DW Data warehouse
ΔRi Changed parts of the source relation Ri

Send(ΔRi, DW ) Cost for transmitting ΔRi to DW
Join(ΔRi, Rj) Cost for joining ΔRi and Rj

B Block size
k Cost for depth first search in general case
br Constant value for communication overhead

– Changes will be occurred in relation R2 of the example, and let the changed parts
of relation R2 be ΔR2.

We compute the total view maintenance cost of PSWEEP/RI by adding
communication cost and join cost. Since communication operations in the same
phase are able to be processed in parallel, the cost for these operations will be
set to the maximum cost of them. Also, since join operations in the same phase
are able to be processed in parallel too, the cost for these join operations will
be set the maximum cost of them. The following equations show the analytical
cost model of PSWEEP/RI for the example in Figure 2 (The cost model of the
existing algorithm SWEEP can be derived as the similar way, but it is omitted
due to space limitation.).

1© Send(ΔR2, DW ) = (N(dR2)· W (R2)/Ccom Eq. (1)
2© Send(ΔR2(DW ), R1) = (N(dR2)· W (R2)/Ccom Eq. (2)
2© Send(ΔR2(DW ), R3) = (N(dR2)· W (R2)/Ccom Eq. (3)
2© Send(ΔR2(DW ), R4) = (N(dR2)· W (R2)/Ccom Eq. (4)
3© Join(ΔR2, R1) = N(dR2)· �logk N(R1) + 1�· br = X Eq. (5)
3© Join(ΔR2, R3) = N(dR2)· �logk N(R3) + 1�· br = Y Eq. (6)
3© Join(ΔR2, R4) = N(dR2)· �logk N(R4) + 1�· br = Z Eq. (7)
4© Send(X, DW ) = ((N(dR2)· (W (R2) + W (R1)))· 8)/ Ccom Eq. (8)
4© Send(Y, DW ) = ((N(dR2)· (W (R2) + W (R3)))· 8)/ Ccom Eq. (9)
4© Send(Z, DW ) = ((N(dR2)· (W (R2) + W (R4)))· 8)/ Ccom Eq. (10)
5© Join(X, Y ) = (�(N(dR2)· (W (R2) + W (R1)))/B�+

�(N(dR2)· (W (R2) + W (R1)))/B�)· br = M Eq. (11)
6© Join(M, Z) = (�(N(dR2)· (W (R2) + W (R1) + W (R3)))/B�+

�(N(dR2)· (W (R2) + W (R4)))/B�)· br = N Eq. (12)
7© Send(N(DW ), R5) =

(
N(dR2)·

(∑4
i=1 W (Ri)

) · 8) / Ccom Eq. (13)
7© Send(N(DW ), R6) =

(
N(dR2)·

(∑4
i=1 W (Ri)

) · 8) / Ccom Eq. (14)

8© Join(N, R5) = N(dR2)·
(
�logk N(R5)� + N(R5)

N(R4)

)
· br = I Eq. (15)

8© Join(N, R6) = N(dR2)·
(
�logk N(R6)� + N(R6)

N(R4)

)
· br = J Eq. (16)

9© Send(I, DW ) =
(
N(dR2)· N(R5)

N(R4) ·
(∑4

i=1 W (Ri) + W (R5)
) · 8

)
/ Ccom Eq. (17)
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9© Send(J, DW ) =
(
N(dR2)· N(R6)

N(R4) ·
(∑4

i=1 W (Ri) + W (R6)
) · 8

)
/ Ccom Eq. (18)

10© Join(I, J) =
( ⌈(

N(dR2)· N(R5)
N(R4) ·

(∑4
i=1 W (Ri) + W (R5)

))
/B

⌉
+⌈(

N(dR2)· N(R6)
N(R4) ·

(∑4
i=1 W (Ri) + W (R6)

))
/B

⌉ )· br Eq. (19)

Total communication cost = Eq.(1) + max{Eq.(2), Eq.(3), Eq.(4)} + max{Eq.(8),
Eq.(9), Eq.(10)} + max{Eq.(13), Eq.(14)} + max{Eq.(17), Eq.(18)}
Total maintenance cost (join cost + communication cost) = Eq.(1) + max{Eq.(2),
Eq.(3), Eq.(4)} + max{Eq.(5), Eq.(6), Eq.(7)} + max{Eq.(8), Eq.(9), Eq.(10)} +
Eq.(11) + Eq.(12) + max{Eq.(13), Eq.(14)} + max{Eq.(15), Eq.(16)} + max{Eq.(17),
Eq.(18)} + Eq.(19)

4.2 Experimental Data and Environment

In analytical experiments, we compute the cost required in PSWEEP/RI and
that in SWEEP by varying transmission bandwidth, relation size, and the num-
ber of tuples. We determine the database sizes on the basis of TPC-D, and adjust
the other parameter values based on TPC-D database sizes. Table 2 shows the
parameter values used in the experiments.

Table 2. Parameter values used in the analytical experiments

Parameters Values
Ccom 100Kbps ∼ 100Mbps
W (Ri) 250 bytes

B 1,024 bytes
k 31
br 0.02

Transmission Bandwidth
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Fig. 3. Results of communication cost by varying the transmission bandwidth
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4.3 Evaluation Results for Different Transmission Bandwidths

Figure 3 shows the changes of communication cost on different transmission
bandwidths. The sizes of source relations have the same values determined in
Section 4.2, and we set the number of updated tuples, N(dRi), to one and
compute the costs by increasing the transmission bandwidth from 100Kbps to
100Mbps. As shown in Figure 3, we know that the communication cost of the
proposed PSWEEP/RI is always less than that of the previous SWEEP. In
particular, in the cases of lower bandwidths, PSWEEP/RI outperforms SWEEP
significantly.

4.4 Evaluation Results for Different Relation Sizes

Figure 4 shows the changes of total communication cost on different numbers of
updated tuples, i.e., on different N(dR2)’s. We compute the cost by increasing
N(dR2) from 1 to 32. As shown in the figure, we know that the communication
cost of the PSWEEP/RI is always less than that of SWEEP due to the effect
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of parallel processing. In particular, as N(dR2) increases, the cost difference
becomes larger.

Next, Figure 5 shows the total view maintenance costs of two methods
when we fix the bandwidth to 1Mbps and increase the number of updated
tuples, N(dR2), from 1 to 32. As shown in the figure, in the case where the
number of updated tuples is 32, which is only 0.002% of the source relation,
the proposed PSWEEP/RI improves performance by 159% over the previous
SWEEP.

5 Conclusions

In this paper, we proposed a view maintenance method which guarantees the
consistency between data warehouse views and distributed source data efficiently
by using parallel processing techniques. Existing algorithms like SWEEP exe-
cute sequentially join operations on source relations which are invoked to get
the data for view maintenance. This sequential execution requires high pro-
cessing cost for view maintenance. In order to reduce the processing cost, we
proposed an algorithm, PSWEEP/RI, processing join operations on source re-
lations stored different sites in parallel. We also designed a cost model to mea-
sure the processing cost of the proposed algorithm and evaluated its perfor-
mance. From the experiments, we found that the proposed algorithm reduced
both the communication cost and the total processing cost compared to existing
methods.

The basic approach of the proposed algorithm is to take advantage of refer-
ential integrity properties in order to parallelize join subqueries involved in view
maintenance. The join operations between a source relation (including multiple
foreign keys) and its referenced relations (stored at different site) can be exe-
cuted independently (i.e., in parallel). Then the join results can be merged to-
gether to obtain the final result for view maintenance. Furthermore, any changes
on each referenced relation does not have any tuple in referenced relations. Thus
view maintenance queries invoked by referenced relations can be filtered out
without executing any join operations [1]. Because of these properties, he pro-
posed algorithm reduced the cost of processing a sequence of join operations
and the communication cost. Because of parallel processing, the algorithm can
also reduce the problem that the view maintenance cost of existing methods
increases in proportional to the number of source relations. For further re-
searches, the proposed algorithm can be extended for join operations of source
relations which doesn’t employ referential integrity. This algorithm considered
only join operations hence we also need to investigate parallel processing tech-
niques for complex views involving other algebraic operations and aggregate
functions.

Acknowledgements. This work was supported by the Korea Science and En-
gineering Foundation (KOSEF) through the Advanced Information Technology
Research Center (AITrc).
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Abstract. A spatial data warehouse (SDW) consists of a set of ma-
terialized views defined over the source relations, either conventional,
spatial, or both. Often, when compared to the traditional data ware-
houses, the cost of view materialization is more expensive with respect
to both computation and space. This is because the spatial data is typi-
cally larger in size, which leads to high maintenance cost, and the spatial
operations are more expensive to process. In this paper, we address the
issue of optimizing the view materialization cost in an SDW. We build a
cost model to measure the on-the-fly computation cost versus the space
cost for spatial queries. We show that a spatial query can be represented
in the form of the query-graph and propose three transformation rules,
edge-elimination, query-splitting and query-joining, to selectively mate-
rialize spatial views. We present a greedy algorithm for materialized view
selection so that the local cost optimality can be achieved.

1 Introduction

With the popular use of satellite telemetry systems, remote sensing systems,
medical imaging, and other computerized data collection tools, a huge amount
of spatial data is increasingly being stored and managed in spatial information
repositories. A spatial data warehouse (SDW) [1] is a subject-oriented, inte-
grated, time-variant, and non-volatile collection of both spatial and non-spatial
data in support of decision-making processes.

An SDW consists of a set of materialized views defined over the source rela-
tions, either conventional, spatial, or both. If an input query can be evaluated
by the materialized views, then this is performed through partial or complete
rewriting of the input queries over the materialized views. As such, storing views
incurs space cost. Moreover, when the source relations change, the corresponding
materialized views need to be updated, which incurs the view maintenance cost.
Although storage is not a big issue given the lower hardware cost, the view main-
tenance cost is normally increased as the size of views gets larger [2]. On the other
hand, if an input query cannot be rewritten over the materialized views, then it
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the project Meadowlands Environmental Research Institute.
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has to be computed on-the-fly and hence incurs the online computational cost
that effects the query response time. Therefore, selectively materializing views
has become a philosophy in designing a data warehouse, which could enhance
the query performance through query rewriting and help achieving the desired
cost optimization.

This problem has been well studied in the traditional warehouse for SPJ (se-
lection, project and join) queries[2,3,4]. However, in an SDW, the cost of view
materialization is more expensive with respect to both computation and space.
This is because, spatial data is typically larger in size, and the spatial operations,
such as region merging, map overlaying, and spatial range selection, are more
expensive to process. If one resorts to materialize all spatial queries to improve
response time, their space cost and the maintenance cost may significantly in-
crease. In this paper, we propose (1) a cost model to balance the spatial query
response time and space cost, and (2) a set of transformation rules that aid in
the process of selective materialization of spatial views for cost minimization.

There are two basic ways to represent queries in graphs. The first is using
an AND/OR DAG (directed acyclic graph) to represent an algebraic expression,
where nodes in the DAG are partitioned into AND nodes for relational operators
and OR nodes for relational expressions, and the edges represent the directions or
sequences of query operations [2,3]. However, using DAG to detect common sub-
expressions is an expensive process since it detects all common sub-expressions,
and not all of them need to be materialized from the optimization point of view.
The second method is based on the query definition. A single-query graph and a
multi-query graph are introduced in [4] where the nodes are labeled by relations
and edges are labeled by relational operations. A set of transformation rules
is applied and all significant common sub-expressions are detected and mate-
rialized, which minimizes the cost model of a data warehouse. This technique
is limited to SPJ queries on traditional relations and not able to handle spa-
tial operations on spatial objects. Hence we want to explore the techniques to
spatial domains, by considering not only the SPJ operations on alpha-numeric
data, but also spatial operations on spatial attributes. The preliminary concepts
of the SDW model and associated queries are presented in [5], and additional
challenges involved in processing the spatial queries have identified in [6]. To the
best of our knowledge, our work is the first to address the issue of optimizing
the view materialization cost in an SDW.

In section 2, we present the preliminaries on hybrid algebra expressions for
specifying spatial queries. In section 3, we present our cost model of an SDW. In
section 4, we propose transformation rules for spatial query graphs, and present a
greedy algorithm for materialized view selection so that the local cost optimality
can be achieved. The paper is concluded in section 5.

2 Preliminaries

In this section, we briefly review the specification of the spatial queries using
hybrid algebra expressions, which can be specified on hybrid relations using hybrid
algebra operators[7].
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A base relation of an SDW is a hybrid relation, which includes attributes and
tuples from both alphanumeric relations and spatial relations. For spatial rela-
tions, we adopt the definitions from the standard specifications of Open Geospa-
tial Consortium (OGC){www.opengeospatial.org}. The spatial data types sup-
ported by this standard are OGC Geometry Object Model (GOM), where the
geometry class serves as the base class with sub-classes for Point, Line and
Polygon, as well as a parallel class of geometry collection designed to handle a
collection of points, lines and polygons. Conceptually, spatial entities are stored
as relations with geometry valued attributes as columns, and their instances as
rows. A hybrid algebra operand is a distinct attribute of a hybrid relation.

The set of hybrid algebra operators HO include:

1. Relational operators: RO = {σ, π,∪,−,×}
2. Comparison operators: CO = {=, <,≤, >,≥, =}
3. Aggregate operators [8]: AO = {distributive functions∪algebraic functions∪

holistic functions}, where

– distributive functions = {count, sum, min, max}1

– algebraic functions = {avg, min N, max N, standard deviation}
such that N is a bounded positive integer

– holistic functions = {median, rank}
such that no constant bound on the storage size needed to describe a
sub-aggregate

4. Spatial operators: SO = {Spatial Basic Operators ∪
Spatial Topological Operators ∪ Spatial Analysis Operators}2

– Spatial Basic Operators = {area, envelope, export, isEmpty, isSimple,
boundary}

– Spatial Topological Operators = {equal, disjoint, intersect, touch, cross,
within, contains, overlap, relate}

– Spatial Analysis Operators = {distance, buffer, convexHull, intersection,
union, difference, symDifference}

An atomic formula, f, can be either unary operation op(X1), binary operation
op(X1, X2), or n-nary operation op(X1, . . . , Xn), where op is a hybrid algebra
operator and each Xi is a hybrid operand. Examples of atomic formulas are:
boundary(administrative map), overlap(population map, administrative map),
intersection(map1, map2, map3).

Definition 1. Hybrid Algebra Expression: A hybrid algebra expression is a for-
mula F , which is defined as: (i) f is a hybrid algebra expression F , (ii) if F1 is
a hybrid algebra expression, then F = op(X1, . . . , Xm, F1) is a hybrid algebra ex-
pression, and (iii) if F1 and F2 are two hybrid algebra expressions, then F1 ∧F2,
F1 ∨ F2, ¬F1 and (F1) are hybrid algebra expressions.

1 Note that the distributive, algebraic and holistic functions are not exhaustive lists.
2 We use well-defined spatial operators from the OGC standard.



160 S. Yu, V. Atluri, and N. Adam

3 Cost Model for a Spatial Data Warehouse

A spatial query typically consists of several atomic spatial operations, which
are either spatial selections or spatial joins. If we decompose the query into
component queries, the component query with only one single spatial operation is
denoted as a simple spatial query (SSQ). SSQ essentially is nothing but an atomic
formula which serves as the smallest unit for the purpose of cost measurement.
From now on, we use q to denote an SSQ and p to denote a spatial query
composed of several q, and each q is an un-divisible unit within p.

The following three factors should be considered to decide whether a q needs
to be computed on-the-fly or be materialized:

1. The On-the-fly Computation Cost: We measure the on-the-fly computation
cost of a q, denoted as P (q), in terms of the query response time. Most of
spatial query processing methods fall into two categories: spatial join and
spatial selection. Theodoridis et al. in [9] have presented analytical models to
estimate the response time for both selection and join queries using R-trees.
In this paper, we adopt the unified cost model proposed by [9] to estimate
the value of P (q).

2. The Potential Access Frequency: Based on the access history one may es-
timate the access frequency of q, which is denoted as fr(q), over a certain
time period.

3. Size: Basically, an image/map size is measured in Bytes or Megabytes and de-
termined by several factors, such as resolution (the number of pixels per inch)
and channel (Bytes per pixel). The equation is as follows: Height (Pixels)
× Width (Pixels) × Bytes per pixel (the number of channels)/1, 048, 576 =
sizein MB. We assume the size of the generated view from q, denoted as
S(q), is a fixed value at the data warehouse design level, by specifying the
height, width, resolution and channels. Given the maximum space capacity
of the SDW is L, obviously one must materialize a view only if S(q) ≤ L.

Now that we have P (q), fr(q) and S(q), we define the following formulas to
measure execution cost of q, p and the total cost of an SDW as follows:

C(q) = (P (q) × fr(q))/(S(q)/L) (1)

C(p) = P (po) + λ(pm) (2)

C(Q, V ) =
n∑

i=1

C(pi) (3)

In formula (1), for each q in an SDW, the more frequently or expensively to
compute it or the less space its result takes, the larger the value of C(q) would
be, and the more likely we need to materialize it. Therefore, we need a control
threshold, which is denoted as δ and used to control the cost of executing a q.
The general rule is that if C(q) is greater than δ, we materialize q otherwise
we compute it on-the-fly. For a data warehouse with heavy spatial operations
involved or with large space permit, we normally choose a lower control threshold
to materialize more views for quick query response time.
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By controlling the execution cost of each q within a spatial query p, we
divide p into two subsets, one is denoted as po, for materialization and the
other is denoted as pm, for on-the-fly computation. Then we use po and pm to
rewrite p. Since the on-the-fly computational cost is the major part of the spatial
query evaluation cost, and the maintenance cost is analogous to the space of
materialized views [2], we compute the total cost of a spatial query p in formula
(2). Here λ is a parameter between 0 and 1 indicating the relative importance
of the spatial query computational cost vs. the space cost.

Obviously, the on-the-fly computation cost is monotonically decreasing as
the number of materialized views increases, and the space cost is monotonically
increased as more views are materialized. Our goal is to achieve an optimal
number of materialized views to balance the on-the-fly computation cost and
space cost thus the total cost of each spatial query is minimized. Given the set
of queries Q = {p1, . . . , pn} and a set of materialized views V from Q, the total
cost of an SDW is in formula (3).

4 Transformation Rules for Query Rewriting in an SDW

In this section, we first show that queries can be represented in a graphical
from, which decompose a spatial query into several SSQs where each SSQ can
be represented by an edge. We propose transformation rules, including edge
transformation and query transformation, which aid in query rewriting during
the process of deciding spatial view materialization. Essentially, we extend the
transformation rules proposed for relational algebra expressions (limited to SPJ
operations [4]) to hybrid algebra expressions. We finally present a greedy algo-
rithm to guarantee that the cost incurred in answering a spatial query is minimal.

4.1 Graph Representation of Single and Multiple Queries

A spatial query defined on a hybrid algebra expression can be represented by a
single-query graph as follows:

Definition 2. Single Query Graph: Given a spatial query p specified over a set
of hybrid relations R1, . . . , Rm, a singlequery graph SGp is a labeled graph where:
1. The nodes of SGp is a set {R1, . . . , Rm} on which p is defined. The node label

NLi for every node Ri is p : X, i ∈ [1, m] where X is the set of attributes
of Ri projected out in p.

2. For every atomic formula q in p
– if q is a unary operation on Ri, there is an edge from Ri to itself (self-

operation loop) in SGp with edge label ELi as p : q.
– if q is a binary operator on two relations Ri and Rj(i = j), there is an

edge between Ri and Rj (joining-operation edge) in SGp with edge label
ELij as p : q.

Given a set of queries Q, the single-query graphs can be combined into a multi-
query graph [4], which allows the compact representation of all the queries in one
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graph so that it can be used in the view materialization and the query rewriting
process.

Definition 3. Multi-query Graph: Given a set Q = {p1, . . . , pn} of queries,
the corresponding multi-graph MGQ is a labeled graph obtained by merging all
single-query graphs {SGp1 , . . . , SGpn} of the queries in Q, where:

1. The nodes of MGQ = ∪n
i=1{nodes of SGpi}.

2. If there exists a same node Rk in both SGpi and SGpj with node labels NLki

and NLkj, then there is only one node Rk in MGQ with the node label as
(NLki, NLkj).

3. If there exists an edge between Ri and Rj (i and j not necessarily different)
with edge label ELij in SGpk then there exists the same edge with the same
label in MGQ.

Example 1. Consider two queries p1 and p2 defined over hybrid relations R1(A,
B, C), R2(D, E), R3(F, G), R4(H, I, J), in which A, D, F , H, J are spatial
attributes, whose hybrid algebra expressions and corresponding SGp1 , SGp2 , and
MG(p1,p2) are as follows:
p1 = πADE(σequal(A,F )(R1 �	intersect(A,D) (σE<2R2) �	E>G (R3))
p2 = πBFGH(σB>I(R1 �	intersect(A,D) R2 �	contain(D,J) (σisEmpty(H)R4)))

4.2 Transformation Rules on a Multi-query Graph

The purpose of the transformations on a given spatial query p is to split all SSQs
in p into two subsets, po and pm, as we introduced in formula (2), where po is
a set for on-the-fly computation and pm is the set for materialization. Then p
is answered by rewriting it over po and pm correspondingly. In the following,
we present three transformation rules as well as the query rewriting after the
transformation.

{Rule 1: edge-elimination.} Let p be a spatial query in MGQ, and e be an
edge between nodes Ri and Rj (i and j are not necessarily different) in MGQ

labeled as p : q. Let the cost of executing q be C(q).

1. If there exists another edge in MGQ with label (p′ : q) between Ri and Rj ,
then remove e from MGQ,and replace all other occurrences of (p : qi) in
edge labels by (po : qi). Rewrite query p as p = σq(po).

2. Otherwise, if C(q) ≥ δ, remove e from MGQ, insert (p : q) into (pm), and
replace all other occurrences of (p : qi) in edge labels by (po : qi).
– If there exists a path between Ri and Rj in MGQ. Rewrite query p as

p = σq(po).
– Otherwise, rewrite query p as p =�	q (po).

3. Otherwise, i.e., if C(q) ≤ δ, replace all occurrences of (p : qi) in edge labels
by (po : qi). Rewrite query p as p = po.
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By comparing the execution cost of an SSQ with the cost threshold, we decide
whether an edge is removed for materialization or is kept for on-the-fly compu-
tation. The new query po or pm are parts of p that need computation on-the-fly
or materialization respectively, and are used to rewrite p. If the spatial query p is
computed totally on-the-fly at the beginning, the space cost is zero, C(p) = P (p).
After the edge-transformations, the on-the-fly computation cost may be de-
creased at the expense of increased space cost, i.e., C(p) = P (po) + λS(pm).
This leads us towards the optimal total cost condition of C(p).

The purpose of performing the query transformation is to identify minimum
cost query, by either creating two new queries through breaking it where an
existing query can be rewritten using exclusively the new queries, or by creating
one new query through merging two queries where the two existing queries can
be rewritten exclusively on the new query. A query threshold, θ, is used to decide
if the query can be split or two queries can be joined based on their respective
computational cost and the space cost.

{Rule 2: query-splitting.} Let p be a spatial query in MGQ, and N1 and
N2 be two set of nodes labeled by p, such that (1) N1 ∩ N2 = φ, (2) N1 ∪ N2
is the set of all nodes labeled by p, and (3) C(p) > θ. We want to split a
query that has the cost greater than the query threshold. Assume E is the
set of all edges connecting nodes in N1 and nodes in N2 labeled by a set (p :
q1, . . . , p : qk). Assume the on-the-fly computation cost and frequency of each
qi are C(qi) and fr(qi). We compute the cost of executing p : qi, denoted as
C(E) =

∑n
(i=1)((C(qi)×fr(qi))/fr(qi)). This is the weighted average cost of all

atomic operations connecting nodes in N1 and nodes in N2.

1. Replace every occurrence of p in N1 and N2 by p1 and p2 respectively.
2. If C(E) ≥ θ, remove all edges in E from MGQ, and insert (p : q1, . . . , p : qk)

into pm, and replace all other occurrences of p in edge labels by po, and
p = σq1,...,qi−1,qi+1,...,qk

(p1 �	qi p2) where qi ∈ (q1, . . . , qk).
3. Otherwise, replace every occurrence of p on E as either p1 or p2, and p =

(p1 �	qi p2) where qi ∈ (q1, . . . , qk).

By performing the query-splitting, we break an expensive query into two smaller
parts. Furthermore, by identifying the spatial operations between them for either
materialization or on-the-fly computation, we are searching an optimal point
between on-the-fly computation cost and space cost.

{Rule 3: query-joining.} Essentially, the purpose of this query-joining opera-
tion is to identify the queries whose total cost is smaller than the query threshold
that have overlapping nodes and perform equivalent operations, and merge them
into a new query. Let p1 and p2 be two spatial queries in MGQ, and N1 and N2
be the sets of nodes labeled by p1 and p2 respectively such that (1) N1∩N2 = φ,
(2) there exists at least one edge e among nodes in N1 with label (p1 : q) and
another edge e′ among nodes in N2 with label (p2 : q), and (3) C(p1)+C(p2) ≤ θ.

1. Remove e, replace all other occurrences of (p1 : q1i) in edge labels by (p : q1i)
and all other occurrences of (p2 : q2i) in edge labels by (p : q2i).
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2. For every node in ((N1 ∪ N2) − (N1 ∩ N2)), replace the node label (p1 : X1)
and (p2 : X2) with (p : X1) and (p : X2) respectively. For every node in
N1 ∩ N2, replace the node label (p1 : X1, p2 : X2) with (p : (X1 ∪ X2)).

3. Rewrite query p1 and p2 as p1 = πX1σ(q11,...,q1n)p, p2 = πX2σ(q21,...,q2m)p.

By performing the query-joining, we merge two smaller views into a bigger one.
It can be recursively executed in order to achieve an optimal view for further
query processing with desirable cost value.

Example 2. We want to apply three transformation rules to figure (c) separately
as follows: (1) remove the edge between node R1 and node R2, (2) split p1 into
two views p11 and p12, and (3) join p1 and p2 into a new query p. The result is
in figure (a), (b) and (c) respectively.

In figure 1(c), there are two identical edges between R1 and R2, so we remove the
one labeled by p1 and replace p1 as p1o. Assume the cost of (p2 : contain(A, D))
is greater than δ, then we remove (p2 : contain(A, D)) and insert it into p2m, and
replace p2 in other edge labels as p2o. The result is in figure 2(a). In figure 1(c),
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we split p1 into two views p11 and p12 if the cost of p1 is greater than θ. The set of
nodes labeled by p1 is {R1, R2, R3}. We choose N1 as {R1, R2} and N2 as {R3}.
After evaluating the cost of operations between N1 and N2, we keep the edges
between p11 and p12 and perform on-the-fly computation on them. The result is
in figure 2 (b). In figure 1(c), we join query p1 and p2 into a new query p if the
total cost of p1 and p2 is less than θ. N1 = {R1, R2, R3}, N2 = {R1, R2, R4},
N1 ∩ N2 = {R1, R2}. The result is in figure 2(c).

Theorem 1: Our transformation rules are sound and complete.3

4.3 An Algorithm for Selective Materialization of Spatial Views

We first define a benefit function to monitor the cost savings for an SDW. Let A
be an arbitrary set of SSQs in a multi-graph MGQ. The benefit of A with respect
to V , an already selected set of materialized views, is denoted as B(A, V ), is
defined as: (1) If C(Q, V ∪ A) < C(Q, V ), then B(A, V ) = C(Q, V ) − C(Q, V ∪
A), otherwise B(A, V ) = 0. (2) B(A, φ) is called the absolute benefit of A.
Specifically, for each set of SSQs chosen to materialize, we compare the total
cost of the SDW with the one before the materialization. If the current cost
is less than before, then the difference represents the benefit of selecting A for
materialization, otherwise, there is no benefit.

Algorithm 1 The spatial greedy algorithm for view materialization
Require: Q, P (q), fr(q), S(q) for each q, L, δ, θ and λ.
1: Draw a multi-query graph MGQ

0 , V = φ.
2: for each edge e in MGQ

0 do
3: if B(A,V ) is maximized and S(V ) ≤ L then
4: do edge-elimination(e), V = V ∪ A
5: end if
6: end for
7: Get a multi-query graph MGQ

1 .
8: for each query p in MGQ

1 do
9: if B(A,V ) is maximized and S(V ) ≤ L then

10: do query-splitting(p), V = V ∪ A
11: end if
12: end for
13: Get a multi-query graph MGQ

2 .
14: for each applicable pair of views p1 and p2 do
15: if B(A,V ) is maximized and S(V ) ≤ L then
16: do query-joining(p1, p2), V = V ∪ A
17: end if
18: end for
19: Materialize all views in V

Now we present the spatial greedy algorithm that transforms input queries of
a given SDW and select a set of SSQs as materialized views. In the algorithm

3 The detailed proof can be found in [10].
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1, we first compute the cost for each spatial expression associated with each
edge in MGQ

0 , and does edge-elimination accordingly to maximize the benefit
function. Then we compute the cost for each query p in MGQ

1 , and does query-
splitting for each applicable query to maximize the benefit function. Then we
examine the views in MGQ

2 and performs query-joining to maximize the benefit
function. The final multi-query graph is generated to materialize all SSQs in V .
This spatial greedy algorithm is a cost driven technique deriving a sub-optimal
solution for a given SDW because it commits to a local maximum cost benefit
at each iteration, although not every locally maximum choice can guarantee the
global maximality.

The main objective of the algorithm 1 is to optimize the space-time tradeoff
when developing views for materialization. This optimization problem is NP-
complete, which is a straightforward reduction from Set-Cover[1]. Thus, we are
motivated to look at heuristics to produce approximated solutions. The obvious
choice of heuristic is a greedy algorithm, where we select a set of views for
materialization that demonstrate to be the best choice based on what have been
given so far. This approach is always fairly close to optimal and in some cases
can be shown to produce the best possible selection of materialized views.

5 Conclusions

View materialization is an essential query optimization strategy for decision-
support applications. In this paper, we have investigated the problem of selec-
tively materializing views given input queries from an SDW, and guarantee the
rewriting of the input queries over these materialized views will minimize the
proposed cost function. A cost model is developed for measuring spatial queries,
which considers measuring query computation cost, frequency and space cost.
A set of transformation rules is introduced to rewrite spatial queries, which di-
vides a spatial query into materialization part and on-the-fly computation part.
A spatial greedy algorithm is finally introduced by using those transformation
rules to achieve the local cost benefit maximization. We are currently working
on the utilization of spatial metadata for materialization view selection.
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Abstract. QC-Trees is one of the most storage-efficient structures for
data cubes in a MOLAP system. Although QC-Trees can achieve a high
compression ratio, it is still a fully materialized data cube. In this pa-
per, we present an improved structure PMC, which allow us to partially
materialize cells in a QC-Trees. There is a sharp contrast between our
partially materialization algorithm and other extensively studied mate-
rialized view selection algorithms. If a view is selected in a traditional
algorithm, then all cells in this selected view are to be materialized. Our
algorithm, however, selects and materializes data by cells. Experiments
results show that PMC can further reduce storage space occupied by the
data cube, and can shorten the time for update the cube. Along with
further reduced space and update cost, our algorithm can ensure a stable
query performance.

1 Introduction

Using pre-aggregated data in data cube is an efficient method to improve query
performances of data cubes. Usually, to attain better storage and update per-
formance, only a part of views are materially stored in the database. Appar-
ently, there exists performance difference between materialized view and non-
materialized view. Moreover, to select materialized views, prior knowledge about
the query model of users should be attained. This kind of knowledge, however,
are usually not available.

QC-Trees is one of the most compress efficient structures of data cubes. This
structure has significant merits. The more sparse the data cube is, the more
storage space can be saved. Since typically high-dimension data cubes are sparse,
a high compression ratio can be easily achieved.

In this paper, we present PMC and corresponding algorithms to select only
a part of cells in QC-Tree to be materialized so that better space and update
efficiencies are achieved. In contrast with traditional view materialization algo-
rithms, cells (not views) are selected to be materialized. In this way, a low bound
of query can be ensured by our structure. This low bound is regulated by a pa-
rameter of selection algorithm, which can be used for controlling the tradeoff
between storage, update and query performances.

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2005, LNCS 3589, pp. 168–178, 2005.
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This paper includes following contributions:
Firstly, we present a structure PMC (Partially Materialized Cube), which

can be seen as an extension or a generalization of QC-Tree. To our knowledge,
our work is the first attempt to partially materialize data cube at the cell level.

Secondly, corresponding algorithms are presented, including selection of ma-
terialized cells, queries and update process for PMC. Besides the costs of storage
and maintenance are reduced, the query performance can be stably ensured by
a parameter of the selecting algorithm.

The paper is organized as follows: related work are reviewed in Section 2.
In section 3, we present PMC structure and corresponding algorithms including
select, update and query algorithms. Then in Section 4 we conduct experiments
to evaluate PMC algorithm, while conclusions are presented in Section 5.

2 Related Work

Online analytical processing (OLAP) is an essential data analysis service and can
provide critical insights into huge amount of application data. Data Cube, which
was proposed by J. Gray[2], has been extensively applied to the implementation
of OLAP. Data in a data cube can be stored in special data structures(MOLAP)
or in tables of relational databases(ROLAP).

Using pre-aggregated data in data cube is an efficient method to improve
query performance of OLAP. However, this method brings serious space and
maintenance problems. Although this situation can be relived by materializing
only a subset of all views, which has been extensively studied in recent years,
this strategy results in significant difference of query performance between ma-
terialized views and non-materialized views. Another flaw of this strategy is that
the cost model for selecting views often needs prior knowledge about how users
query the data. However, it is very difficult to attain this knowledge.

For MOLAP systems, data cubes are typically stored in (sometimes com-
pressed) data arrays[10]. Although this method can help to achieve better queries
performance, the size of these data cube become more huge. A lot of papers tried
to compress data cube by compressing the arrays[6], or only providing inaccurate
answers for queries[1][7].

Recently several new structures, such as condensed cube[9], Dwarf[8], Quo-
tient cube[4] and QC-Trees[5], are proposed to substantially reduce the size of
the data cube. These structures have similar idea: when several different level
aggregation values have the same certain characteristics, these structures can
store them in one storage unit. In other words, they use one memory unit to
present several cells in data cube, if these cell are computed by the same subset
of the fact table’s tuples.

In 2002, W. Wang[9] proposed the concept of BST(Base Single Tuple). If a cell
SD in the data cube only covers one tuple r in the base table, then r is called the
BST of SD. If r is a BST on some (preferably maximized) SD, the aggregation
function should be applied only, and exactly once, to tuple r. Moreover, for every
BST r, only one base tuple needs to be stored in the Condensed Cube.
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Dwarf[8] has a similar and better idea. It adopts directed acyclic graph(DAG)
to reduce prefix redundancy. To reduce suffix redundancy, it places Dwarf, several
different level cells which can be aggregated from one set of base tables, in one
storage unit.

In Quotient cube[4], the set of cells of a Data Cube are partitioned into
certain number of equivalent classes. One equivalent classes, which contain one
or some cell(s) all have the same certain characteristics, will be coalesced into
one storage unit.

QC-Trees[5], which is the Quotient cube with cover equivalence, is one of the
most efficient structures among them. For example, a cell c covers a base table
tuple t whenever there exists a roll-up path from t to c. If the set of tuples in
the base table covered by cell c and cell d are the same, then c and d are cover
equivalent and their aggregation values are equal. In QC-Trees, both of them
will be partitioned into one class. Another point of QC-Trees is that all cells in
one class can be represented by the finest cell (called the upper bound of this
class) in the class.

3 Partially Materialized Cells

In this section, we develop a data structure PMC(Partially Materialized Cells)
to partially materialize QC-Tree at the cell level. Algorithms are also presented
for the constructing , updating and querying of PMC. In this section, a part of
algorithms are abridged for space reasons.

3.1 Motivation

In the QC-Tree, a node represents one or several cell(s) whose aggregation is not
NULL in the data cube. On the other hand, each non-NULL cell can find the
only corresponding node in the QC-Tree.

We noticed that a node in QC-Tree may possess many children (by edges
or links), whose labels may belong to one of several dimensions. Moreover, the
value of the node1 is equal to the aggregates of all children which belong to any
one of dimensions. For example, in Fig. 1, node 1 has 6 children: node 2,8,11(by
edge) and node 5, 7, 10 (by link). The labels of node 2,8 belong to dimension
Store, while 5,11 belong to Product and 7,10 belong to Season. The value of
node 1 and the aggregation of all its children on any one dimension are the
same: 27.

The point is, since the value of the node is equal to the aggregation of its
children, the value of the node needn’t to be stored if the cost of aggregating from
its children is trivial. When querying, we can retrieve the value by temporarily
aggregating the values of its children.

Thus, much of storage space can be saved. Moreover, the maintenance per-
formance of the data cube can be significantly improved.
1 In the following part of this paper, when we mention “the value of a node” , we are

refering to “the aggregation value of the cell which is correspond to the node ”.
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Store Product Season Price
S1 P1 s $6
S1 P2 s $12
S2 P1 f $9

Table 1. The base table
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Fig. 1. The QC-Tree for Table 1
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Fig. 2. The PMC for Table 1
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Fig. 3. A part of a slight complex PMC

For example, in a marketing management data warehouse, data are collected
under the schema sales(Store, Product, Season, Price). The base table,
which holds the sales records, is shown in Fig. 1. Attributes Store, Product and
Season are dimensions, while attribute Price is a measure and SUM(Sale) as
the aggregate function.

The data cube, with Store, Product and Season as dimensions and
SUM(Sale) as an aggregate function, is a set of results returned from being
grouped by each subset of these three dimentions. Each group-by corresponds
to a set of cells, described as tuples over the group-by dimensions.

A QC-Tree example for Table 1 is shown in Fig. 1, while Fig. 2 shows the
PMC from the same base data, where we set the threshold for query costs of PMC
to 2. Non-materialized nodes are marked with white boxes, while materialized
nodes are marked with black boxes. The edges are denoted by solid lines, the
link by the read thin broken lines. Compared to Fig. 1, node 1 and node 11 in
Fig. 2 are no longer to be materialized because the cost of computing each of
their values is not exceed 2. For example, A query for node 11 can be answered
by aggregating values of two other nodes:node 4 and node 10. In fact, QC-Tree
can be seen as the special case of PMC with threshold= 1.

Upon update problem, we have following considerations:
For a single cell, if it is to be updated, logically all cells roll up from it

should be updated to ensure consistency. QC-Trees can achieve a better update
performance than normal data cube just because a cell in QC-Trees may present
several coarser cells whose cover set are identical with it. When the base cell
is updated, values of those coarser cells needn’t be modified because they are
linked to the base cell. In other words, one modified action on the base cell also
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update all other cells with the same cover set, which is the reason why update
operation can be reduced in QC-Trees.

So the more other coarser cells are linked to the cell, the more the update
cost is reduced. In QC-Trees, an aggregated cell is only linked to one cell when
both cells’ cover sets are identical. In PMC, a non-materialized node can be
linked to one or several materialized node(s). As a result, PMC goes a further
step and makes more cells non-materialized.

Therefore, there are less nodes are to be update in PMC than in QC-Trees
when maintaining. As a result, PMC can achieve better update performance
than QC-Tree.

For example, in Fig. 1, if the value of node 10 are changed, the values of node
1 and node 11 should also be updated . However, in Fig. 2, such a change on
node 9 will not cause a update on node 1 and node 11.

3.2 The Structure of PMC

PMC is similar to QC-Tree , except that

– each node in PMC has an additional value cost, which denotes the cost
of retrieving the value of the node. For materialized node, the cost is set
to 1. For non-materialized node, the cost is set to the time of access its
descendants’ values when aggregating through edges and(or) links.

– all non-materialized nodes don’t store their value.
– (optional) each materialized node has a number of update-links which point

to its direct materialized descendants. These update-link are used for accel-
erating the process of update.

In this paper, the value of cost of a node is defined as the number of accessing
(materialized) node(s)’ value(s) in the course of get the value of the node. For a
materialized node, since its value is stored in the node itself, its cost is 1. To get
the value of a non-materialized node, we need drill down and get the value by
aggregating its descendants’ values. Therefor, if a node has a large cost, we will
spend much on retrieving its value when answering queries. In order to avoid
this situation, we have this kind of nodes materialized so that we can retrieve
any node’s value easily.

Fig. 3 shows a part of a more complex PMC, where the update-links are
marked by the blue thick broken lines.

Without loss of generality, we assume the type of aggregate function is SUM.
In fact, other common aggregate functions like COUNT, MAX, MIN can also
be the aggregate function of PMC, so does AVG, which can be denoted as
SUM/COUNT.

3.3 Construction of PMC

The construction of PMC is in four steps.

– Firstly, PMC is constructed like a QC-tree. The difference is that our algo-
rithm needn’t compute the aggregate value for each temporary class. In a
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Function PointQuery(CurrentNode)
local variable: localvalue
initiate localvalue;
if CurrentNode is materialized then

localvalue=CurrentNode.V aule;
else

Find the drill dimension D whose query cost is minimum;
for each child CD along dimension D of CurrentNode do

localvalue=aggregate(localvalue , PointQuery(CD));
endfor;

endif;
return localvalue;

Function Select(CurrentNode)
for every edge’s child nodes cd of CurrentNode do

Select(cd);
endfor;
//re-computer CurrentNode’s cost
if cost(CurrentNode) > Threshold then

SetMaterialized(CurrentNode);
BuildUpdateLinks(CurrentNode,CurrentNode);
compute and store CurrentNode’s aggregation value;
/*now the cost of CurrentNode becomes 1*/

endif;
return(cost(CurrentNode));

Fig. 4. Function PointQuery and Function Select

QC-Tree, the aggregates of all temporary classes have to be computed, and
a majority of them are repetitional and useless in the course of constructing
QC-Tree.

– Cost of each node is initiated in the second step. In this step, only leaf
nodes of the tree are materialized, so the cost of a node is in fact equal to
the number of the base tuple covered by the node.

– In third step, function select is executed for the tree and selects the set
of nodes to be materialized. The parameter Cthreshold of select is used to
control this process. Those nodes whose cost are larger than Cthreshold will
be materialized so that their costs are reduced to 1. By doing so, the cost of
query of all cells in PMC can be limited below Cthreshold.

– Finally, we perform BuildUpdateLinks to build update links for materialized
nodes. The update links are set among materialized nodes. Each materialized
node has update links which point to those nodes whose value is computed
from this node. Of course, if we want build a PMC without update-links, we
can jump over this step.

In Fig. 4, we present select function, which selects a set of nodes and then
materializes them so that there is no node whose cost exceeds Costthreshold in
PMC. It’s interesting that if this Costthreshold is set to 1, the corresponding
PMC is identical with the QC-Trees. It shows that QC-Tree is in fact the special
case of PMC with Costthreshold = 1.

For the sake of briefness, we do not show the detail of BuildUpdateLinks.
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3.4 Query

Point Query The answering for point query is rather easy. If the node is mate-
rialized, we’ll get the answer from the node immediately. Otherwise, the answer
will be retrieved by computing its descendants’ value. It’s clear that the cost
of this computation will not exceed Costthreshold. Algorithm for point query is
shown in Fig. 4.

3.5 Maintenance of PMC

To the PMC without update-links, the process of maintenance is similar to that
of QC-Tree. The difference is that only materialized nodes need to be updated
in PMC. As a result, less temporary “update” classes are produced in PMC and
thus the maintenance of PMC should be slight faster than that of QC-Tree.

If we want a better update performance, update-links can be build for accel-
eration. In following part of this subsection, we’ll address the issues concerned
with the maintenance of the PMC with update-links.

There are three types of maintaining operations on the base table: insert,
delete and update. Therefore, the change of source data can be represented
simply by tuples inserted into, deleted from, and updated in the base table.

Update. For a newly coming tuple, if there exits a corresponding node in PMC,
then a update operation starts. It’s clear that the corresponding node is a leaf
node. From subsection 3.3, we know that leaf nodes are materialized. Thus, The
node is materialized and has update links.

In PMC, values of nodes are update along update links. When the value is to
be updated, a (materialized) node will call the update functions of those nodes
which are pointed by its update links. The update value for the current node
will be passed as a parameter along these update functions. Thus, computing
aggregate values of newly coming tuples for temporary classes is avoided.

If execute the update function for a leaf node, all its materialized ancestors
will be updated.

If PMC is updated tuple by tuple, we can simply call the update functions
of corresponding leaf nodes to accomplish the update of PMC.

Batch Update. In theory, batch update can be accomplished by perform update
operations tuple by tuple. This strategy, however, is inefficient. In this way, if a
node is updated for t times, then all its ancestors’ value are bound to be modified
for t times. In other words, if a node covers n newly coming tuples, the update
function of this node will be executed for n times in the course of maintenance.

Therefore, for batch update, we adopt another strategy. Fig. 5 shows the
function BatchUpdate. Each materialized node has a variable tempV , and it is
initiated as 0. When the update function of this node is executed, the parameter
V alue, which is passed from one of its descendant, will used to cumulatively
modify (aggregate) tempV instead of the value of this node. Moreover, other
update functions will not be called by this update function. Only when it is
the last time the update function of this node is executed, will tempV be used
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Function BatchUpdate(CurrentNode, V alue)
CurrentNode.Countto update--;
if CurrentNode.Countto update > 0 then

tempV +=V alue;
else

SetNewV alue(CurrentNode, CurrentNode.tempV );
for every UpdateLink from CurrentNode do

Update(UpdateLink.TargetNode, CurrentNode.tempV );
endfor;

end if;

Fig. 5. Function BatchUpdate

to change the value of this node. And then, its ancestors’ update functions are
called along update links and take tempV as parameter.

This strategy has following merits:

1. No matter how many times will a node be updated , all its ancestors’
update functions will be executed only once.

2. Since values for update in PMC are passed along update links, we needn’t
compute aggregate values of temporary classes in ΔDFS. Thus, a lot of data
access and computations are avoided. Compared to it, computation for the initial
value of Countto update needn’t access the value of raw data and its complexity
can be neglected.

Insertion and Deletion. When there is no tuple in the base table such that it
has the same dimension values as the newly coming tuple, new classes should be
split from a old class, or be created. In this paper, we view an insertion operation
as the combination of (possibly) a node creation and a update operation.

Similar to insertion operation, we view a deletion operation as the combina-
tion of an update operation and possible mergence or deletion of old node(s).

Due to the limitation of space, we skip the detail of this part.

4 Experimental Results

In this section, synthetic and real data sets are used for examining the algorithms
we presented in this paper. We focus on three main performance issues(storage,
queries answering and maintenance) of PMC and compare them with those of
the QC-Trees.

There are two classes of data sets used in the experiments. The first one is
synthetic data with Zipf distribution. The synthetic data set contains 1,000,000
tuples and 6 dimensions, the cardinality of each dimension is 100. The other one
is the real data set containing weather conditions at various stations on land
for September 1985[3]. The weather data set contains 1,015,367 tuples and 6
dimensions. The attributes are as follows with cardinalities listed in parenthe-
ses: longitude (352), solar-altitude (179), latitude(152), present-weather (101),
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Fig. 6. Experimental Results

weather-change-code(10), and hour (8). All experiments are running on a Pen-
tium 4 PC with 256MB main memory and the operation system is Windows XP.

4.1 Storage

In QC-Tree, the number of data units is equal to the number of classes, while in
PMC it is equal to the number of materialized node. Fig. 6(a) and 6(b) illustrate
the value of thresholds versus the number of data storage units needed. The
results show that small thresholds(like 2 or 3) can achieve satisfying balance
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between storage and query. In Fig. 6(a) and 6(b), number of tuples in the base
table is 20000 .

Fig. 6(c) shows the results of storage vs. number of base tuples, while Fig.
6(d) shows storage vs. the number of dimensions and Fig. 6(e) shows storage
vs. the number of measures. The results illustrate that PMC can compresses the
data cube more efficiently than QC-Tree.

4.2 Queries Answering

In this experiment, we compared query answering performance of PMC and QC-
tree. We randomly generated 1,000 point queries and range queries on each data
set. Fig. 6(f) and 6(g) show the times for answering point queries on synthetic data
and range queries on real data separately. Other experiments have similar results.

The results show that the query performance of PMC is only a little worse
than that of QC-Tree.

4.3 Maintenance

To test the performance of the incremental maintenance of PMC, we generated
different size of data, inserted them into a size-fixed PMC. The tuples are batch
inserted. The results are shown in Fig. 6(h) and 6(i).

The results show that the maintenance performance of PMC is better than
QC-Tree. The reasons are: (1). our algorithm will conduct less aggregate opera-
tion when generating temporary classes; (2)there are less materialized nodes to
be update in PMC.

5 Conclusions

In this paper, we present algorithms to partially materialize cells in the data
cube. Compared with extensively studied view selection algorithms, our algo-
rithms deal with cells in compressed structure of data cube. Along with reduced
space and update cost, our algorithm can ensure a stable query performance.

Our algorithms can achieve a better tradeoff between storage, update and
query performances of a Data cube. As a example in this paper, our algorithms
are applied to QC-tree. In fact, other cell-level structure, such Dwarf or Con-
densed Cube, can also adapt our algorithms with appropriate modifications.
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Abstract. Ranking-aware queries have been gaining much attention recently in
many applications such as search engines and data streams. They are, however,
not only restricted to such applications but are also very useful in OLAP appli-
cations. In this paper, we introduce aggregation ranking queries in OLAP data
cubes motivated by an online advertisement tracking data warehouse application.
These queries aggregate information over a specified range and then return the
ranked order of the aggregated values. They differ from range aggregate queries
in that range aggregate queries are mainly concerned with an aggregate operator
such as SUM and MIN/MAX over the selected ranges of all dimensions in the data
cubes. Existing techniques for range aggregate queries are not able to process
aggregation ranking queries efficiently. Hence, in this paper we propose new al-
gorithms to handle this problem. The essence of the proposed algorithms is based
on both ranking and cumulative information to progressively rank aggregation re-
sults. Furthermore we empirically evaluate our techniques and the experimental
results show that the query cost is improved significantly.

1 Introduction

Traditionally, databases handle unordered sets of information and queries return un-
ordered sets of values or tuples. However, recently, the ranking or ordering of mem-
bers of the answer set has been gaining in importance. The most prevalent applica-
tions include search engines where the qualifying candidates to a given query are or-
dered based on some priority criterion [3]; ranking-aware query processing in relational
databases [14,11,2,10,4,7]; and network monitoring where top ranking sources of data
packets need to be identified to detect denial-of-service attacks [1,9]. Ranking of query
answers is not only relevant to such applications, but is also crucial for OnLine Ana-
lytical Processing (OLAP) applications. More precisely ranking of aggregation results
plays a critical role in decision making. Thus, in this paper, we propose and solve ag-
gregation ranking over massive historical datasets.

As a motivating example, consider an online advertisement tracking company 1,
where each advertiser places its advertisements on different publishers’ pages, e.g.,
CNN and BBC. In general an advertiser is interested in identifying the “top” publishers
in terms of total sales or number of clicks during a specific time period. For instance,

� This research is supported by the NSF grants under IIS-23022, CNF-0423336, and EIA-00-
80134.

1 The proposed research is motivated by a real need for such type of algorithmic support in an
application that arises in a large commercial entity, an online advertisement tracking company.

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2005, LNCS 3589, pp. 179–189, 2005.
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during a period of last 30 days while a particular advertisement campaign was con-
ducted, or during the period of 15 days preceding the new year. Such an advertising
company would need to maintain a data warehouse which stores data cube information
regarding the sales (or clicks) of the various publishers and advertisers, and where an
advertiser would like to ask queries of the form: “find the top-10 publishers in terms of
total sales from Dec 15, 2003 to Dec 31, 2003”. Based on existing techniques, first the
total sales from Dec 15, 2003 to Dec 31, 2003 for each publisher needs to be computed.
Then the total sales for all publishers are sorted to identify the top-10 publishers. We
refer to such queries as aggregation ranking, since they aggregate information over a
specified range and then return the ranked order of the results. An alternative example
is in the context of the stock market data. For example, given the trade volume of each
stock, an analyst might be interested in the top trades during a certain period.

The problem of aggregation ranking is similar and yet differs from many related
problems which have been addressed by the database and related research communi-
ties. We concentrate on the online analysis of massive amounts of data, which is similar
to range aggregate queries prevalent in data warehouses. However, we are concerned
with ranking of aggregated values over dimensions while prior research work on range
aggregate queries has mainly concentrated on a single aggregate operator such as SUM
and MIN/MAX over selected ranges of dimensions [6,13]. To the best of our knowledge,
this paper is the first attempt to address the ranking of aggregation in the context of
OLAP applications. Our approach differs from the data stream research related to the
TOP-k operations [1,9,5] since the data is not continuously evolving. Moreover, queries
in data streams are interested in more recent data. In contrast, our aggregation rank-
ing queries can involve data in any arbitrary time range. In the context of relational
databases, Bruno et al. [2] proposed to evaluate a top-k selection by exploiting statis-
tics stored in a RDBMS. Ilyas el al. [11,10] proposed a new database operator, top-k
join, and efficiently implemented it using available sorting information of joined rela-
tions. This work addresses the optimization of top-k selection and join operations in the
context of relational databases. Our work, however, targets aggregation ranking queries
in OLAP applications. In multimedia systems, Fagin [8] introduced ranking queries
that combine information from multiple subsystems. Fagin’s algorithm can be directly
applied if aggregates at multiple granularities (e.g. day, month, year) are considered.
In particular aggregates on any specified range can be obtained by additions of multi-
ple involved lists at different granularities. However when the number of involved lists
grows large, Fagin’s algorithm tends to have a linear cost while our proposed algo-
rithms in this paper always involve only two lists with sublinear cost. Furthermore, the
framework in [8] is indeed useful for reasoning the correctness of our algorithms for
aggregation ranking queries and therefore we adapt it to our context.

The rest of the paper is organized as follows. Section 2 gives the model and a mo-
tivating example. In Section 3, we present a new cube representation. Then we incre-
mentally develop three different techniques for answering aggregation ranking queries
in the following three sections, each of these improves a previous one. In Section 7
we empirically evaluate our proposed techniques and present the experimental results.
Conclusions and future research work are given in Section 8.
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2 Model and Motivating Example

In this paper we adopt the data cube [12] as a data model, A data cube can be concep-
tually viewed as a hyper-rectangle which contains d dimensions or functional attributes
and one or more measure attributes. Dimensions describe the data space, and measure
attributes are the metrics of interest (e.g., sales volume). In particular, each cell in a data
cube is described by a unique combination of dimension values and contains the cor-
responding value of the measure attribute. To introduce aggregation ranking queries,
we assume that among the d functional attributes of a data cube, one of the functional
attributes, Ar, is the ranking functional attribute and the rest d− 1 functional attributes
are the range functional attributes. An aggregation ranking query specifies ranges over
the d− 1 range functional attributes and requests a ranking of the values of the ranking
functional attribute Ar based on the aggregated values of the measure attribute after
applying some type of aggregation over the specified ranges.

For instance, using the online advertisement tracking company example, we con-
sider a 2-dimensional data cube SALES for a particular advertiser a, which has
Publisher as the ranking functional attribute, Date as the range functional attribute
and Sales as the measure attribute. Each cell in this data cube contains the daily sales
of advertiser a through the advertisements placed on a publisher p’s website. Fig. 1(a)
shows an example SALES data cube. A particular type of aggregation ranking query
of interest to advertiser a in the SALES data cube is “find the top-k publishers in terms
of total sales from day Ds to De”, and is specified as AR(k, Ds, De) for simplicity.
The shaded area in Fig. 1(a) shows an instance of such a query from day D3 to D6.
Answering this kind of aggregation ranking queries with SUM operator efficiently is the
focus of this paper. A basic way to answer such a query is to access each selected cell
in the data cube to compute the total sales for each publisher within the time range from
Ds to De. Then we sort the aggregated values to obtain the top-k publishers. Since the
number of involved cells is usually large, and data cubes are generally stored on disks,
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this will result in significant overhead. Also online sorting entails significant time over-
head if there is a large number of publishers per advertiser. This in turn will impact the
response time of interactive queries negatively.

3 Sorted Partial Prefix Sum Cube

In order to process aggregation ranking queries efficiently, we propose to use cumula-
tive information maintained for each value of the ranking attribute Ar along the time
dimension. This is based on the prefix sum approach [6] which can answer any range
aggregate query in constant time. Furthermore we pre-sort the values of Ar for each
time unit based on the cumulative information. Hence a new cube presentation, Sorted
Partial Prefix Sum Cube (SPPS cube in short), is developed. SPPS cube has exactly the
same size as the original data cube. For simplicity of presentation, we will use the online
advertisement tracking company example to explain our data structures and algorithms.
The proposed algorithms can be generalized to handle data cubes with any arbitrary
number of dimensions in a straightforward manner. An SPPS cube for the SALES data
cube contains cumulative information along the DATE dimension for each publisher and
daily order information along the PUBLISHER dimension. Each cell in the SPPS cube,
indexed by (Pi, Di), maintains the following three types of information:

– PPSUM (Partial Prefix Sum): total sales for publisher Pi within the time range from
D0 to Di, i.e., cumulative sum Since the initial time of the SALES data cube.

– PPC (Pointer to Previous Cell): a pointer to a cell in the same row of the SPPS cube
which contains the least value no less than SPPS[Pi, Di].PPSUM; if such a pointer
does not exist, PPC is set to NULL.

– PNC (Pointer to Next Cell): a pointer to a cell in the same row of the SPPS cube
which contains the largest value no greater than SPPS[Pi, Di].PPSUM; if such a
pointer does not exist, PNC is set to NULL.

PPC and PNC for all cells in a given row or time unit, Di, maintain a doubly linked
list in decreasing order of PPSUM. We refer to this list as PPSUM(Di). In addition we
maintain two pointers pointing to the header and the tail of each doubly linked list for
the SPPS cube. The header is the top ranked publisher based on the cumulative sales
from the initial date of the SALES data cube and the tail is the bottom ranked publisher.

Fig. 1(b) shows the SPPS cube for the SALES data cube in Fig. 1(a). Each cell
contains PPSUM, PPC, PNC information in the form of PPSUMPPCPNC. Also for presentation
simplicity, we use the publisher index for pointers PPC/PNC. Note that the preprocessing
of SPPS cube is offline, which is typical in real data warehousing applications. Space
and offline processing are usually sacrificed for online interactive query processing.

4 Complete Scan Algorithm

We first present a simple algorithm, complete scan, to process aggregation ranking
queries by using the pre-computed cumulative information in SPPS cubes. Given a
query AR(k, Ds, De), we need to obtain the total sales SUM(Pi, Ds, De) for each pub-
lisher Pi from Ds to De. This can be computed from PPSUM(Di) maintained for each
publisher Pi in the SPPS cube, which is actually given by the following subtraction:
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SUM(Pi, Ds, De) = SPPS[Pi, De].PPSUM−SPPS[Pi, Ds − 1].PPSUM.

Collecting the total sales of all publishers between Ds and De together, we get a list de-
noted by SUM(Ds, De) = {SUM(P0, Ds, De), . . . , SUM(Pn−1, Ds, De)}. Then the top-k
publishers during the period (Ds, De) can be easily extracted from the list SUM (Ds, De)
as follows. Take the first k publishers from the SUM list, sort and store them into a list
called list-k. For each publisher in the sum list ranging from k + 1 to n, insert it into
list-k, then remove the smallest publisher from list-k. Therefore the publishers in the
final list-k are the top-k publishers. The query cost is O(n + n log k). If k is a constant
or k is much smaller than n (k << n), the query cost is linear.

Note that the cost of the query is independent of the query range in the time dimen-
sion and is linearly dependent on the total number of publishers. Since the data cube is
stored on disks, the cost of retrieving every publisher’s information from disk can be
relatively high. Furthermore an online advertisement tracking data warehouse serves a
large number of advertisers at the same time. Thus the delay may not be acceptable for
analysts who prefer interactive response time. In the next two sections, we extend the
complete scan algorithm to improve the query cost by exploiting the ranking informa-
tion maintained in the SPPS cube to minimize the number of publishers scanned.

5 Bi-directional Traversal Algorithm

In the complete scan algorithm, the first step computes the total sales for each publisher
in a given time range, for which the best time complexity is linear. In order to reduce
the total query cost, we need to avoid computing the entire SUM list. This is the premise
of the bi-direction traversal algorithm discussed in this section.

The problem of evaluating aggregation ranking queries now reduces to the problem
of combining two lists of ordered partial prefix sums corresponding to the given time
range (Ds, De), i.e., PPSUM(Ds−1) and PPSUM(De) respectively. Intuitively, for a given
query AR(k, Ds, De), the publishers which are in the query result must have relatively
larger values in list PPSUM (De) and relatively smaller values in list PPSUM(Ds − 1).
Thus, instead of computing the entire list of SUM (Ds, De), we may only need to com-
pute the total sales of publishers which have higher ranking in PPSUM(De), and lower
ranking in PPSUM (Ds − 1) as long as the number of these publishers is large enough
to answer the aggregation ranking query. Based on this intuition, we design the bi-
directional traversal algorithm shown in Algorithm 1.

In the bi-directional traversal algorithm, we extract publishers concurrently from
list PPSUM(De) in decreasing order (starting from the header of PPSUM(De) down to
the tail) into a list denoted by Le, and from list PPSUM(Ds − 1) in increasing order
(starting from the tail of PPSUM(Ds − 1) up to the header) into another list denoted
by Ls, until the number of publishers in the intersection of their output sets Ls ∩ Le

is no smaller than k. Hence scanning all the publishers is avoided. Then calculate the
total sales of all publishers in L = Ls ∪ Le. Finally, compute the top-k publishers in
L = Ls ∪ Le based on their total sales during (Ds, De). These top-k publishers are
actually the answer to the given query. The bi-directional traversal algorithm improves
the processing cost of AR(k, Ds, De) to O(

√
n) with arbitrarily high probability if the

two lists PPSUM(Ds−1) and PPSUM(De−1) are independent and k is much smaller than
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Algorithm 1 Bi-directional Traversal Algorithm
1: Input:
2: AR(k, Ds, De);
3: Procedure
4: Ls = φ, Le = φ;
5: POINTERs = Tail of PPSUM(Ds − 1)
6: POINTERe = Header of PPSUM(De);
7: while | Ls ∩ Le |< k do
8: Ls = Ls ∪ POINTERs.publisher;
9: POINTERs = POINTERs.PPC

10: Le = Le ∪ POINTERe.publisher;
11: POINTERe = POINTERe.PNC
12: end while
13: for each publisher P in L = Ls ∪ Le do
14: Compute the total sales in [Ds, De] by SPPS[P, De].PPSUM− SPPS[P, Ds − 1].PPSUM;
15: Insert P into set R;
16: if | R |> k then
17: Remove Pi from R if its SUM(Pi, Ds, De) is smaller than all other publishers in R;
18: end if
19: end for
20: End Procedure
21: Output: R;

n. Due to the space limit, please refer to [15] for further details of query cost analysis
and the correctness proof of the bi-directional algorithm.

6 Dominant-Set Oriented Algorithm

The bi-directional traversal algorithm can answer a query AR(k, Ds, De) in O(
√

n)
with arbitrarily high probability for n publishers if the two lists PPSUM(Ds − 1) and
PPSUM(De) are independent. Unfortunately in most real applications, this is not the
case. For example, considering the online advertisement tracking data warehouse appli-
cation, the two lists are independent if the probability of daily sales is not dependent on
a specific publisher, i.e., if all publishers have similar and independent degree of pop-
ularity. However, in real world, some publishers are usually more popular than others.
Thus the daily sales obtained through the advertisements placed on those publishers
are much more than that of other publishers. Under such circumstances, the cumulative
sales in lists PPSUM(Ds − 1) and PPSUM(De) for a publisher may not be completely
independent. Therefore the probability that the query cost is O(

√
n) becomes low. In

particular, the worst case could happen when the two lists have almost the same set
of publishers that always have the most daily sales. Fig. 2(a) shows such an example,
where publishers P0, P1, and P2 always have more daily sales than the rest of the pub-
lishers. Given any query AR(k, Ds, De) over the data cube shown in Fig. 2(a), by using
the bi-directional traversal algorithm, in order to get Ls ∩ Le ≥ k, the number of pub-
lishers in Ls ∪ Le can be up to n. As a result, the query cost is almost linear. This
is mainly because the bi-directional traversal algorithm is unable to minimize the size
of a superset of the top-k publishers efficiently in the presence of correlation among
publishers and skewed distributions.

Hence, our goal now is to optimize the bi-directional traversal algorithm by pruning
the search space in list PPSUM(Ds − 1). In order to do that, we need to identify the
candidates for an aggregation ranking query. Without any doubt, dominant publishers
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PUBLISHER

D
A
T
E

P1 P2 P3 P4 P5 P6 P7 P8 P9P0
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D1

D2

D3

D4

D5
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D8

65 51 61 9 16 14 1 16 10 16

64 56 60 17 8 5 2 18 15 1

50 69 66 18 18 17 18 14 4 6

62 67 61 16 7 17 1 4 12 4

63 53 59 6 2 13 1 10 15 8

67 61 62 16 19 9 19 16 12 7

60 54 50 6 3 6 13 12 15 11

65 54 60 18 4 13 19 7 19 17

68 52 54 10 5 16 9 14 6 3

10 9 9 2

5 4 3 2

100 99 98 20

112 109 106 34

P0 P3 P2 P1

P1 P0 P3 P2

P3 P1 P2 P0

D0

D1

D2

P3 P2 P1 P0

Ranking of publishers based on the sales on Di

1

1

P4

P4

10

P4

12

P4

Ranking of publishers based on the sales from D0 to D2

Scan(D0) = {P0,P3}

Scan(D1) = {P0,P3,P1}

Scan(D2) = {P0,P3,P1,P2}

(a)  An example of dominant set (b)  Identify candidate set

Fig. 2. An example of dominant set and how to identify candidate set

usually dominate the top-k slots and need to be considered in the candidate set. However
some variations may occur, i.e., some non-dominant publishers may become dominant.
Hence we need to identify such a set of candidates that may include the answer to an
aggregation ranking query, for which we assume that all aggregation ranking queries
AR(k, Ds, De) request a value of k no larger than kmax which is the maximum value
of k specified in any aggregation ranking query. This is a realistic assumption, since
advertisers are usually interested in a small number of publishers, especially those with
a relatively high performance. We, therefore, assume that kmax << n and kmax is an
application-dependent and user-defined parameter. We now introduce the notation of
the candidate set for a day Di, denoted as Scan(Di). Scan(D0) is initialized to contain
the top-kmax publishers on the first day of the SALES data cube. Scan(Di) contains all
publishers in Scan(Di−1) and all publishers which are ranked on day Di above any
publisher in Scan(D0) as well. We observe that Scan(Di−1) ⊆ Scan(Di).

Consider the following example: assume there are 5 publishers P0, P1, P2, P3 and
P4 as shown in Fig. 2(b). We have the sales tracking information for three days D0,
D1 and D2. Let kmax be 2. P0 and P3 ranked top-2 on day D0. Hence Scan(D0) =
{P0, P3}. On day D1, P1 is ranked above P3 and P3 ∈ Scan (D0), therefore, Scan(D1)
= {P0, P3, P1}. Similarly Scan (D2) = {P0, P3, P1, P2}. It is possible that a publisher
which is ranked above any publisher in Scan(D0) on day Di could have a large total
sales within some time range (Ds, Di). For example, P2 ranked top-2 in terms of total
sales within (D0, D2). Moreover, since P4 does not have a higher rank than the publish-
ers in Scan(D0) for any day, it is impossible to be a top-2 publisher for any aggregation
ranking query. Scan(Di) is a superset of the top-k publishers for a given aggregation
ranking query AR(k, Ds, Di), and the correctness is given in the following assertion2.

Assertion 1 For a given aggregation ranking query AR(k, Ds, De), all the qualifying
publishers must be contained in the candidate set for day De, Scan(De).

From Assertion 1, we know that in order to answer a given query AR(k, Ds, De),
we need to consider all the publishers in Scan(De). A straightforward solution is to

2 Please refer to [15] for proof.

.
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obtain for each publisher p ∈ Scan(De) its prefix sum of sales from list PPSUM(Ds −1)
and list PPSUM(De). However this requires random accesses to both lists which results
in a lot of random I/Os. In order to reduce the random accesses as well as consider all
publishers in Scan(De), we need to track the maximum index of all publishers in Scan

(De) in list PPSUM(Ds − 1). We refer to this maximum index as the pruning marker.
Note that the indices of cells in a list are in increasing order from the header to the tail.
The header has an index of 0 and the tail has an index of n − 1. All publishers after the
pruning marker in list PPSUM(Ds − 1) will be pruned as they do not qualify to be top-k
publisher candidates, and hence the search space is reduced.

However it is not efficient to compute the pruning marker online since finding the
index of each publisher P ∈ Scan(De) in list PPSUM(Ds − 1) requires access to its
corresponding cell in the SPPS cube. This can again degrade performance, especially
when the size of Scan(De) is large. Since Scan (Ds − 1) is a subset of Scan(De), we
can pre-process the publishers in Scan(Di − 1) for each date Di and store the index
corresponding to the smallest ranked publishers in Scan (Di − 1), and then process the
remaining publishers for a given query. Hence for each day Di, in addition to Scan (Di),
we maintain the maximum index in list PPSUM(Di) of all publishers in Scan(Di). We
refer to this index as IDXmax(Di). Please refer to [15] for the pseudo-code of comput-
ing Scan(Di) and IDXmax(Di). Note that a data cube such as SALES is updated in an
append-only fashion. When the new sales data of date Di are appended to the data cube,
we simply compute Scan(Di) and IDXmax(Di) based on Scan(Di−1) and Scan(D0).

We now show how to use Scan(Di) and IDXmax(Di) to reduce the list traver-
sals of the bi-directional traversal algorithm, resulting in the dominant-set oriented
algorithm. We first calculate a set of candidate publishers Sr that are in Scan(De)
but not in Scan(Ds − 1). The publishers in Sr may or may not be ranked higher
than IDXmax(Ds − 1) which is pre-computed. Let idxr be the maximum index of
the publishers in Sr. Hence we need to identify the pruning marker PM which is
max(IDXmax(Ds−1), idxr). Consider the example shown in Fig. 2(b). Given AR(2,
D1, D2), Sr = Scan(D2) − Scan(D0) = {P1, P2}. The PM for list PPSUM(D0) is the
maximum value of idxr and IDXmax(D0). idxr in this case is 3 while IDXmax(D0)
is 1. Hence PM = 3. Thus publisher P4 can be pruned from the search space.

The rest of the dominant-set oriented algorithm is the same as the bi-directional
traversal algorithm except that the starting point of traversing PPSUM (Ds − 1) is from
the pruning marker PM . Again, due to the space limit, please refer to [15] for the
pseudo-code of the algorithm. Since the dominant-set oriented algorithm prunes the
search space in PPSUM(Ds−1) by applying a pruning marker, it will always outperform
the bi-directional traversal algorithm, especially when there is a dominant publisher set.

7 Experiments

We conducted extensive experiments over both synthetic and real datasets to evaluate
our proposed techniques. The experimental results validated our assumptions regard-
ing the characteristics of datasets. Due to the lack of space, we only present partial
experimental results over the real data sets. Please refer to [15] for more performance
evaluation.
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The real clicks datasets are from CJ.com, an online advertisement tracking company.
They are for a larger number of advertisers where the number of publishers for each
advertiser ranges between 4,000 and 5,000. The maximum number of publishers is up to
100,000 for some advertisers, however for confidentiality, we were only supplied with
the datasets restricted to about 4,000 to 5,000 publishers. Each clicks dataset contains
the daily clicks of all publishers for about 180 days.

The experiments were conducted on a Pentium IV 1.6GHz PC with 256MB RAM
and 30GB hard disk. We executed two sets of aggregation ranking queries: a uniform
query set and a biased query set, each of them with 1,000 queries. The uniform query set
contains queries whose ranges are uniformly generated along the DATE dimension, The
biased query set contains queries which are generated to model real user query patterns.
The details of generating such a biased query set can be found in [15]. The comparison
of the different techniques is based on the average query time in milliseconds.

We conducted experiments over a large number of real clicks datasets of different
advertisers to examine how the value of k affects query cost. The experiments exhibited
similar results. Thus, here we only present the experimental results for an advertiser
with 4,000 publishers and kmax = 50. Fig. 3(a) and Fig. 3(b) show the experimental
results over a uniform query set and a biased query set respectively. We observe that
the dominant-set oriented algorithm outperforms both the complete scan algorithm and
the bi-directional traversal algorithm. The value of k does not affect the complete scan
approach, since the value of k does not have any impact on this algorithm assuming
that the output time can be ignored. The average query cost of the two other techniques
tends to increase slightly when the value of k increases, since the number of publishers
in Ls ∩ Le becomes larger and therefore results in a larger number of publishers in
Ls ∪ Le. We also notice that the bi-directional traversal algorithm performs worse than
the complete scan algorithm. This is because the real clicks datasets demonstrate to
have a set of dominant publishers. Also this does not contradict the theoretical analysis
as given in [15], which states that the bi-directional traversal algorithm at most needs to
process all publishers and has linear performance in the worst case. Due to the dominant
publishers, when using the bi-directional traversal algorithm, the number of publishers
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in Ls ∪ Le reaches n (n is the total number of publishers). Based on the Algorithm 1,
in order to compute the total sales for each publisher in Ls ∪ Le, we need to randomly
access the prefix sums of the sales for publishers that are in Ls but not in Le or vice
versa. Since the number of publishers in Ls ∪ Le is almost n, we need nearly n ran-
dom accesses, which results in expensive disk I/O cost. However, in the complete scan
algorithm, lists PPSUM(Ds − 1) and PPSUM(De) are always loaded into main memory
sequentially thus taking advantage of the fast sequential access property of disks. As a
result, the bi-directional traversal algorithm has worse performance than the complete
scan algorithm even though they process almost the same number of publishers.

8 Conclusion

In this paper, we formalized the notion of aggregation ranking for data warehouse ap-
plications. Aggregation ranking queries are critical in OLAP applications for decision
makers in the sense that they provide ordered aggregation information. We have pro-
posed a progression of three different algorithms to handle aggregation ranking queries.
Our final algorithm, the dominant-set oriented algorithm, is efficient and realistic, since
it exploits the pre-computed cumulative information and the bi-directional traversal of
lists while restricting the traversal to a small superset of the actual dominant set which
is exhibited in real datasets. In general, with increasing reliance on online support for
interactive analysis, there is a need to provide query processing support for complex
aggregation queries in large data warehouses where sub-query results are correlated on
a variety of metrics. Our future work will involve identifying such types of queries and
developing database technologies for efficiently processing such queries. Furthermore,
our proposed techniques can be generalized to handle aggregation ranking queries over
high dimensional data cubes.
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Abstract. In this paper we present a solution called Materialized Aggre-
gate List designed for the efficient storing and processing of long aggre-
gate lists. An aggregate list contains aggregates, calculated from the data
stored in the database. In our approach, once created, the aggregates are
materialized for further use. The list structure contains a table divided
into pages. We present three different page-filling algorithms used when
the list is browsed. We present test results and we use them for estimating
the best combination of the configuration parameters: number of pages,
size of a single page and number of available database connections. The
Materialized Aggregate List can be applied on every aggregation level in
various indexing structures, such as, an aR-tree.

1 Introduction

Query evaluation time in relational data warehouse implementations can be im-
proved by applying proper indexing and materialization techniques. View mate-
rialization consists of first processing and then storing partial aggregates, which
later allows the query evaluation cost to be minimized, performed with respect to
a given load and disk space limitation [9]. In [5] the authors for the first time use
the spatial network for storing the relations between aggregated views. In [1,4]
materialization is characterized by workload and disk space limitation. Indices
can be created on every materialized view. In order to reduce problem com-
plexity, materialization and indexing are often applied separately. For a given
space limitation the optimal indexing schema is chosen after defining the set of
views to be materialized [2]. In [6] the authors proposed a set of heuristic crite-
ria for choosing the views and indices for data warehouses. They also addressed
the problem of space balancing but did not formulate any useful conclusions.
[8] presents a comparative evaluation of benefits resulting from applying views
materialization and data indexing in data warehouses focusing on query prop-
erties. Next, a heuristic evaluation method was proposed for a given workload
and global disk space limitation.

In this paper we present a new approach to storing and processing of long
aggregate lists. In our approach we materialize the calculated values (query re-
sults), but we divide the data set into smaller sets that we call pages. Our paper
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is organized as follows: section 2 briefly describes the motivation for our work. In
section 3 all the specification and configuration aspects are presented. Section 4
describes all the most interesting details of the proposed solution, and in section
5 we present the current state of the art. In section 6 we present test results.
Finally, section 7 concludes the paper.

2 Motivation

We are working in the field of spatial data warehousing. Our system (Distributed
Spatial Data Warehouse – DSDW) presented in [3] is a data warehouse gath-
ering and processing huge amounts of telemetric information generated by the
telemetric system of integrated meter readings. The readings of water, gas and
energy meters are sent via radio through the collection nodes to the telemetric
server. A single reading sent from a meter to the server contains a timestamp, a
meter identifier, and the reading values. Periodically the extraction system loads
the data to the database of our warehouse.

In our current research we are trying to find the weakest points of our solu-
tion. After different test series (with variations of aggregation periods, numbers
of telemetric objects etc.) we found that the most crucial problem is to create
and manage long aggregate lists. The aggregate list is a list of meter reading
values aggregated according to appropriate time windows. A time window is the
amount of time in which we want to investigate the utility consumption. The
aggregator is comprised of the timestamp and aggregated values.

When we want to analyze utility consumption we have to investigate con-
sumption history. That is when the aggregate lists are useful.

In the system presented in [3] aggregate lists are used in the indexing struc-
ture that is a modification of an aR-Tree [7]. Every index node encompasses
some part of the region where the meters are located and has as many aggregate
lists as types of meters featured in its region. If there are several meters of the
same type, the aggregate lists of the meters are merged (aggregated) into one
list of the parent node.

The aggregate lists are stored in the main computer memory. Memory over-
flow problems may occur when one wants to analyze long aggregation periods
for many utilities meters. If we take into consideration the fact that the me-
ter readings should be analyzed every thirty minutes, simple calculations reveal
that the aggregate list grows very quickly with the extension of an aggregation
period. For instance, for single energy meter an aggregate list for one year has
365 · 48 = 17520 elements. Each of the aggregators creating the list stores a few
values, so the memory consumption is high. In order to prevent memory overflows
we designed a memory managing algorithm applied in the system presented in
[3]. The mechanism defines a memory limit when the system starts. The limit is
always checked before some new aggregate list is created. If upon being loaded a
new list threatens to exceed a limit, the mechanism searches for a less frequently
read node in the indexing structure and removes its aggregate lists from the
memory, providing space for the new lists. The mechanism performs well when
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system uptime is not long. The creation and removal of aggregate list produces
memory fragmentation that results in memory overflow errors, even though the
memory limit had not been exceeded. Hence we decided to search for a new
approach to storing and processing aggregate lists with no length limitations.
Our main objectives were: the solution must be efficient and scalable, applicable
in indexing structures such as aR-tree and easy to use. We named the solution
a Materialized Aggregate List (MAL).

3 Specification

The main idea of the proposed solution is to provide a user with a simple interface
based on the standard Java list mechanism – a set of two functions: hasNext()
and next() which permits the convenient browsing of the list contents. Our
purpose was to create a list that could be used as a tool for mining data from
the database as well as a component of indexing structure nodes (fig. 1). Below
we present an example showing how the list can be used in the program code.

 

database 

Application Iterator
Materialized 
Aggregate 

List 

AggregateRetriever 

Index 
Aggregate 
Retriever 

Database 
Aggregate 
Retriever 

indexing structure
 

Fig. 1. MAL idea – provide a solution based on a well-known standard

(1) MALList list = new MALList(categ, ob, dbConn);
(2) Iterator iterator = list.iterator(startDate);
(3) while (iterator.hasNext()){
(4) Aggregator a = (Aggregator)iterator.next();
(5) /* use theaggregator */
(6) /* time condition breaking the iteration */
(7) }
(8) list.close();

In the first line we see how the list object is constructed. The constructor parame-
ters are: the category (defines list type), an identifiable object (spatial telemetric
object or indexing structure node) and a database connector.

The second line creates the iterator that allows list browsing. In the standard
Java implementation the iterator function has no parameter. In the case of MAL
there is one parameter defining the timestamp of the first aggregator returned
by the next() function call.

Lines 3-7 contain instructions known from the standard Java solution. First
(line 3) it checks the availability of the next element in the list; the element is
retrieved (line 4) and some operations using this element are performed (line
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5). A time condition can be put in the next line, breaking the iteration. The
condition may be applied if it is not necessary to browse the whole list.

Line 8 closes the list. No new iterators can be created, the list waits for all
running threads to complete.

4 MAL Details

As mentioned before, our main intention when designing the MAL was to build
a solution free of memory overflows which would allow aggregate list handling
with no length limitations. We applied the following approach: every list iterator
consists of a table divided into pages. When an iterator is created some of the
pages are filled with aggregators (which pages and how many is defined by the
applied page-filling algorithm, see description below). The next pages are filled
(the aggregators are retrieved from the iterator table), while the list is being
browsed. After the whole page is read, it is refilled with new data. The solution
also uses an aggregates materialization mechanism that strongly speeds up the
aggregates retrieval. The most crucial configuration aspects are: the number of
pages, the size of a single page, the number of available database connections
and the pages-filling algorithm.

The actual list operation begins when a new iterator is created (iterator()
function call). A new table is created and two values are calculated:

– border date. The border date is used for managing the materialized data. The
border date is calculated by repeatedly adding to the install date (defined
in category block of the configuration file) a width of aggregation window
multiplied by the size of the table page. The date is equal to the timestamp
of the first aggregator in the page.

– starting index. In the case that starting date given as a parameter in the
iterator() function call is different from the calculated border date, the it-
erator index is adjusted so that a the first next() function call returns the
aggregator with the timestamp nearest to the given starting date.

4.1 Page-Filling Algorithms

As a new iterator is constructed some of its table pages are filled with aggre-
gators. Which pages and how many of them depends on the used page-filling
algorithm. All the algorithms create the page-filling threads that operate ac-
cording to the following steps:

1. Check whether some other thread filling a page with an identical border date
is currently running. If yes, register in the set of waiting threads.

2. Get a database connection from the connection pool.
3. Check if the required aggregates were previously calculated and materialized.

If yes, restore the data and go to 5.
4. Create the aggregate list. Materialize the list.
5. Release the database connection.
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6. Browse the set of waiting threads for threads with the specified border date.
Transfer the data and notify them.

In the subsections below we present three different page-filling algorithms.

Algorithm SPARE. Two first pages of the table are filled when a new iterator
is being created and the SPARE algorithm is used as a page-filling algorithm.
Then, during the list browsing, the algorithm checks in the next() function if
the current page (let’s mark it n) is exhausted. If the last aggregator from the n
page was retrieved, the algorithm calls the page-filling function to fill the n + 2
page while the main thread retrieves the aggregates from the n + 1 page. One
page is always kept as a ”reserve”, being a spare page. This algorithm brings
almost no overhead – only one page is filled in advance. If the page size is set
appropriately so that the page-filling and page-consuming times are similar, the
usage of this algorithm should result in fluent and efficient list browsing.

Algorithm RENEW. When the RENEW algorithm is used, all the pages are
filled during creation of the new iterator. Then, as the aggregates are retrieved
from the page, the algorithm checks if the retrieved aggregator is the last from the
current page (let’s mark it n). If the condition is true, the algorithm calls the page-
filling function to refill the n page while the main thread explores the n + 1 page.
Each time a page is exhausted it is refilled (renewed) immediately. One may want
to use this algorithm when the page consuming time is very short (for instance
the aggregators are used only for drawing a chart) and the list browsing should
be fast. On the other hand, all the pages are kept valid all the time, so there is a
significant overhead; if the user wants to browse the aggregates from a short time
period but the MAL is configured so that the iterators have many big pages – all
the pages are filled but the user does not use all of the created aggregates.

Algorithm TRIGG. During new iterator creation by means of the TRIGG
algorithm, only the first page is filled. When during n page browsing the one
before last aggregator is retrieved from the page the TRIGG algorithm calls
the page-filling function to fill the n + 1 page. No pages are filled in advance.
Retrieving the next to last aggregator from the n page triggers filling the n + 1
page. The usage of this algorithm brings no overhead. Only the necessary pages
are filled. But if the page consumption time is short the list-browsing thread
may be frequently stopped because the required page is not completely filled.

4.2 Connection Pool

A very important aspect of the Materialized Aggregate List operation is database
access. The page-filling threads use the database connection for creating an ag-
gregate list and for list materialization and restoring. The connection can be
used by only one thread at a time. The connection retrieving operation may
cause some threads to stop when the number of concurrently running threads is
greater than the number of available connections. To optimize connection man-
agement we decided to use the concept of connection pool (generally: resource
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pool) and connection factory (generally: resource factory). The pool parameter
is the maximal number of connections that can be obtained from the pool. After
creating, the pool does not contain any connections. During application oper-
ation, any thread that requires a database connection calls a pool method for
retrieving a connection. Depending on the pool state the following operations
are performed:

– if the pool contains a free connection, the connection is assigned to the calling
thread,

– if the pool does not contain a free connection, but the connections limit is
not exceeded, a new connection is created by means of the connection factory
and assigned to the calling thread

– if the pool does not contain a free connection and creating a new connection
would cause the connections limit to exceed, the calling thread is stopped
until some connection is returned to the pool or the pool is destroyed.

When a thread completes the operations requiring database connection, the
connection is returned to the resource pool. If some threads are waiting for a
connection, one of them will be assigned a connection and notified.

4.3 Materialization

In the presented operation of the page-filling function, points (3) and (4) mention
a concept of materialization. We introduced the materialization mechanism in
the DSDW system presented in [3] and the tests revealed the mechanism extreme
efficiency. The idea is to store once calculated aggregators as binary data in the
database, using the BLOB table column. In the current approach we use a table
with three columns storing the following values: the object identifier (telemetric
object or indexing structure node), page border date and aggregators in binary
form. The page materialization mechanism operates identically for each page-
filling algorithm.

5 State of Art and Future Plans

After finishing work on theoretical concepts we started implementation of our so-
lution. The current state of the art contains a full implementation of the database
iterator (the iterator for retrieving aggregates from a database) and all three
page-filling algorithms. The list operation is convergent with the description
presented in section 3. The iterator retrieving aggregates from the database can
automatically process new data added by the extraction process. If some page
was materialized but it is not complete (not all necessary data was found in the
database when it was being filled), then the page-filling thread starts exploring
the database from the point where the data was not available. The aggregates
retrieving finishes if there is no more available data, then the hasNext() function
call returns false.
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We are nearing completion of the work on the MAL iterator, which permits
us to apply the solution in indexing structures (such as aR-Tree). The applied
page-filling algorithm is very similar to the TRIGG algorithm for the database
iterator.

The data warehouse structure described in [3] applies distributed processing.
We also suppose that in this aspect introducing the MAL to our system will
bring benefits in efficiency. The current approach to sending complete aggregate
lists as a partial result from a server to a client results in high, single client
module load. When we divide the server response into MAL pages, the data
transfer and the overall system operation will presumably be more fluent.

6 Test Results

This section contains a description of the tests performed with the current im-
plementation of the presented solution. The tests were executed on a machine
equipped with Pentium IV 2.8 GHz and 512 MB RAM. The software environ-
ment was Windows XP Professional, Java Sun 1.5 and Oracle 9i. The tests were
performed for all three page-filling algorithms. Each of the algorithms was ap-
plied in the iterator used for retrieving aggregates from the database for 3, 6, 9,
and 12 months. The aggregates were created with a time window of 30 minutes.
The created aggregates were not used in the test program; the program only
sequentially browsed the list. Aggregates browsing was performed twice: during
the first run the list has no access to the materialized data, and during the sec-
ond run a full set of materialized data was available. The MAL parameters, page
number, page size and the number of available database connections, had the
following values:

– page size: 48 (1 day), 240 (5 days), 336 (7 days), 672 (14 days), 1008 (21
days), 1488 (31 days – 1 month), 2160 (46 days – 1.5 month), 2976 ( 62 days
– 2 months) and 4464 (93 days – 3 months),

– page number: 2 ÷ 10.
– number of database connections: 1 ÷ pageNumber + 1

Our goal was to find the best combination of the MAL parameters: the page-
filling algorithm, number of pages, size of a single page and number of available
database connections. The choice criterion consisted of two aspects: the efficiency
measured as a time of completing the list-browsing task and memory complexity
(amount of the memory consumed by the iterator table).

6.1 Page Size and Page Number

We first analyze the results of completing the list-browsing task during the first
run (no materialized data available) focusing on the influence of the page size
parameter. We investigated the influence for various numbers of pages and for all
three algorithms always setting the number of available database connections to
1. We observe that for all three algorithms the influence is very similar; graphs of
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Fig. 2. Operation of the SPARE algorithm for retrieving aggregates for 6 months

the relations are very convergent. Figure 2 presents a graph showing the results
obtained for the SPARE algorithm for the aggregation period of 6 months. The
list browsing times for small pages are very diverse. For the presented results
the times for a page of size 48 vary from 30 to 160 seconds depending on the
amount of pages. MAL operation for a page of size 240 is much more stable; the
differences resulting from the different number of pages do not exceed 25 seconds.
In graph we observe that for pages greater or equal 672 the list browsing time
does not significantly depend on the number of pages. We must notice that the
page size strongly influences the amount of memory consumed by the iterator.
Hence, considering the fact that further increasing the page size brings almost
no time benefit, we chose the page size 672 as the most optimal.

As next, we analyzed the influence of the combination of two parameters:
number of pages and number of available database connections on the MAL
efficiency. We performed the test for 1 to number of pages+1 available connec-
tions because in some particular cases the MAL instance also utilizes a database
connection. Again, we must notice, that number of pages influences the amount
of consumed memory as well as the CPU workload (in the worst case the num-
ber of pages equals the number of concurrently running threads). Analyzing test
results we concluded the following: the most optimal benefit/cost ratio is when
the list is configured to work with 4 ÷ 6 pages and the connection pool contains
as many connections as there are pages.

6.2 Page-Filling Algorithm

After choosing the optimal parameters, we compared the time efficiency of the
page-filling algorithms. Figure 3 shows a graph comparing efficiency of the al-
gorithms for browsing the list of aggregates for 12 months. The list was config-
ured to use 6 pages, each of size 672. The obtained results are strictly coherent
with the theoretical assumptions of the page-filling algorithms. When only one
database connection is available there is no time difference in the operation of the
algorithms. But along with increasing the number of available connections the
SPARE and the RENEW algorithms show better efficiency while the TRIGG
algorithm efficiency remains unchanged. The TRIGG algorithm fills only one
page at a time; it uses only one database connection. As a result, increasing the
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Fig. 3. Comparison of the page-filling algorithms

number of available connections brings no time profit. The STEPS algorithm
launches at maximum 2 threads concurrently, utilizing at most 3 database con-
nections what is clearly seen in the graph. And finally, the RENEW algorithm
fills all the pages concurrently, utilizing all the available connections. It improves
its efficiency each time the number of database connections increases. We chose
this algorithm as the most efficient one.

Therefore, to summarize the parameters selection we can state that the MAL
works efficiently for the following configuration: the RENEW algorithm, number
of pages 4÷6, size of a single page 672, number of available database connections
equals number of pages.

6.3 Materialization

The aspect last investigated was materialization influence on system efficiency.
The results interpretation reveals that materialization strongly improves sys-
tem efficiency. In figure 4 there is a graph showing the MAL operation for the
TRIGG algorithm for various number of pages of sizes 672 and 1488 and with
one database connection. As the first run we marked the list operation with no
materialized data, and as a second run we marked the operation with the full set
of materialized data. In both page size variants the benefit of materialization is
very similar, and upon analyzing the charts, we can state that using the materi-
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alized data the list operates from 5 to 8 times faster than when no materialized is
used. A similar situation can be observed for all the page size and page number
parameter combinations.

7 Conclusions

In this paper we presented the Materialized Aggregate List (MAL). The MAL
is a data structure for storing long aggregate lists. The list can be applied as a
component of indexing structure nodes in indexes like an aR-Tree. The aggre-
gators stored in the list can be retrieved from both the database and from other
levels of an indexing structure. In our solution we applied the idea of aggregates
materialization. The materialization has a very strong, positive influence on list
efficiency. We presented the current state of the art, our future plans, and the
theoretical and practical details of our solution. The paper additionally describes
results of the preliminary tests.
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Abstract. Processing of large amounts of data in data warehouses is
increasingly being done in cluster architectures to achieve scalability. In
this paper we look into the problem of ad hoc star join query processing
in clusters architectures. We propose a new technique, the Star Hash
Join (SHJ), which exploits a combination of multiple bit filter strategies
in such architectures. SHJ is a generalization of the Pushed Down Bit
Filters for clusters. The objectives of the technique are to reduce (i) the
amount of data communicated, (ii) the amount of data spilled to disk
during the execution of intermediate joins in the query plan, and (iii)
amount of memory used by auxiliary data structures such as bit filters.

1 Introduction

The use of clusters architectures and in particular those with Symmetric Mul-
tiProcessing (SMP) nodes, has become a popular solution to implement mas-
sive parallelism. In November 2004, about 60% of the supercomputers in the
’TOP500’ list [1] were cluster computers, showing a significant growth in the
last few years. Database applications show a high demand on the use of these
type of configurations: the amount of data is approaching the petabyte steadily,
moving research in data warehousing towards many implementation challenges.
SMP configurations by themselves show scalability problems. This is solved by
connecting multiple clusters in an SMP configuration through a network com-
munication system, offering high scalability and cost effectiveness. This kind of
configuration is also known as a CLUMP architecture.

In order to balance the load, clusters share large volumes of data in such a
way that each cluster keeps a portion of the overall database. While the method-
ology proposed in this paper is applicable to clusters that are not necessarily in
an SMP configuration, the CLUMP architecture is commonly used, and thus the
configuration chosen for evaluation in this paper. A cluster within an SMP con-
figuration consists of a set of processors that share memory and I/O resources
under the control of one copy of the operating system. All the processes access
the memory by using high-speed buses or advanced cross-switching technologies
that support point-to-point interconnections between processors.

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2005, LNCS 3589, pp. 200–209, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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CLUMP architectures speed up query processing by balancing large volumes
of data across all clusters in the system. Thus, each cluster can work in parallel
with its own part of the overall database. The clustering scheme alleviates the
problem of I/O processing for large relations. Moreover, SMP processes scan in
parallel the data that may be striped across multiple disks within each cluster.
However, with data partitioned across the clusters, data communication becomes
important, and makes the optimization of data processing even more relevant to
achieve good performance.

Ad hoc Star Joins and CLUMP architectures. Data warehouse environ-
ments are generally organized according to a multidimensional model with one
or more star schemas [11]. Each star schema consists of a very large central
Fact table surrounded by multiple dimension tables that are linked to it through
primary and foreign key relationships. On-Line Analytical Processing (OLAP)
queries are usually complex and ad hoc with high selectivity factors. Queries are
not known in advance and have a multi-table join flavour, joining the Fact table
with its corresponding dimensions. These queries are also called ad hoc star join
queries in the literature [10].

The distribution of a database in CLUMP architectures is done by apply-
ing a shipping function that decides the host cluster of each record in a table.
The shipping function is applied to a column or set of columns (called the par-
titioning key) from the table to be partitioned [15]. When performing a join
operation, if the joining key is the same as the partitioning key used for both
input tables, then the join is said to be collocated : if not, the join is said to be
non-collocated. Collocated joins can be performed locally within each cluster,
while non-collocated joins need for a dynamic re-partitioning of the data. In this
case, it is necessary to either broadcast the data usually from the smaller table,
or selectively re-partition both relations.

When executing a star join in CLUMP architectures, the query execution
plan is the same for all members of the clusters. The main difference between a
parallel and a sequential environment is data communication. The minimization
of inter-cluster data traffic becomes a priority during star join processing because
of the large volumes of data potentially shipped.

Contributions of the paper.We propose a technique that saves both intra
cluster data processing and inter-cluster communication during ad hoc star join
processing. We call our strategy Star Hash Join (SHJ) and it is a generalization
of Pushed Down Bit Filters (PDBF) [3] for CLUMP architectures. PDBF is a
technique used in a shared-everything environment and consists of the filtering
of data in advance by pushing down the bit filters [8] to the lower operations of
the query execution plan. SHJ generalizes PDBF for clusters architectures using
Semi-join reduction, that is primarily for shared nothing environments [6][7].

Organization of the paper. We start by explaining our proposal, the Star
Hash Join in the context of existing work. In Sections 3 and 4, we explain the
evaluation setup environment and analyze our proposal. We wrap up the related
work in Section 5, and in Section 6 we draw some conclusions.
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2 Star Hash Join (SHJ)

In this section we explain our proposal, the Star Hash Join. We will go through
some basic concepts before introducing the algorithm.

Hybrid Hash Join. The Hybrid Hash Join [13] is a hash-based join algorithm
commonly used to perform hash join operations in DBMSs such as the IBMR©

DB2 Universal DatabaseTM(DB2 UDB), MicrosoftR© SQL-Server or the OracleR©

database products. It consists of two phases: (1) a build phase, where a hash
table is built with tuples, usually from the smaller input relation, and (2) a probe
phase, where tuples from the larger relation are used to probe the hash table
looking for matches. If the hash table created during the build phase does not
fit in memory, then hashing [8] is used to partition both input relations in the
same way such that each partition from the smaller relation can fit in memory,
and the join can be performed on each pair of corresponding partitions.

The Hybrid Hash Join may use bit filters [8] to speed up its execution. Bit
filters are created during the build phase of a join. By applying hashing, the
value of the joining key for each record from the build relation is mapped into
the bit filter, and its corresponding bit is set to 1. Then, the bit filter is checked
using the same hashing function for the joining key of each record processed
during the probe phase. If the corresponding bit was not set during the build
phase, then the tuple can be filtered out. The main goal of the use of the bit
filter is to avoid spilling tuples to disk during the probe phase, saving I/O.

When performing a parallel non-collocated Hybrid Hash Join the build rela-
tion or the probe relation, or both, may need to be re-partitioned. A common
join plan strategy is to selectively repartition the probe relation and send it to
a specific target cluster in which the build relation is already partitioned on the
join key. Another common join plan strategy is to broadcast the build relation
to all the clusters that contain the probe relation. We focus on the former case.

Star Hash Join Schema. A star join query with n dimension tables and a Fact
table, may be performed through n Hybrid Hash Join operations as a left-deep
tree-shaped query plan. Figure 1 shows the shape of a Star Hash Join schema
for a system configuration with k clusters. We use the following definitions :

– Dij is the part of the ith dimension table stored in cluster j, and BFij is the
bit filter created during its build phase.

– Factj is the portion of the Fact table stored in cluster j.
– RO is the Re-partitioning Operator responsible for selectively sending data

to the rest of the computational clusters, as well as receiving data from each
of those clusters.

Typically, in a star schema, the dimension tables are partitioned by their
primary keys, and the Fact table is partitioned by one of its foreign keys. Hence,
only one join between one dimension table and the Fact table may be collocated.
The rest of the joins will be non-collocated, and will need the presence of an RO
during the probe phase of the left-deep tree. Note that if the database system
supports it, and if storage space, administration overhead, and synchronization
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Fig. 1. Star hash join schema for k clusters

overhead, are not important considerations, the entire dimension tables can be
replicated on each cluster before to the queries are run. Broadcasting records
from these tables in this case need not be done during query processing. In this
paper, it is assumed that dimension tables are not replicated on each cluster
because this may not be feasible.

2.1 The Algorithm

Our approach generalizes the use of Pushed Down Bit Filters (PDBF) for a faster
execution of ad hoc star join queries in CLUMP architectures. The Star Hash
Join algorithm makes use of Semi-join reduction [7][6] to do such generalization.

The use of Semi-join reduction in clusters has been called Remote Bit Filters
Broadcasted (RBFB) [5]. RBFB broadcasts the bit filters created locally during
the build phase to all the clusters involved in the processing of a non-collocated
Hybrid Hash Join. Hence, before a record is sent to a remote cluster during
the probe phase, the record is tested against the bit filter of the target cluster,
and is discarded before being sent it if possible. RBFB is graphically explained
in Figure 2.a. For a given cluster j, a hash join between one dimension (Dij )
and the Fact table (Factj), will keep bit filters BF0j , BF1j , ..BFn−1j in its local
memory, one for each of the n dimension tables.

Pushed Down Bit Filters are aimed at saving intra-data processing within
shared-everything environments [3]. PDBF uses the bit filters generated in the
upper operations of the query plan to filter out tuples in the leaf operations.
This saves the processing of data and I/O of the intermediate results for the join
operations in between. PDBF is graphically shown in Figure 2.b. Each record
scanned from the Fact table is tested against each of the n bit filters. If any
one of the bit filters has the associated entry of the current record set to 0,
then the given record can be discarded. PDBF cannot be used across clusters
architectures, because it is not possible, using only the local bit filters, to filter
out data that has to be transmitted to remote clusters.
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Star Hash Join (SHJ). The strategy followed by SHJ is graphically explained
in Figure 3.a. RBFB is applied in order to keep copies of all the bit filters for
the star join query in every single cluster. On the other hand, PDBF allows the
lower operations of the query execution plan to have access to all the bit filters
of the query. This way, every record of the Fact table is checked against the bit
filters of its target cluster, and a record is only transmitted if it has a potential
joining record in the remote destination cluster. Thus, SHJ extends the use of
PDBF to clusters. Moreover, it gets a significant major reduction in terms of
data communication than just the Semi-join reduction executed alone.

We show the algorithmic version of SHJ in Figure 3.b. Given cluster j and n
joins between dimension tables (Dij , i = 0..n−1) and the Fact table (Factj), we
name the joining keys JKi. Thus, each record being scanned from table Factj
is processed as follows:

1. For each join in the query, we apply the shipping function used to distribute
data to the joining key (where to ship(JKi)). This way, we figure out the
target cluster of the current record. Joining keys in a star join are usually
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primary keys, which are also the partitioning keys, in the dimension tables.
Hence, the joining key JKi stored in each record from the Fact table, is the
only information needed to determine where it has to be shipped.

2. Then, the record being processed is tested against the bit filter of the target
cluster BFitarget . If it returns zero, the record can be discarded, otherwise it
has to be processed.

3 Evaluation Set Up

We perform our evaluation analyzing an environment similar to that used for the
TPC-H benchmark [2]. We simulate and analyze the execution of one TPC-H like
query over five clusters in an SMP configuration, each server with 32 processors
sharing 256GB of main memory and 512 disks. A similar configuration has been
used by IBM in a 10TB TPC-H benchmark [2].

We assume a 10TB TPC-H database, partitioned across the system with hash
partitioning. For our analysis, we have used a query based on TPC-H query 9
(see Figure 4). In Figure 4.a, we show the execution plan of the part of the
query that executes the star join, which has the shape of the Star Hash Join
schema explained in this paper. The memory available to each hash join is 1.3
GB, and the SMP degree is 32, meaning that the 32 processors will work in
parallel sharing resources within each cluster.

The selectivity of the dimension tables will vary depending on the values of
x,y,z and w shown in the query of Figure 4. In Figure 4.b we show the different
selectivity sets applied to the dimension tables that we use in order to analyze a
wide range of situations for the different techniques being compared. Bit filters
are used in all hash joins no matter what the selectivity is of the build relation.
The default fraction of false positives [8](Fp) for any bit filter is set to Fp = 0.05.

select
nation, o year, sum(amount) as sum profit from
(
select

n name as nation,
year(o orderdate) as o year,
l extendedprice * (1 - l discount) - ps supplycost*
l quantity as amount

from
tpcd.part,tpcd.supplier,
tpcd.lineitem, tpcd.partsupp,
tpcd.orders, tpcd.nation

where
s suppkey = l suppkey
and ps suppkey = l suppkey
and ps partkey = l partkey
and p partkey = l partkey
and o orderkey = l orderkey
and s nationkey = n nationkey
and p name like x
and n nationkey > y
and o orderpriority = ’z’
and ps availqty > w
) as profit

group by
nation, o year

order by
nation,
o year desc;)
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4 Analysis

We perform a detailed analysis based on the mathematical models carefully
explained in the extended version of this paper [4]. We compare the following
strategies: (i) a baseline where only local bit filters are generated, (ii) Remote Bit
Filters Broadcasted (RBFB) and (iii) the Star Hash Join (SHJ). Pushed Down
Bit Filters (PDBF) alone is not applicable in CLUMP architectures, as explained
earlier. We show results for the benefit obtained by the techniques compared to
the baseline strategy unless otherwise specified. Also, the plots show along their
horizontal axis, results for sets 1 to 6, as shown in the table of Figure 4.b.

Communication and I/O-Join Processing
Figure 5 shows the percentage of data communication reduction and that of I/O
reduction during join processing. The trends in both plots are quite similar:

– Data communication. SHJ always gets at least a 60% improvement, over
the baseline. In the best case a 92% improvement over the baseline is
achieved. The higher the selectivity of the whole query, the larger the im-
provement obtained with SHJ, as shown by sets 1, 3, 4 and 5. Also, the
effect of PDBF causes SHJ to further reduce inter-cluster communication,
with improvements over Semi-join reduction (RBFB) ranging from 25% to
65%.

– I/O. Figure 5.b distinguishes between the I/O incurred by the whole query
(SHJ-Whole) and that excluding the scan over the Fact table (SHJ-join).
SHJ saves a significant amount of I/O during query processing even in the
case when we account for the I/O incurred by the Fact table.

We achieve the best benefits when scan selectivities are low in the dimensions
of the upper non-collocated joins, as in sets 1, 3 and 5. That is predictable as
we are reducing a considerable amount of data from the Fact table in the leaves
of the plan. On the other hand, when the lowest selectivity is placed in the
dimension table of the collocated join, as in sets 2, 4 and 6, we get less benefit
over the baseline. This is because most of the records from the Fact table are
purged in the lowermost join. In this case the star join processing is less costly
even in the baseline execution.

Trade-Off. Communication vs. I/O
Figure 6 shows the amount of communication and I/O in TB modelled during
the processing of a star join. We assume that data is stripped across disks within
each cluster, and every SMP process can read and write data in parallel with
no overlapping. Hence, I/O is calculated for each of the 32 processes running in
each cluster. We can see that communication in CLUMP architectures does not
scale in the same way as I/O does. In all the cases we get 20 times more network
communication than I/O. Figure 6.c shows, for the selectivity set number 1, how
the I/O scales as more clusters of the same type are added. While I/O is reduced
significantly, communication, being the single resource shared by all clusters in
the network, remains the same.
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Fig. 5. a) Network data comm. reduction b) SHJ-Join: I/O reduction during join pro-
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Memory Resources
Figure 7.a shows the amount of memory in MB required by SHJ for each selec-
tivity set. We can see that SHJ needs in this particular case, at most, 1.8 GB
of main memory to keep all bit filters of the system with a fraction of false pos-
itives [8], Fp = 0.05. Figure 7.b shows the relation between the fraction of false
positives (Fp), and the memory (Mem) required by a bit filter and its selectivity
(Sel). Thus, if SHJ was limited by the amount of memory, then a larger fraction
of false positives would allow the necessary bit filters to fit in the local memory.
Using less memory increases the number of false positives that can be done in a
controlled manner. Sets 3 and 4 are always the worst case because orders and
ps partsupp, which are the larger dimension tables, have high selectivities, and
hence the size of the bit filters created during the respective build phases, is
large because of the presence of a high of incoming distinct values.
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a)
Star Hash Join memory requirements (10TB TPC-H)
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Fig. 7. Memory used by the Star Hash Join technique

5 Related Work

Ad hoc star join processing has been the focus of some research recently. Pre-
computed aggregate results, the use of indices, and clustering schemes are the
most relevant techniques to speed up query processing. The use of materialized
views [18] in ad hoc star join queries is limited because it is not possible to
know what is being queried in advance. BitMap Joins, introduced by O’Neil and
Graefe in [16] are the basis for other research on the topic; these are based on
the use of Bitmap indices [17][9]. The alternative to the use of indices is physical
clustering which aims at limiting the number of I/O accesses to the Fact table
required to process a query [12][14]. In this case, the Fact table may be created
by specifying one or more key dimensions that are used to cluster the table data.
Thus, the Fact table is organized in multiple hierarchical dimensions. Star joins
are then turned into multidimensional range queries reducing the number of I/O
accesses to the Fact table. A detailed comparison of these techniques and SHJ
has been carried out in the extended version of this paper [4].

6 Conclusions

Star Hash Join (SHJ) generalizes Pushed Down Bit Filters (PDBF) to CLUMP
architectures. Using the Semi-join reduction, bit filters are replicated in the
memories of all clusters, and thus, PDBF can be used in such environments.
Separately, they are totally different techniques: the former avoids data traffic
communication by using the bit filters created in remote clusters; the latter,
which can only be used in shared-everything systems, is aimed at avoiding data
processing by pushing down the bit filters to the lower operations of the execution
plan. SHJ exploits the use of bit filters, combining both techniques in CLUMP
architectures.

The models of SHJ show a significant improvement over the models of the
baseline and Semi-join reduction, in terms of data communication and I/O pro-
cessing for ad hoc star join query processing. Remarkably, the results show that



Ad Hoc Star Join Query Processing in Cluster Architectures 209

there is a reduction of between 60% and 90% for typical queries compared to
the baseline algorithm, which uses the bit filters for each individual join locally
in each cluster. Moreover, SHJ is not expensive in terms of the memory usage,
and it does not require the use of auxiliary static structures like indices and
materialized views.
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Abstract. Identifying approximately duplicate records between
databases requires the costly computation of distances between their at-
tributes. Thus duplicate detection is usually performed in two phases, an
efficient blocking phase that determines few potential candidate dupli-
cates based on simple criteria, followed by a second phase performing an
in-depth comparison of the candidate duplicates. This paper introduces
and evaluates a precise and efficient approach for the blocking phase,
which requires only standard indices, but performs as well as other ap-
proaches based on special purpose indices, and outperforms other ap-
proaches based on standard indices. The key idea of the approach is to
use a comparison window with a size that depends dynamically on a
maximum distance, rather than using a window with fixed size.

1 Introduction

The problem of identifying approximately duplicate records between databases
is known, among others, as duplicate detection or record linkage. Traditional
scenarios for duplicate detection are data warehouses, which are populated by
several data sources. Analyses on the data warehouse influence business deci-
sions, therefore a high data quality resulting from the data cleansing process is
of high importance.

In general the duplicate detection process is performed in two phases con-
sisting of a first phase identifying potential duplicates based on simple criteria,
called blocking phase and a second phase performing an in-depth comparison
of the potential duplicates resulting in the final estimation of a pair being a
duplicate or not.

The main goal of the blocking phase is to reduce the number of detailed
comparisons of records in the second phase, because even moderate sized data
sets with 105 records would result in 1010 record-pairs for a quadratic comparison
of all possible pairs. Such a two phase approach was first used by Newcombe [1]
and further formalized by the Fellegi-Sunter model for record linkage [2]. Most
other recent work on duplicate detection also follows this approach, e.g. [3,4,5].

This paper presents a variant of the sorted-neighborhood method of Hernan-
dez and Stolfo [3] for the blocking phase. This variant significantly decreases
the number of false matches without increasing the number of false misses. This
is accomplished by determining the size of the window based on a maximum
distance (like edit-distance) dynamically, in contrast to the fixed sized window
of the original approach.

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2005, LNCS 3589, pp. 210–220, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



A Precise Blocking Method for Record Linkage 211

The remainder of this paper is organized as follows. Section 2 lists require-
ments for the blocking phase and introduces related work. Section 3 presents
our blocking approach and Section 4 discusses an efficient implementation of it.
Section 5 presents the results of the evaluation of our approach compared to the
original one and Section 6 concludes.

2 Blocking

The purpose of the blocking phase is to find all duplicate records with a very
simple and efficient method. Because the second phase is in general very expen-
sive computationally, the blocking phase should also not introduce too many
false matches. Therefore the blocking phase should ideally fulfill the following
requirements:

– no false misses (very high recall)
– few false matches (high precision)
– few and cheap comparisons (low cost)
– low or no user-interaction (easy configuration)

It can be easily seen that there is a trade-off between ”high recall”, ”high
precision” and ”easy configuration”. As the precision is increased in the detailed
second phase, but the recall can not be increased later on, the priority should
definitely be on the recall side. Fellegi-Sunter examine the effect on the level
of false misses based on a blocking scheme [2]. A more detailed paper on the
problem of how to select an appropriate blocking scheme is found in [6].

A standard blocking method is to use the classic key approach for record
linkage [7], i.e. record equivalence is determined based on equivalence of key
expressions. For blocking these keys are chosen to be very general in order to
produce a high recall. Often such a key must be so unspecific that the resulting
blocks are much too large. Additionally, small typos in the selected blocking key
values result in records being put in different blocks and finding such a blocking
key requires high user-interaction.

The sorted-neighborhood method [3] sorts the records based on a sorting key
and then moves a window of fixed size sequentially over the sorted records. All
pairs within such a window are classified as potential duplicates. The disadvan-
tage of this approach is the fixed size of the window; if the number of records
with the same sorting key is larger than the window size, not all potential du-
plicate records will be compared. Typos in the first characters of the sorting key
can also result in records being outside the window and thus not be detected as
potential duplicates. For this problem Hernandez-Stolfo [3] propose to do multi-
ple passes with different sorting keys and small window sizes instead of one pass
with a large window size.

This paper presents a modified version of the original sorted-neighborhood
method by replacing the fixed sized window with a dynamically sized window
based on a distance measure between the keys. The original sorted-neighborhood
method is compared to our blocking approach in the evaluation.
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The ”Bigram Indexing” [8] method converts the blocking key values into a
list of bigrams (sub-strings containing two characters) and builds sublists of all
possible permutations using a threshold. The resulting bigram lists are sorted
and inserted into an inverted index, which is used to retrieve the corresponding
record numbers in a block.

Finally, the ”Canopy Clustering” [9] method forms blocks of records based
on those records placed in the same canopy cluster. Canopy clusters contain all
records within a thresholded distance of a blocking key from a center record,
which in general results in overlapping clusters. The distance is calculated using
some distance measure like edit-distance.

Baxter et al. [10] compared these four blocking algorithms and showed that
the ”Bigram Indexing” and the ”Canopy Clustering” significantly outperform
the two more traditional approaches. We compare our approach to the results
of their experiments.

3 Approach

We achieved the best results with a variant of the sorted-neighborhood method
as presented by Hernandez-Stolfo [3]. In the case that a single data source (or
already merged data sources) need to be examined for duplicates, the algorithm
is shown in Figure 1.

function detectDuplicates(records S, key K)
sort S on K

init W with ()

for each key1 in S
for each key2 in W
if(distance(key1, key2) < Threshold)

then potential-duplicates(
records of key1,
records of key2

)
else remove key2 from W

add key1 to W

Fig. 1. Blocking algorithm on single source

The records are sorted based on a key value, which can be a single attribute
value or the result from a complex key expression. We try to use simple sorting
keys, which in practice often allows to use existing indices on the key to get the
sorted list of records. Otherwise the sorting is done be creating a new index for
that key. The complexity to create such an index is in general O(n ∗ logn).
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The sorted list of records is then sequentially scanned for potential duplicates
by comparing all keys within a sliding window. In contrast to Hernandez-Stolfo
[3] we use a dynamically sized window, where the size depends on a fixed distance
between the key values. The distance between the key values is determined by a
distance function like edit-distance. This dynamically sized window is in practice
often much smaller than a fixed sized window, but larger when required.

The complexity of this algorithm is O(n∗ logn+k∗w), where k is the number
of different key values and w is the average size of the window. k depends on
the uniqueness of the selected blocking key. If two data sources or a new data
source and a set of already integrated data sources need to be examined for
duplicates, the algorithm can be slightly modified, that only keys from different
data sources are compared, assuming the individual data sources are duplicate
free. Also the sorting of the integrated data set needs to be done only once and
is therefore ignorable in the long run, which further reduces the complexity of
the algorithm.

As long as the sorting of the keys is in general not done by distance, but
mostly alphabetically, it is clear that not all keys that are within the distance
threshold are also within the window. In other words, for the three sorted keys
with key1 < key2 < key3 it does not necessarily hold that dist(key1, key2) <
dist(key1, key3). To this end, it is better to do multiple passes with different keys,
instead of selecting just a single sorting key for the blocking process. Experiments
showed that such a multi-pass approach provides higher recall and precision for
the resulting potential duplicate set, even with much smaller window sizes and
therefore fewer comparisons than a single-pass approach. This is consistent with
the results of the original sorted-neighborhood method of Hernandez-Stolfo [3].

4 Evaluation

4.1 Datasets

For an evaluation we have chosen a Restaurant, a Census data set and a gen-
erated Mailing data set, which have been previously used as benchmarks for
duplicate detection and blocking methods, e.g. in [5,4,10]. The restaurant dataset
contains 864 restaurant names and addresses with 112 duplicates, composed of
533 and 331 restaurants assembled from Fodor’s and Zagat’s restaurant guides.
These individual datasets are duplicate free. The attributes used in the experi-
ments are restaurant name and street address. Table 1 shows a sample duplicate
record from this dataset.

The census data set is a synthetic dataset containing 824 census-like records
with 327 duplicates, composed of two duplicate free sets with 449 and 375
records. The attributes used in the experiments are last name and first name.
Table 2 shows a sample duplicate record from this data set.

The Mailing data set is generated by the DBGen [3] database generator.
It generates artificial address records and randomly introduces duplicates with
errors. We have used the same settings as [10] to generate data sets with ap-
proximately 1000, 2000, 5000 and 10000 records, where the number of clusters
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Table 1. Sample duplicate records from the Restaurant data set

name address city cuisine
uncle nick’s 747 ninth ave. new york city greek
uncle nick’s 747 9th ave. between 50th and 51st sts. new york mediterranean

Table 2. Sample duplicate records from the Census data set

last name first name house number street
JIMENCZ WILLPAMINA S 214 BANK
JIMENEZ WILHEMENIA 214 BANKS

Table 3. Sample duplicate records from the Mailing data set

last name first name street number street city
Swenberg Gruemnkranz 436 Klich Avenue Anchor Point
Swenbearg Gruenkranz 436 Klich Avenue sAnchor Point

are half the number of records, which results in most records having a single
duplicate. However some records will have more than one other record with a
true match and some will have no duplicates. For the experiments only the last
name and first name is used. Table 3 shows a sample duplicate record from this
dataset.

4.2 Experimental Methodology

The data sets are transformed into an XML format and stored into an XML
database. Indices on every single attribute were created, which corresponds to a
sorting on every attribute.

For comparison of the experimental results with [10], we use the ”reduction
ratio” (RR), ”pairs completeness” (PC) and ”F score” as defined there, instead
of the usual precision, recall and F-measures as used in information retrieval [11]

RR = 1 − |PotentialDuplicates|
|AllPairs|

PC =
|CorrectlyIdentifiedDuplicates|

|TrueDuplicates|

Fscore =
2 ∗ RR ∗ PC

RR + PC

The reduction ratio is the relative reduction in the number of pairs to be
compared. The pairs completeness is equivalent to the definition of recall. RR
and PC should be maximized, however there is a tradeoff between them. The
F score is a single measure that combines RR and PC via a harmonic mean.
Instead of precision-recall curves we present RR-PC curves for a corresponding
graphical overview.
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4.3 Comparison with the Original Method

At first we compare our method to the original sorted-neighborhood method [3].
To this end we measure the RR and PC values for the original fixed window

Fig. 2. RR-PC for the restaurant data set

Fig. 3. RR-PC for the census data set
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sizes between 0 and 10 in single steps and for our dynamically sized windows
for distances between 0 and 0.5 in steps of size 0.05. Both methods are used in
a single pass way on the two individual attributes as well as in a two pass way
on both attributes. The RR-PC curve for the restaurant data set can be seen in
Figure 2, the RR-PC curve for the census data set in Figure 3.

Both figures show that our method significantly outperforms the original
method in all experiments. It can be further seen that the combined multi-pass
approach reaches a much higher accuracy than the single-pass approaches. E.g.
the combined approaches on the restaurant data set show a reduction ratio of
0.999 for our vs. 0.991 for the original approach for the maximum pairs com-
pleteness; on the census data set our approach reaches 0.967 vs. 0.956 of the
original approach.

4.4 Costs

In order to compare the costs of the original method to our approach, we mea-
sure the number of distance calculations between individual attributes. Our ap-
proach needs to calculate such distances during blocking for determining the
window, but at the same time it is able to save this distance in the compari-
son vector of the potential duplicates for the second duplicate detection phase.
In contrast, the original approach needs no such comparisons during the block-
ing phase, but has to determine the complete comparison vector distances in
the second phase. Therefore a valid cost comparison is to count the number
of distance calculations during the blocking and the second phase. Figure 4
shows the number of calculations in comparison to the reached pairs complete-
ness for the restaurant data set and Figure 5 shows the same for the census
data set.

These figures show that our approach is either equally expensive or even
cheaper in terms of number of comparisons. E.g. the combined approaches on
the restaurant data set show 2048 comparisons for our vs. 3244 comparisons for
the original approach for the maximum pairs completeness; on the census data
set our approach needs 10365 vs. 14732 comparisons for the original approach
for the maximum pairs completeness. This reveals that moving a part of the
comparison complexity already to the blocking phase does not only significantly
increase the accuracy of the resulting potential duplicates, but also reduces the
overall costs of the duplicate detection process.

4.5 Comparison with Other Blocking Methods

Baxter et al. [10] have compared the standard blocking using keys, the original
sorted-neighborhood, the Bigram indexing and the Canopy Clustering methods
against the mailing data set. In order to compare our approach with their re-
sults, we have conducted experiments with the same settings for three different
dynamic window sizes: 0.1, 0.2 and 0.3.
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Fig. 4. Blocking costs for the restaurant data set

Fig. 5. Blocking costs for the census data set

Figure 6 shows the pairs completeness, Figure 7 shows the reduction ration
and Figure 8 the F score against the size of the data sets for the three window
sizes and the two best other approaches from [10], that are the Canopy Clustering
with cluster size 1.5 and Bigram Indexing with bigram size of 0.3.
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Fig. 6. Pairs completeness on the mailing data set

Fig. 7. Reduction ratio on the mailing data set

These figures clearly show that our approach is competitive for all win-
dow sizes with even the best other approaches. In contrast to the other top
blocking methods, our approach does not require any new indexing structures
to be implemented. It simply uses existing standard indices on individual at-
tributes.
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Fig. 8. F score on the mailing data set

5 Conclusion

This paper has presented a variant of the sorted-neighborhood method for the
blocking phase in record linkage. Our approach removes the main disadvantage
of the method by replacing the fixed sized windows with dynamically sized win-
dows using distance measures. The evaluations have shown that our approach
significantly improves the accuracy of the original method and does this surpris-
ingly without higher costs. Further experiments have shown that our approach
is also competitive to even the best other blocking methods, without the need
for any additional indexing structures, but simply relying on standard indices on
individual attributes. As future work we want to automatically find an optimal
threshold for the dynamic window size for a given key.
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Abstract. This paper presents a new approach toward approximate
query answering in data warehouses. The approach is based on an adap-
tation of rough set theory to multidimensional data, and offers cube
exploration and mining facilities.

Since data in a data warehouse come from multiple heterogeneous
sources with various degrees of reliability and data formats, users tend
to be more tolerant in a data warehouse environment and prone to ac-
cept some information loss and discrepancy between actual data and
manipulated ones.

The objective of this work is to integrate approximation mechanisms
and associated operators into data cubes in order to produce views that
can then be explored using OLAP or data mining techniques. The inte-
gration of data approximation capabilities with OLAP techniques offers
additional facilities for cube exploration and analysis.

The proposed approach allows the user to work either in a restricted
mode using a cube lower approximation or in a relaxed mode using cube
upper approximation. The former mode is useful when the query output
is large, and hence allows the user to focus on a reduced set of fully
matching tuples. The latter is useful when a query returns an empty or
small answer set, and hence helps relax the query conditions so that a
superset of the answer is returned. In addition, the proposed approach
generates classification and characteristic rules for prediction, classifica-
tion and association purposes.

Keywords: approximate query answering, OLAP queries, data mining,
rough set theory, data warehouses, multidimensional data.

1 Introduction

Since data in data warehouses (DW) come from multiple heterogeneous sources
with different levels of reliability and quality, users may be more tolerant and
accept some information loss and discrepancy between actual data and manip-
ulated ones provided a more efficient query processing is insured. In relational
database literature, there have been a set of studies about flexible query answer-
ing (see for e.g., [1,2]). They mainly focus on relaxing query conditions in order
to return non-empty answer sets.
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In the context of DWs and multidimensional data, query approximation has
been used in order to accelerate aggregate computation and query execution at
the expense of some information loss. Most of work has been conducted based on
sampling techniques [3,4]. In [5], a wavelet-based approach is used for approximate
query answering and proves to be more effective than sampling techniques. In a
similar spirit, [6] uses the probability density distribution of data in order to pro-
pose a compressed representation of data cubes which reduces data storage and
leads to approximate answers of aggregate queries. Wavelet based techniques have
been used either for progressive evaluation of some specific OLAP queries [7,5] or
as a sampling technique. As in [6], Vitter et al. [8] uses wavelets for compressing
sparse data cubes and getting approximate answers of aggregate queries.

In our approach, we allow an approximate evaluation of OLAP queries such
that the output is either a subset or a superset of the exact query answer.

Our present work aims at offering flexible query answering mechanisms and
tools for cube exploration. To that end, we have (i) adapted the rough set theory
to multidimensional data in order to provide approximate answers to queries
and define concepts (cube subsets) according to user’s need (ii) proposed an
enrichment of OLAP techniques with new operators that allow more flexible
interactions between the user and the data warehouse, and (iii) defined materi-
alized views to capture and then exploit the output of approximate operators for
query answering and data mining purposes (cell clustering and association rule
mining). As a consequence, the approximation concerns not only the answer to
OLAP queries but also the data mining output.

The paper is organized as follows. Section 2 provides a brief background
about the rough set theory while Section 3 presents an illustrative example. The
proposed approach is described in Section 4.

2 Background

The Rough Set Theory (RST) was introduced by Z. Pawlak at the beginning of
the 80s [9]. It offers a theoretical foundation for handling vague concepts and
badly defined borders [10]. Its emergence represents an important evolution in
the area of artificial intelligence and notably in inductive learning from inco-
herent data. It was applied in a wide variety of applications such as medicine,
industry, finance, commerce, and so on.

The theory of rough sets is based on the notions of indiscernibility and ap-
proximation. The former expresses the degree of similitude between objects while
the latter allows a description of a concept (a given set of objects), based on pos-
sible flaw in data.

In an approximation context, an information system A is a pair (U, A) where
U is a non-empty finite set of objects called the universe and A is a non-empty
finite set of attributes.

Function f returns the value of an attribute in A for any object in U :

f : U × A → V

∀o ∈ U and a ∈ A, (o, a) �−→ f(o, a) ∈ Va
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where Va is the value set of a ∈ A and V is the union of the value sets attached
to the attributes in A.

Indiscernibility is an equivalence relation upon a subset P of attributes used
to describe the objects in the universe. Two objects are indiscernible with respect
to P if they have the same value for each attribute in P . In order to conduct
approximation and data mining tasks, two disjoint subsets are extracted from the
whole set A: the set C of condition (description) attributes used to describe the
objects, and the set D of decision (classification) attributes used to partition
the universe into several concepts (a set of objects) in which objects will be
approximately classified.

Given two objects oi and oj ∈ U , the indiscernibility relation IP ⊂ U × U
w.r.t. P ⊆ C is defined as:

IP = {(oi, oj) ∈ U2 : ∀q ∈ P f(oi, q) = f(oj , q)} (1)

where f(o, q) is the value of q for the object o. Since the indiscernibility relation
is an equivalence one, the universe U can be partitioned into equivalent classes
in which objects are indiscernible from each other by attributes from P .

For any given concept X , the RST allows the computation of two approxi-
mate sets that are a subset and a superset of the exact set of objects respectively
(see Figure 2 for an illustration). The first one is called the lower approximation
and contains objects that belong actually to the concept X , whereas the second
one is called the upper approximation which may contain objects that are not el-
ements of the described concept but are indiscernible with one or several objects
associated with X . From these two approximations, one can compute additional
approximate sets such as the boundary region as well as the positive and nega-
tive regions. It is also possible to compute classification and characteristic rules.
More details will be given in Section 4.

A generalization of the RST is called the α-Rough Set Theory (α-RST) [11,12]
where α represents the tolerated degree of similarity between objects with respect
to a given subset of description attributes (see Section 4 for more details).

3 An Illustrative Example

The following example will serve as an illustration for the proposed approach.
It concerns a simplified structure of a data warehouse, called Patents-OLAP,
related to patent submission and approval. For simplicity reasons, we limit our-
selves to a data cube relating a fact table to the following dimension tables (see
Figure 1) and having the number of patents (nb patents) as the unique measure:

– APDM (APplication Date in Month): month when the patent is applied for.
– APDY (APplication Date in Year): year when the patent is applied for.
– ISDM (ISsue Date in Month): month when the decision (rejection or ap-

proval) about the patent is issued.
– ISDY (ISsue Date in Year): year when the decision is given.
– ET (Elapsed Time): elapsed time in month intervals between submission and

decision dates.
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ATTORNEY COUNTRY

ATC_ID
atc1
atc2

ATCountry
France
Canada

APDM DIMENSION

APDM_ID
...
apdm5
...
apdm10
...

APDMonth
...
May
...
October
...

APDY DIMENSION

APDY_ID
apdy1
apdy2

APDYear
1993
1994

ISDY DIMENSION

ISDY_ID
isdy1
isdy2
isdy3

ISDYear
1998
2000
2002

ISDM DIMENSION

ISDM_ID
...
isdm2
...
isdm9
...
isdm11
...

ISDMonth
...
February
...
September
...
November
...

ICL DIMENSION

ICL_ID
icl1
icl2

LIB
Textile
Pharmacy

ELAPSED TIME DIMENSION

ET_ID
et1
et2
et3

LOWER_BORDER 
40
65
90

UPPER_BORDER
64
89
114

INVENTOR COUNTRY

INVC_ID
invc1
invc2
invc3

INVCountry
France
Canada
Belgium

        PATENTS FACT TABLE

ID
fact1
fact2
fact3
fact4
fact5
fact6
fact7
fact8
fact9

APDM
apdm5
apdm5
apdm10
apdm10
apdm10
apdm5
apdm10
apdm5
apdm5

APDY
apdy1
apdy1
apdy2
apdy2
apdy2
apdy1
apdy2
apdy1
apdy1

ISDM
isdm2
isdm9
isdm9
isdm2
isdm11
isdm11
isdm2
isdm2
isdm9

ISDY
isdy1
isdy2
isdy2
isdy1
isdy3
isdy3
isdy1
isdy1
isdy2

ET
et1
et2
et2
et1
et3
et3
et1
et1
et2

INV
inv1
inv2
inv2
inv1
inv3
inv3
inv1
inv1
inv3

AT
at1
at1
at1
at1
at2
at2
at1
at2
at1

ICL
icl1
icl2
icl2
icl1
icl1
icl1
icl2
icl1
icl2

NB_PATENTS
124
98
57
112
59
98
65
87
121

ATTORNEY DIMENSION

AT_ID
at1
at2

LIB
Patents Room
Patents Home

ADDRESS
15, Av des Jardins, Paris
12, Bd des Beaux Arts, Montreal 

COUNTRY_ID
atc1
atc2

INVENTOR DIMENSION

INV_ID
inv1
inv2
inv3

NAME
Schmitt Vincent
Tom Alex
Bob Alexandra

ADDRESS
15, Av de Gaule, Paris
43, Bd des Beaux, Quebec
31, Av des bienvenus, Brussels

COUNTRY_ID
invc1
invc2
invc3

Fig. 1. A snowflake schema and extent of Patents-OLAP data cube

– INV (INVentor): information about the patent inventor.
– AT (ATtorney or agent): information about the legal representative of the

inventor.
– ICL (International CLassification): international nomenclature of the patent.

Since the classification of patents is manually conducted by domain experts,
some patents could actually belong to a classification that is different from the
one selected by humans. To illustrate this fact, let us assume that an inventor is
applying for two patents, one for a given drug and another one for packing it in
an appropriate way. We also assume that the two patent applications are handled
by the same legal representative and have very similar properties (inventor,
legal representative, application date and probably decision date and elapsed
time). According to the selected variables, the two patent applications (facts)
may be indiscernible and hence belong to the same class while experts classified
the first patent in the pharmacy class, and the second one in the paper and
printing class. The discovered indiscernibility may give a hint for a classification
revision of patent applications. Therefore, our approach can be exploited to
revise the classification proposed by experts by highlighting the similarity that
may hold between facts for a given set of dimensions corresponding to a given
user’s perspective.

4 An Approximation Method

Our contribution consists to first adapt the rough set basics to the framework
of multidimensional data. Then, mechanisms for approximate query answering
as well as OLAP analysis and data mining are settled.
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4.1 Adaptation of the α-RST to the Multidimensional Data
Framework

α-RST offers more flexibility than RST in the sense that indiscernibility be-
tween two objects is assessed according to a subset (instead of the whole set) of
condition attributes.

In this section we present the integration of the rough set theory with the
multidimensional framework by proposing new operators to compute concept ap-
proximations (see Section 4.3). This can be perceived as an enrichment of OLAP
techniques with uncertainty handling mechanisms. Such enrichment introduces
flexibility in querying multidimensional data since noisy/dirty data (e.g., missing
values) can be taken into account.

The multidimensional model of a data warehouse contains mainly a fact table
FT linked to a set of dimensions DIM = {dim1, . . . dimn}. To each dimi cor-
responds a set of values, i. e., members, that we note dimi1 , . . . , dimim . In such
multidimensional context, the universe mentioned in the rough set theory cor-
responds to the fact table FT and hence an object is a fact, and key-attributes
are obviously logical pointers to dimension tables. Dimensions are divided into
two distinct sets: condition dimensions C1 (used to describe facts) and decision
dimensions D2 that will be used for classification and prediction purposes. To
a given dimension from D may correspond as many target concepts (i.e., sets of
facts that belong to a given class) as there are members (e.g., ICL nomenclature
= textile) of this decision (classification) dimension. Hence, computing approx-
imations of this dimension consists in describing the appurtenance of facts to
each one of the target concepts associated with D.

Example 1. Using the illustrative example, one can select ICL as the decision
dimension and the rest of dimensions as condition (description) dimensions. By
doing so, we aim at describing the outbuilding of patents to a given international
class not only based on the nature of the patented product, but also on informa-
tion about the application date, the time needed to issue a patent decision, the
inventor as well as the legal representative of the inventor. Then, we can conduct
a kind of superposition of patent classification conducted by domain experts and
patent classification provided by our approach.

By relying on approximation mechanisms offered by the RST one can gener-
ate two classes in which a given patent may be put: a ”strict” class in which a
subset of a given target concept X can be placed with certainty, and a ”relaxed”
class containing all the elements of X plus patents having indiscernible members
outside that concept. The user can decide, according to his needs and the degree
of flexibility he initially sets up, to consider one approximation or another to
describe the sought concept, rather than considering the set X of patents that
a conventional query system would return.

1 C = {c1, c2, . . .} with dom(ci) = {ci1 , ci2 , . . .}.
2 D = {d1, d2, . . .} with dom(di) = {di1 , di2 , . . .}.
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Figure 1 shows that the decision dimension ICL has two distinct values:
icl1 (textile) and icl2 (pharmacy). Then, two target concepts are produced, i.e.,
ICL = textile and ICL = pharmacy.

Let us now consider two facts x, y ∈ FT , Iα
P an indiscernibility relation built

on FT according to a dimension set P ⊆ C and defined as follows:

xIα
P y ⇔ |{q ∈ P : f(x, q) = f(y, q)}|

|P | ≥ α (2)

where α ∈ [0, 1] defines the minimal proportion of condition dimensions that the
facts x and y have to share to be considered as indiscernible3. As opposed to
the classical rough set theory in which indiscernibility relation w.r.t. a concept
P generates a partition of equivalence classes, α-RST leads to an overlapping of
classes.

Example 2. Let α = 0.75, and P = C = {APDM, ET, INV C, ATC}. The two
facts fact2 and fact9 belong to the same indiscernibility relation since they share
the same values for 0.75% of the four dimensions.

The lower approximation of X ⊆ FT according to P , noted P (X), is the
union of all the equivalence classes Gk defined according to Iα

P and included
in X :

P (X) =
⋃

Gk⊆X

Gk (3)

In other words, the lower approximation of a fact subset can contain only
facts whose appurtenance to the target concept is certain, i.e., for any xi ∈ P (X)
one can assert that xi ∈ X .

The upper approximation of X according to P , noted P (X), is the union of
the equivalence classes defined according to Iα

P and containing at least one fact
of X :

P (X) =
⋃

Gk

⋂
X 
=∅

Gk (4)

The upper approximation of X can then contain facts which are not nec-
essarily included in X but are indiscernible with one (or several) facts of X .
Therefore, lower and upper approximations of a set X are respectively the inte-
rior and the closure of this set in the topology generated by the indiscernibility
relation as illustrated by Figure 2.

The boundary region of X ⊆ FT based on P , denoted by P̃ (X), contains
objects that cannot be put into X in a conclusive manner. It is defined as follows:

P̃ (X) = P (X) − P (X) (5)

When the boundary region of X is non-empty (respectively empty), the set X
is called rough (respectively crisp).

3 when α = 1, Iα
P is nothing but IP described in Section 2.
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fact5

fact6

+

+

fact1

fact4 fact7

fact8

fact2

fact3

fact9

_

_

_

_Lower approximation

Upper approximation

Fact table

The concept (ICL=Textile)

Fig. 2. Approximate spaces corresponding to the concept ICL=Textile

Example 3. Using the illustrative example, the set of equivalence classes ex-
tracted from the fact table with respect to the condition dimension set P =
{APDM, ET, ATC, INV C} and α = 0.75 is:

{{fact1, fact4, fact7, fact8}, {fact2, fact3, fact9}, {fact5, fact6}}.
For the target concept X corresponding to ICL = textile, the associated fact

set to be approximated is X = {fact1, fact4, fact5, fact6, fact8}. The lower ap-
proximation of X is the union of equivalence classes that are completely included
in that concept, i.e., P (ICL = textile) = {fact5, fact6}. Its upper approxima-
tion is the union of equivalence classes which have a non-empty intersection with
that target concept, i.e. P (ICL = textile) = {fact1, fact4, fact5, fact6, fact7,-
fact8}. The boundary region of this concept is P̃ (ICL = textile) = {fact1,-
fact4, fact7, fact8}.

Figure 2 illustrates this concept approximation by showing how the patents
are spread over the approximation spaces corresponding to the given concept.
The sign ”+” represents patents that belong with certainty to the target concept,
the sign ”−” represents patents that are not members of that concept while the
difference between the two sets delimited by dotted lines represents the boundary
region, i.e., patents that may belong to the concept but not with certainty.

In a similar way, the target concept ICL = pharmacy whose correspond-
ing facts are in the set: {fact2, fact3, fact7, fact9} has a lower approxima-
tion P (ICL = pharmacy) = {fact2, fact3, fact9} and an upper approxima-
tion P (ICL = pharmacy) = {fact1, fact2, fact3, fact4, fact7, fact8, fact9}. Its
boundary region is given by P̃ (ICL = pharmacy) = {fact1, fact4, fact7, fact8}.

Let di1 , . . . , and dim be values (members) of the target dimension di ∈ D,
the positive region of di according to P , noted POSP (di), contains facts that
can be put with certainty and no ambiguity in one of the target concepts that
it generates. It is defined by:
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POSP (di) =
⋃

j:1,...,m

P (dij ) (6)

Example 4. The positive region for the decision dimension ICL is POSP (ICL) =
{fact2, fact3, fact5, fact6, fact9}.

The negative region of di according to P , noted NEGP (di), contains facts
that do not belong to any target concept associated with di and is defined by:

NEGP (di) = FT −
⋃

j:1,...,m

P (dij ) (7)

Once the lower and upper approximations of each target concept are defined,
association rules can then be generated. The lower approximation allows the
generation of classification rules, called also decision rules, which are defined
from the description of facts whose appurtenance to the target concept does not
create any ambiguity. For a given decision dimension di and condition dimensions
in P , the whole set of classification rules is computed from the positive region
POSP (di). Rules generated from the upper approximation of a target concept
are called characteristic rules since they are based on the description of facts
whose appurtenance to the target concept is possible but not necessarily certain.

A classification rule is an expression of the form ϕ =⇒ (di = dij ) drawn
from the lower approximation, where di is a decision dimension, dij a given value
(member) of that dimension, and ϕ is a disjunction of predicates defining descrip-
tion attributes. Each predicate in ϕ can be a conjunction of conditions ck = ckl

where ck ∈ C (condition dimensions) and ckl
is a value of ck. A characteristic

rule is expressed by (di = dij ) =⇒ ϕ drawn from the upper approximation.

Example 5. In our example, the classification rules are:

(APDM = October ∨ May) ∧ (ET = 90 to 114 months) ∧ (INV C = Belgium)

∧(ATC = Canada) −→ (ICL = Textile)

((APDM = May ∨ October) ∧ (ET = 65 to 89 months) ∧ (INV C = Canada)

∧(ATC = France)) ∨ ((APDM = May) ∧ (ET = 65 to 89 months)

∧(INV C = Belgium) ∧ (ATC = France)) −→ (ICL = Pharmacy)

The first rule can be stated as follows: IF the patent application was submitted
on October or May AND the decision was issued from 90 to 114 months AND
the inventor’s country is Belgium AND the country of the legal representative
is Canada, THEN its international classification is textile. Such rule has been
generated from the lower approximation P (ICL = textile) = {fact5, fact6}.

As a conclusion, the proposed approach allows the user to get an approximate
answer to his query either in a restricted mode using a cube lower approximation
or in a relaxed mode using cube upper approximation. The former mode is useful
when the query output is large, and hence allows the user to focus on a reduced
set of fully matching cells. The latter is useful when a query returns an empty
or small answer set and allows to relax the query conditions. The exact answer
lies between the lower and upper approximations [13].
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4.2 Algorithm

The following algorithm for concept approximation in multidimensional data
computes in ”one shot” all the approximation spaces (upper, lower and boundary
region) for each target concept associated with the decision dimension. It also
computes positive and negative regions of that dimension and generates the
corresponding classification and characteristic rules.

The algorithm makes use of the dimension tables as well as the fact table,
takes into consideration the set P of description dimensions, the decision dimen-
sion d as well as a value for α ∈ [0, 1].

Algorithm 1 α-approximations
1: input
2: FT : fact table with n dimensions and k measures;
3: DIM : set of n dimension tables (DIM = C ∪ {d});
4: P : description dimension subset, P ⊆ C ⊂ DIM ;
5: d: decision dimension with m members, i.e., dom(d) = {d1, . . . , dm};
6: α: similarity coefficient;
7: begin{α-approximations}
8: for i from 1 to m do Di = compute target concept(FT, d);/*Di target concept

of d*/
9: for all Di ∈ D1, . . . , Dm do

10: D⊕
i := compute examples(Di, FT ); /* D⊕

i fact set (called examples) with the
value di for d */

11: for all fact ∈ D⊕
i do

12: [fact]Iα
P

:= compute equivalence class(fact, FT, P, α); /*[fact]Iα
P

is the
equivalence class of fact w.r.t. P */

13: if [fact]Iα
P

⊆ D⊕
i then

14: insert([fact]Iα
P

, LowerV iew Di);
15: else
16: insert([fact]Iα

P
, UpperV iew Di);

17: end if
18: end for
19: BoundaryRegionV iew Di := UpperV iew Di − LowerV iew Di;
20: end for
21: V iewPOSP d :=

⋃n
i=1 LowerV iew Di;

22: V iewNEGP d := FT − ⋃n
i=1 UpperV iew Di;

23: Table ClassificationRules d := generate classification rules(V iewPOSP d);
24: Table CharacteristicRules d := generate characteristic rules(

⋃n
i=1 Upper-

V iew Di);
25: end{α-approximations}

The algorithm has two main steps. At the first step (lines 8 to 20), it computes
target concepts associated with the decision dimension. A target concept (e.g.,
all patents that have ICL = Textile) is noted Di which corresponds to d = di

where d is the target dimension and di the ith value of the member set of d.
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Then, for each target concept Di, the algorithm computes the set of all facts
having d = di (line 10). Then, the equivalence classes are computed4 in line 12.
If elements of an equivalence class are included in the current concept, then that
class is added to the lower approximation of that concept. Otherwise, it is added
to its upper approximation. At the end of this first step, and before exploring
the next target concept, the algorithm computes (line 19) the view related to
the boundary region associated with the current concept.

Once the target concepts are processed, positive and negative regions for
the decision dimension as well as classification and characteristic rules can be
computed using the views created at the first step.

The algorithm computes approximation spaces which are then stored as ma-
terialized views sharing the same structure as the initial fact table. Such views
become an important component of the data warehouse, and are automatically
linked to dimension tables. Moreover, they allow the user to create new OLAP
cubes that encapsulate lower, upper and boundary spaces of target concepts as
well as positive and negative regions of the target dimension.

The advantages of the proposed algorithm concern (i) the computation of
approximate spaces related to a given decision dimension with respect to a set
of characteristic dimensions, (ii) the relaxation of the similarity among facts
through the parameter α, (iii) the data mining of classification and characteristic
rules, and (iv) the approximate OLAP querying by using OLAP operations on
computed approximation spaces.

4.3 New Operators for Approximating Concepts

Using a SELECT-like syntax, we define seven instructions to get approximation
spaces, positive and negative regions as well as characteristic and classification
rules. The user can then utilize one of the following instructions and providing
values for the decision dimension (dimension that serves for classification or
characterisation purposes) and the dimension member (target value).

– select lower decision dimension = target value
– select upper decision dimension = target value
– select boundary region decision dimension = target value
– select characteristic rules decision dimension = target value
– select classification rules decision dimension = target value
– select positive region decision dimension
– select negative region decision dimension.

The new operators act as filters for existing OLAP cubes by retrieving only
cells that belong to the requested approximation. The user can then follow up
his exploration by limiting himself to the new generated cube and then apply-
ing OLAP and data mining operators on that cube. Such mechanisms bring
additional capabilities for analytical processing (e.g., special focus on an ap-
proximation space) and an integration of OLAP and data mining facilities.
4 Remember that in a α-approximate context, we may have overlapping classes rather

than disjoint ones.
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5 Conclusion

This paper introduces OLAP cube approximation capabilities by integrating
notions of the rough set theory into the multidimensional data context. The
proposed approach allows the user to get approximate answers in two ways:
a tight lower bound which insures that all output elements (cube facts) are
in the exact answer or a loose upper bound that may contain a superset of
the exact answer. The former mode is useful when the query output is large,
and hence allows the user to focus on a reduced set of fully matching tuples.
The latter is useful when a query returns an empty or small answer set, and
hence allows to relax the query conditions in order to get a larger output. In
addition, the proposed approach generates classification and characteristic rules.
The classification rules can be exploited to revise the nomenclature proposed by
experts by highlighting the similarity that may hold between facts for a given
set of dimensions corresponding to a given user’s perspective.

Our current work deals with dimensionality reduction and statistical model-
ing in data warehouses in order to discover useful patterns (e.g., outliers) in data
and discard irrelevant dimensions or dimension members. We are also exploring
alternatives for a tight coupling of data mining and OLAP operators to study
for example the impact of a roll-up operation on an existing rule set.
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Abstract. A new implementation scheme for relational tables in mul-
tidimensional databases is proposed and evaluated. The scheme imple-
ments a relational table by employing a multidimensional array. Using
multidimensional arrays provides many advantages, however suffers from
some problems. In our scheme, these problems are solved by an efficient
scheme of record encoding based on the notion of extendible array. Our
scheme exhibits good performance in space and time costs compared
with conventional implementation.

1 Introduction

The strong need to handle large scale data efficiently has been promoting ex-
tensive research themes on organization or implementation schemes for multi-
dimensional array [1][2]. In recent years, on line analytical processing (OLAP)
employing multi-dimensional arrays is becoming increasingly important for the
analysis of statistical multi dimensional data [3][4]. In this paper, a new imple-
mentation scheme for relational tables is proposed and evaluated. The scheme
implements a relational table by employing a multidimensional array like in
MOLAP (Multidimensional OLAP) systems [4][5]. However, these kinds of mul-
tidimensional arrays suffer from the following two problems:

(1) In general, they are sparse.
(2) Their sizes are fixed in every dimension; when a new column value is added,
array size extension along the dimension is impossible.

In order to solve the problem (2) above, the concept of extendible array[6][7]
will be employed. An extendible array is extendible in any direction without
any relocation of the data already stored. Such advantages make it possible
to be applied into wide application area including the above mentioned where
necessary array size cannot be predicted and can be varied according to the
dynamic environment during operating time of the system.

In this research, an efficient method of encoding records is proposed for rela-
tional tables. This encoding is based on the extension history of the underlying
(logical) extendible array and the offset value in the subarray. Our scheme will
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be called as HORT (History-Offset implementation of Relational Tables). It can
be effectively applied not only to the implementation of relational tables ad-
ministrated by usual RDBMSs, but also applied to multidimensional database
systems [8], or data warehouse systems [9].

2 Employing Extendible Arrays

In the conventional implementation, each record is placed on secondary storage
one by one in the input order. This arrangement suffers from some shortcomings.

(1) The same column values in different records will have to be stored many times
and hence the volume of the database increases rapidly.
(2) In the retrieval process of records, unless some indexes are prepared, it is
necessary to load records in the table sequentially in main memory and check
the column value. Therefore retrieval time tends to be long.

The implementation using multidimensional array can be used to overcome
problem (2) above. Such an implementation causes further problems:
(3) Conventional schemes do not support dynamic extension of an array, hence
addition of a new column value is impossible if the size of the dimension over-
flows.
(4) In ordinary situation, implemented arrays are very sparse.

The concept of extendible array we will explain next will overcome problem
(3). It is based upon the index array model presented in [7].

An n dimensional extendible array A has a history counter h and three kinds
of auxiliary tables for each extendible dimension i(i = 1, ...., n) See Fig. 1. These
tables are history table Hi, address table Li and coefficient table Ci. The his-
tory tables memorize extension history h. If the size of A is [sn, sn−1, ...., s1]
and the extended dimension is i, for an extension of A along dimension i,
contiguous memory area that forms an n − 1 dimensional subarray S of size
[sn, sn−1, ..., si+1, si−1, ...., s2, s1] is dynamically allocated. Then the current his-
tory counter value is incremented by one, and it is memorized on the history table
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Hi, also the first address of S is held on the address table Li . Since h increases
monotonously, Hi is an ordered set of history values. An element < in, ...., i1 >
in an n dimensional conventional fixed size array of size [sn, sn−1, ...., s1] is allo-
cated on memory using an addressing function like this:

f(in, in−1, ...., i2, i1) = s1s2.....sn−1in + s1s2.....sn−2in−1 + .... + s1i2 + i1.

Here, we call < s1s2.....sn−1, s1s2.....sn−2, ...., s1 > as coefficient vector. Using
these three kinds of auxiliary table, the address of an array element can be
computed. as follows. Consider the element < 4, 3 > in Fig. 1. Compare H1[4] = 7
and H2[3] = 6. Since H1[4] > H2[3] , it can be proved that the element < 4, 3 >
is involved in the extended subarray S occupying the address from 60 to 63. The
first address of S is known to be 60, which is stored in L1[4] . Since the offset of
< 4, 3 > from the first address of S is 3, the address of the element is 63.

3 The HORT Implementation Model

The model that we are going to propose is based on the extendible array ex-
plained in the previous section.

Definition 1 (Logical HORT). For a relational table R with n columns,
the corresponding logical structure of HORT is the pair (A, M). A is an n di-
mensional extendible array created for R and M is the set of mappings. Each
mi(1 ≤ i ≤ n) in M maps the i-th column values of R to subscripts of the
dimension i of A. Hereafter A will be often called as a logical extendible array.

In our HORT technique,we specify an element using the pair of history value
and offset value. Since a history value is unique and has one to one correspon-
dence with the corresponding subarray, the subarray including the specified el-
ement of an extendible array can be referred to uniquely by its corresponding
history value h. Moreover the offset value (i.e., logical location) of the element
is also unique in the subarray. Therefore each element of an n dimensional ex-
tendible array can be referenced to specifying the pair (history value, offset
value). This reference method of an arbitrary element of an extendible array
is very important for our HORT technique. In the coordinate method, if the
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dimension of the extendible array becomes higher, the length of the coordinate
becomes longer proportionally. Since an n-column record can be referenced by
its n dimensional coordinate < in, in−1, ...., i1 > in the corresponding multidi-
mensional array, the storage requirement for referencing records become large if
the dimension is high. On the contrary, in our history offset reference, even if
the dimension is high, the size of the reference is fixed in short.

In the HORT logical structure (A, M), each mapping mi in M is implemented
using a single B+ tree called CVT(key subscript ConVersion Tree), and the log-
ical extendible array A is implemented using a single B+ tree called RDT(Real
Data Tree) and a HORT table that is a extension of the three auxiliary tables
of an extendible array. An example of HORT physical structure is shown in Fig.2.

Definition 2 (CVT). CV Tk for the k-th column of an n columns relational
table is defined as a structure of B+ tree with each distinct column value v as
a key value and its associated data value is subscript i of the k-th dimension of
the logical extendible array. Hence the entry of the sequence set of the B+ tree
is the pair (v, i). The subscript i references to the corresponding entry of the
HORT table that will be defined in the next definition.

Definition 3 (HT). HT(HORT Table) corresponds to the auxiliary tables ex-
plained in Section 2. It includes the history table and the coefficient table. Note
that the address table is void in our HORT physical implementation. Besides
these two kinds of information, the information referenced by the subscript in
CVT includes a counter that counts the number of records with the correspond-
ing column value, and the column value itself. If the existing keys are inserted
into the CVT, the counter field in HT slot is incremented.

HT is arranged in sequential manner according to the insertion order. For
example, the column value ”Mori” is mapped to the subscript 3 as the insertion
order, though in the sequence set of CVT, the key ”Mori” is in position 2 due to
the property of B+ tree. Each column value in the record is inserted to the cor-
responding CVT as a key value. If the key value already exists then the counter
field in the HT is incremented by one, otherwise the logical extendible array A
is extended by one along the dimension, and a new slot in HT is assigned and
initialized.

Definition 4 (RDT). The set of the pairs (history value, offset value) for all of
the effective elements in the extendible array are housed as the keys in a B+ tree
called RDT. Here, the effective elements mean the ones that correspond to the
records in the relational table. Note that the RDT together with the HTs imple-
ments the logical extendible array on storage. We assume that the key occupies
the fixed size storage and the history value is arranged in front of the offset value.
Hence the keys are arranged in the order of the history values and keys that have
the same history values are arranged consecutively in the sequence set of RDT.

Definition 5 (HORT). For an n columns relational table, its HORT (History-
Offset implementation of Relational Tables) implementation is the set of n CVTs,
n HTs and the RDT.
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From the above definition,(A, M) in Definition 1, A is mapped to (RDT, n
HTs) and M is mapped to n CVTs.

At the end of this section, we summarize that the problems discussed in
Section 2 are all resolved in our HORT model. Even if the same column value
in different records emerges, the value is stored in the corresponding CVT only
once. Moreover, even if the records are so lengthy, they are handled as the set of
pairs (history value, offset value) in RDT. This greatly reduces the total volume
of the database. Hence the problem (1) is resolved in our model. The random
addressing mechanism of a record in an extendible array contributes to solve
the problem (2); The support of dynamic extension in extendible arrays solves
the problem (3), The extension of an extendible array is performed logically in
HORT model, and physically only the position information of the effective array
elements is stored in RDT, which overcomes the problem (4).

4 Operations on HORT

4.1 Existence Check of a Record

Let r =< v1, v2, ...., vn > be a record to be checked. First by searching each
CVT, the tuple of the subscripts I =< CV T1(v1), CV T2(v2), ...., CV Tn(vn) > is
determined. Here CV Ti(vi) denotes the mapped subscript for the column value
vi in CV Ti. If at least one of the column values is not found in its corresponding
CVT, r does not exist in R. Otherwise, the pair of the history value and the
offset value < h, o > for I is determined. Then using the pair as an input key,
RDT is searched. If it is found, the record r exists in R, otherwise does not exist.

4.2 Insertion of a Record

As in Section 4.1, the tuple of the subscripts I =< CV T1(v1), CV T2(v2), ....,
CV Tn(vn) > is checked. If every column value is found in its CVT, RDT is
searched being < h, o > for I as a key. If it is not foound, the key < h, o > is
stored in RDT. If there exist column values that are not found in their CVT’s, let
d1, d2, ...., dk(1 ≤ k ≤ n) be such dimensions corresponding to these columns in
the logical extendible array. For each di(1 ≤ i ≤ k) the followings are performed.

(a) The column value vdi is stored in CV Tdi

(b) The logical extendible array is extended by one along the dimension di.
Namely incrementing the history counter value by one, the value is memorized
on the next slot of HTdi. Then, the coefficient vector is computed and memorized.

When the above (a) and (b) are completed on every dimension di(1 ≤ i ≤ k),
the key < h, o > for the element I is computed and stored in RDT.

4.3 Deletion of a Record

The specified record r =< v1, v2, ...., vn > is searched according to the procedure
in Section 4.1. If it is found in RDT, the corresponding key value < h, o > is
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deleted. Then the maintenance of CVTs and HTs are done; for each CV Ti, the
history counter field of HTi[CV Ti(vi)] is decremented by one. If the counter
value becomes 0, vi is deleted from CV Ti.

4.4 Retrieval of Records

Here retrieval of records means to search records, some of whose column values
are specified. Let the dimensions corresponding to these columns be d1, d2, ...., dk

and their values be vd1 , vd2 , ...., vdk
. Let hd1 , hd2 , ...., hdk

be the history values
that correspond to the subscripts CV Td1(vd1), ....., CV Tdk

(vdk
) and the maxi-

mum history value be hmax = max(hd1 , hd2 , ...., hdk
). The subarray correspond-

ing to hmax is named as the principal subarray in the following.

Key-subscripts conversion and matching keys. Let < h, o > be a key in the se-
quence set of RDT. From < h, o >, the corresponding tuple of the subscripts
< in, in−1, ...., i1 > of the logical extendible array can be uniquely computed. In
order to do fast computation, a one dimensional array HA is prepared on main
memory. For the history value h of the allocated subarray, HA[h] memorizes its
dimension d and the subscript value id. For the specified key< h, o >, by look-
ing HA[h], we can locate the corresponding principal subarray very quickly. The
subscripts of the dimensions other than d can be simply computed by repeated
divisions by knowing the coefficient vector stored in HTd[id]. If the computed
subscripts id1 , id2, ...., idk

are equal to CV Td1(vd1), CV Td2(vd2), ...., CV Tdk
(vdk

)
respectively, < h, o > proves to match the retrieval condition.

Retrieving offsets from RDT. To retrieve from RDT we defined the following
flags depending on the requirements of retrieval.
GTEQUAL: Returns the smallest key that is greater than or equal to the spec-
ified key if it exists otherwise returns NO.
NEXT: Returns the NEXT key of previously returned key in the sequence set.

Naive method (Method 1). The search starts working from the root of the
RDT with key value < hmax, 0 > with the flag GTEQUAL. After that, sequen-
tial search is performed with the flag NEXT in the sequence set until required
number of records is found or the end of sequence set is reached; the number is
memorized in counter field of tbl entry in Definition 3. The keys matching the
retrieval condition are included in the retrieval results.

Sophisticated method (Method 2). The subarrays that belong to the di-
mensions of the known subscripts are not the candidates to searching except
the principal subarray. Method 2 searches the candidate subarrays only; i.e.,
the principal subarray and the subarrays that have history values greater than
hmax and do not belong to the known dimensions. In this method, the candidate
offset values to be searched in a candidate subarray are determined exactly. Let
[sn−1, sn−2, ...., s1] be the size of a candidate subarray.

Example 1. Consider a 5 dimensional subarray of size [2, 5, 3, 4, 4] and assume
that the keys in RDT to be searched are corresponding to the elements <
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x5, a4, x3, a2, x1 > of the subarray, where x1 = 0, 1, 2, 3 , a2 = 2, x3 = 0, 1, 2,
a4 = 3 and x5 = 0, 1. There are total s1 × s2 × s3 = 24 offset values {152, 153,
154, 155}, {168, 169, 170, 171}, {184, 185, 186, 187 }, {392, 393, 394, 395 },
{408, 409, 410, 411}, {424, 425, 426, 427 } that are the candidates for searching.

Target periods. The candidate offsets are organized periodically. The period is
determined by the dimensions of the known subscripts to be searched. Let total
k dimensions (dk, dk−1, ...., d1) be known where d1 < d2 < .... < dk−1 < dk .
The period pdi(1 ≤ i ≤ k) is given by pdi =

∏di

j=1 sj . Of them, trdi =
∏di−1

j=1 sj

offsets are the target range of offsets which are the candidates for searching and
the offsets ntrdi = (sdi − 1)

∏di−1
j=1 sj are the non target range of offsets which

are not the candidates of the subscripts. The total number of candidate offsets
are given by

∏n
j=1 sj(j = di, i = 1, ...., k). In Example 1, total 24 offsets are

candidates with two periods p2 and p4. The period for the known subscript a2
is p2 = s1 × s2 = s1 + s1 × (s2 − 1), where tr2 = s1 and ntr2 = s1 × (s2 − 1).

Distribution of records. Consider n columns relation R with NR records. The
records in a relation R are assumed to be uniformly distributed in the corre-
sponding logical extendible array. If the number of distinct keys of the i-th col-
umn is Li then the duplicate factor of the i-th column is defined by dpi = NR/Li.
The total logical space of the corresponding logical extendible array required for
R is S = (NR/dp1)×(NR/dp2)×.....×(NR/dpn). Hence the density of records in
the logical extendible array is ρ = NR/S.

Searching Scheme in Subarrays. Let k dimensions (dk, dk−1, ...., d1) are known
where d1 < d2 < .... < dk−1 < dk . Assume that the number of nodes needed
for storing trd1 and ntrd1 be tr ndd1 and ntr ndd1 respectively and the height
of RDT not including the sequence set nodes is hR. tr ndd1 is determined by
tr ndd1 = �(trd1 × ρ)/kn , and so on, where kn is the average number of keys in
a node of RDT.

If hR < ntr nddq then it will be faster to traverse from the root node of RDT
to reach the first target node of the next period pdq than continue to search
tr nddq nodes in the period rather than to search the sequence set sequentially
like in the naive method (Method 1). Among k dimensions that are known, the
dimension dq(1 ≤ q ≤ k) is determined as the one that satisfies ntr nddq−1 ≤
hR ≤ ntr nddq . A set called partial sequence set is prepared that contains tr nddq

nodes which are to be searched sequentially by the flag NEXT. The search starts
in the subarray from the root node of RDT with the flag GTEQUAL followed
by sequential search in the partial sequence set by the flag NEXT.

5 Related Works

The well known grid file principle was first proposed in [10]. If the data distri-
bution is less uniform in grid file implementation then the ratio of grid regions
to number of buckets increases and the expansion of the directory approaches
to an exponential rate. Most of the grid region corresponds to empty blocks
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and the problem is magnified by the number of dimensions. The introduction
of multi level grid file [11] improves the situation for non uniform data distri-
bution but the directory expansion is still exponential. Buckets should contain
records themselves like in traditional databases, and not a scalar value as in
HORT. This causes considerable storage compensation. Moreover the range of
the column values is statically predetermined and any column value beyond
the range can not be handled in grid file. Many literatures discuss region pre-
serving schemes for multidimensional analysis. Among of them, some schemes
such as Gamma and Theta partitioning [12], Z ordering [13], or Hilbert curve
ordering [14] partition whole multidimensional array into non overlapped subar-
rays like in HORT. But they are based on static partitioning of the space and
dynamic extension of the length of dimension is impossible. Moreover the ele-
ment access methods in these schemes are rather complicated than our HORT
access method. Another important technique is the bitmap indexing scheme
[15]. Its access method is sufficiently fast, but the important drawback is that
the huge overhead of the bitmap storage would be caused when the density of
records in the array is low. Moreover, dynamic treatment of bitmap storage is
necessary, when a new column value emerges beyond the assumed range; this
cost would be high.

6 Analytical Evaluation

We ignore the detail cost model here only the experimental results are explained.
The parameters are described in the appendix. All lengths or sizes of storage ar-
eas are in bytes.

Storage cost comparison between conventional and HORT implemen-
tations.
In the conventional implementation of R, each of the records in R occupies con-
secutive storage hence the storage cost is n × kl × NR. In the following, we call
the conventional implementation as CI and the HORT implementation as HI.
We evaluate the storage costs of both implementations for n = 10 . In general
the cost of HI is, n×cost of CVT + cost of RDT +n×cost of HORT table.
Among these three costs, the cost of CVT and cost of HORT table are heavily
dependent on dp. The cost of a CVT is LNC ×XC +NLNC ×XCL and the cost
of a HORT table is L × tl. Note that the cost of RDT is independent of dp, n
and kl. Hence if dp is very small, then HI has large cost but when dp increases
being NR fixed, then LNC , NLNC and L decrease and hence the cost becomes
smaller. If the i-th key column is unique key column it is quite obvious that the
cost of CVT increases and hence the cost of HI. In this case, an index is usually
constructed for the key column, which costs large storage in CI as well.

Retrieval cost comparison between conventional and HORT imple-
mentations.
We computed the retrieval cost of both implementations for kl = 16 and n = 6.
HI always accesses fewer pages comparing with CI.
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Fig. 3. Storage and retrieval cost anlysis with varying duplicate factor

In method 1 of HI, �(1 − (1/2)n × LNR)/n nodes are accessed in RDT
which corresponds to the known dimension of the extendible array. Hence if
the number of records for a subarray increase (i.e., dp increase) then Method
1 accesses more nodes which is avoided in Method 2. The cost of Method 2 is
higher than Method 1 for small dp but when dp increases the cost decreases.
This is because, if ρ increases (i.e. dp increases) then the number of nodes for
the non target range (see Section 4.4) of offsets increase and when it becomes
greater than hR, method 2 scans hR nodes instead of accessing the nodes of non
target range of offsets. Hence for large dp Method 2 of HI has better performance
than Method 1. Throughout the retrieval process we used kl = 16. For larger
kl, the impact in HI is negligible because kl has no effect in RDT but kl has
immense effect on CI.

Fig. 3 shows the storage and retrieval cost for CI and HI with varying dp.

7 Conclusions

In this paper, we introduced a new implementation scheme of relational tables
for multidimensional database illustrating insertion, deletion and query opera-
tions. We developed a cost model for computing the storage cost and retrieval
cost. Using these models, we computed and compared with the conventional
implementation of relational tables. It is proved that if the duplicate factor is
not negligible then HI has improved storage and retrieval performance than the
conventional implementation of relational table.
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Appendix: Parameters

(1) Parameters related to the relational table R:
NR : Total number of records in R; n: Number of columns in R;
Li: Number of distinct column values of the i-th column;
dpi: Duplicate factor of the i-th column;
ρ: Density of records in the logical extendible array; kl: Length of a column value
of R; P : Disk page size.

(2) Parameters for HORT:
f : Average fan out from a node; kn: Average number of keys in a node;
pl: Length of a pointer; tl : Length of an element of HORT table.
Parameters for RDT:
klr: Length of a key (i.e. length of history value and offset value) of RDT;
LNR: Number of leaf nodes for RDT; NLNR: Number of non leaf nodes for RDT;
hR : The height of the RDT not including sequence set nodes.
Parameters for CVT:
XC : Average size of a non leaf node; XCL: Average size of a leaf node for CVT;
LNC : Number of leaf nodes for CVT; NLNC : Number of non leaf nodes for CVT.

(3) Assumptions:
(i) The column length of R is the same for all columns i.e. LR = n × kl.
(ii) The duplicate factor dpi of the i-th column is same for all i. Hence we write
dp for dpi and L for Li.
The values of some parameters that we assumed are as follows:
klr=4+8, kl=8 and 16, n=10 and 6, NR=1000000, f=102, P=2048, pl=8.
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Abstract. In this paper, we present a new approach to indexing multidimen-
sional data that is particularly suitable for the efficient incremental processing 
of nearest neighbor queries. The basic idea is to use index-striping that verti-
cally splits the data space into multiple low- and medium-dimensional data 
spaces. The data from each of these lower-dimensional subspaces is organized 
by using a standard multi-dimensional index structure. In order to perform in-
cremental NN-queries on top of index-striping efficiently, we first develop an 
algorithm for merging the results received from the underlying indexes. Then, 
an accurate cost model relying on a power law is presented that determines an 
appropriate number of indexes. Moreover, we consider the problem of dimen-
sion assignment, where each dimension is assigned to a lower-dimensional sub-
space, such that the cost of nearest neighbor queries is minimized. Our experi-
ments confirm the validity of our cost model and evaluate the performance of 
our approach. 

1   Introduction 

During the last decades, an increasing number of applications, such as medical imag-
ing, molecular biology, multimedia and computer aided design, have emerged where 
a large amount of high dimensional data points have to be processed. Instead of exact 
match queries, these applications require an efficient support for similarity queries. 
Among these similarity queries, the k-nearest neighbor query (k-NN query), which 
delivers the k nearest points to a query point, is of particular importance for the appli-
cations mentioned above. 

Different algorithms have been proposed [14, 16, 19] for supporting k-NN queries 
on multidimensional index-structures, like R-trees. Multidimensional indexing has 
extensively been examined in the past, see [12] for a survey of various techniques. 
The performance of these algorithms highly depends on the quality of the underlying 
index. The most serious problem of multi-dimensional index-structures is that they 
are not able to cope with a high number of dimensions. This disadvantage can be 
alleviated by applying dimensionality reduction techniques [3]. However, the reduced 
dimensionality still remains too high for most common index-structures like R-trees. 
After the high effort put into implementing R-trees in commercial database manage-
ment systems (DBMS), it seems that their application scope is unfortunately quite 
limited to low-dimensional data. 
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In this paper, we revisit the problem of employing R-trees (or other multidimen-
sional index-structures) for supporting k-NN queries in an iterative fashion. Our fun-
damental assumption is that high-dimensional real-world data sets are not independ-
ently and uniformly distributed. If this assumption does not hold, the problem is not 
manageable due to the well-known effects in high-dimensional space, see for example 
[24]. The validity of our assumptions allows the transformation of high-dimensional 
data into a lower dimensional space. There are, however, two serious problems with 
this approach. First, the dimensionality of the transformed data might still be too high, 
in order to manage the data with an R-tree efficiently. Second, this approach is feasi-
ble only when the most important dimensions are globally valid independent from the 
position of the query point. In our new approach, we address both of these problems 
by partitioning the data vertically and then indexing the (low-dimensional) data of 
each partition separately. 

Our basic architecture is outlined in 
Fig. 1. As mentioned above, the 
essential technique of our approach is to 
partition the data points vertically 
among different R-trees such that each 
dimension is assigned to one of them. 
Thus, the Cartesian product of the 
subspaces yields the original data space 
again. An incremental query is proc-
essed by running a local incremental 
query for each of the indexes  
concurrently. We keep the entire points 
in a separate multidimensional data file 

(MDF) on disk, where each point is accessible via a tuple identifier (TID). Addition-
ally, a priority queue PQMerge and a hash table HTTID are necessary for an efficient 
iterative processing of k-NN queries.  The key problem that arises from our architec-
ture is to determine an appropriate number of indexes for supporting k-NN queries 
efficiently. Thereafter, an effective assignment of the dimensions is indispensable. 
These problems are addressed in our paper. Moreover, we present different iterative 
algorithms for k-NN queries that employ the different indexes dynamically. Our ap-
proach is independent from the specific index-structure. We decide to use R-trees in 
the rest of the paper, simply because these structures are generally available and per-
form well in practice. For the sake of simplicity, we assume that the Euclidean metric 
L2 is used as distance function throughout our paper. 

The remaining paper is structured in the following way. In the next Section we dis-
cuss previous work. In Section 3, we present a multi-step nearest neighbor algorithm 
that dynamically exploits the information of internal nodes of the R-tree. Thereafter in 
Section 4, we provide a cost model relying on a power law and we propose a formula 
for computing the number of indexes. In Section 5 we present a dimension assign-
ment algorithm. Our results of our experiments are presented in Section 6, and finally, 
we conclude in Section 7. 

Fig. 1. Overview 

HTTID
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2   Related Work 

Our work is closely related to the nearest neighbor algorithms that have been proposed 
in the context of multidimensional indexing [14, 16, 19]. Some of the proposals are 
dedicated to the problem of k-NN queries when k is known in advance, whereas others 
deal with the problem of distance scanning [14] also termed distance browsing [16] and 
incremental ranking where k is unknown and the query stops on demand. There are a 
large number of multidimensional index-structures that have been tailor-cut to support-
ing k-NN queries efficiently. Different filter-and-refine algorithms for k-NN queries 
were first presented in [18, 21]. These approaches, also known as Global Dimensional-
ity Reduction (GDR) methods, are unable to handle datasets that are not globally corre-
lated. In [7], a structure which is called Local Dimensionality Reduction (LDR) is pre-
sented that also exploits multiple indexes, one for each cluster. Unfortunately this strat-
egy is not able to detect all the correlated clusters effectively, because it does not con-
sider correlation nor dependency between the dimensions. Recently, there have been 
approaches where the high-dimensional points are mapped into a one-dimensional space 
[27, 28]. 

The origin of our work starts from [2] where a quite similar work has been proposed 
for supporting range queries on high-dimensional data. Based on a uniform cost model, 
the authors first present a formula for the optimal number of multi-dimensional indexes. 
Two techniques are then presented for assigning dimensions to indexes. The first one 
simply follows a round-robin strategy, whereas the other exploits the selectivity of the 
different dimensions such that the dimension with the highest selectivity is assigned to 
the first index and so on. The assignment strategy offers some deficiencies which makes 
them inadequate for k-NN queries.  First, this strategy assumes dimensions being inde-
pendently from each other. This may obviously lead to suboptimal assignments. Second, 
this strategy is even not applicable to high-dimensional data and k-NN queries. Since 
dimensions generally have the same domain, k-NN queries are symmetric in all dimen-
sions and consequently, the selectivity is constant for all dimensions. Our approach is 
different from [2] as a new dimension assignment strategy is derived from the fractal 
dimension [1] of the data set. Moreover, instead of intersecting local results, a merge 
algorithm outputs the results in an iterative fashion. 

Accurate cost models are important to our algorithms for decision making. We are 
primarily interested in cost models for estimating the cost for k-NN queries. There are 
many different cost models that have been developed for R-trees, such that [23]. The 
first models [24] were developed for uniformly and independently distributed data. 
Later, these models were extended to cope with non-uniform data. However, independ-
ency of dimensions is still assumed for the majority of the models, but unfortunately not 
satisfied for real data distributions, in general. The usage of the fractal dimension [17, 4] 
has lead to more accurate cost model since multidimensional data tend to behave in a 
fractal manner. Our approach employs such a cost model for automatically setting im-
portant parameters. 

In parallel to the work on incremental ranking in the indexing community, there have 
been independently studies on a quite similar topic, so-called top-k queries in the area of 
multimedia databases [10, 11]. 
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3   Incremental Nearest Neighbor Algorithms 

In this section, we present three iterative algorithms for k-NN queries that comply 
with our architecture. Let n be the number of indexes, where each of them is respon-
sible for a lower-dimensional subspace of the original data space. A global queue 
PQMerge is used for merging local results of the indexes. Since an index only delivers 
partial points, i.e. points from the subspaces, the multidimensional file (MDF) has to 
be accessed to obtain the entire point. We have developed the following three differ-
ent incremental nearest neighbor algorithms, called Best-Fit, TA-Index and TA-
Index+. 

Best-Fit: This algorithm is a straightforward adoption of the classical incremental 
algorithm [14, 16] for more than one index. During the initialization step of the query, 
the roots of all n indexes are inserted into PQMerge. In each iteration step, the algorithm 
pops the top element from PQMerge. If the top element is an index entry, the entry is 
expanded, i.e., the referenced page is read from the corresponding index and its en-
tries (points) are added to PQMerge. If the top element is a partial point that is the first 
time on top, the entire point is read from MDF and inserted into PQMerge. In addition, 
we store its tuple identifier in the hash table HTTID. We actually use HTTID to check 
whether a partial point is the first time on top. If the top element is an entire point, we 
deliver the point as the next neighbor to the user. Note that partial points that appear 
more than once on top can be safely discarded. 

TA-Index: This algorithm performs similar to TA [11], but supports arbitrary NN 
queries due to the fact that the indexes are able to deliver the data in an appropriate 
order. TA-Index performs different to Best-Fit as a local incremental NN query runs 
for every index concurrently. The partial points, which are delivered as the results of 
these local queries, are merged by inserting them into PQMerge. The algorithm per-
forms similar to Best-Fit as partial points that appear on top are replaced by their 
entire points. In analogy to TA, we keep a partial threshold mini for the ith index 
where mini is the distance between the last partial result of the ith index and the query 
point of the NN query. An entire point from PQMerge is returned as the next nearest 
neighbor if its distance is below the 
global threshold that is defined as the 
squared sum of the partial thresholds. The 
faster the partial thresholds increase the 
higher the chance that the top element of 
PQMerge will become a result. 

TA-Index+: This algorithm is an opti-
mized version of TA-Index as it addition-
ally exploits the internal index entries to 
speed up the increase of the partial thresh-
olds. Different to TA-Index is that the 
incremental NN queries on the local in-
dexes are assumed to deliver not only the 
data points, but also the internal entries 
that are visited during processing. Note 

nextNearestNeighbor() 

while (  min...min 2
n

2
1 ++ <  L2(q, PQMerge.top()) do 

        ind = activityScheduler.next(); 

       cand = incNNPlus(ind).next(); 

       minind =  L2,ind(q, cand);  

       if ((cand is a point) and not   

             HTTID.contains(cand.TID)) then 

                obj = MDF.get(cand.TID); 

                PQMerge.push(obj); 

                 HTTID.add(obj.TID); 

return PQMerge.pop();  

Fig. 2. Algorithm TA-Index+ 
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that the distance of the delivered entries and points is continuously increasing. There-
fore, the distances to index entries can also be used for updating mini without threat-
ening correctness. The incremental step of the algorithm is outlined in Fig. 2. 

In order to improve the performance of the algorithms, it is important to reduce the 
number of candidates that have to be examined. The number largely depends on how 
fast the termination inequality (condition of the while-loop in Fig. 2) is satisfied in our 
algorithms. Therefore, we develop effective strategies for computing a so called activ-
ity schedule that determines in which order the indexes are visited. The goal of the 
activity schedule is a fast enlargement of the sum of the local thresholds mini. The 
naive strategy is to use a round-robin schedule. This strategy however does not give 
priority to those indexes which are more beneficial for increasing the local thresholds. 
Similar to [13], we develop a heuristic based on the assumption that indexes that were 
beneficial in the recent past will also be beneficial in the near future. 

Our activity schedule takes into account the current value of the partial threshold 
mini as well as the number of candidates ci an index has already delivered. The more 
candidates an index has delivered the less priority should be given to the index. Each 
time a candidate is received from an index, we increment the counter ci. If the candi-
date has been already examined (by another index), we give an extra penalty to the ith 
index by incrementing ci once again. Our activity schedule then gives the control to 
the local incremental algorithm with maximum mini/ci. Note that our heuristic pre-
vents undesirable situations where one index keeps control for a very long period. 

In case of TA-Index+ the distances to index entries influences not only the thresh-
olds, but also the activity schedule. The internal nodes help to exploit the R-trees 
dynamically in a more beneficial way such that the number of examined candidates is 
reduced. This is an important advantage against the common TA [11]. 

The cost of our algorithm is expressed by a weighted sum of I/O and CPU cost. 
The I/O cost is basically expressed in the number of page accesses. IOindex refers to the 
number of accesses incurred from the local query processing, whereas IOcand is the 
number of page accesses required to read the candidates from MDF. Note that IOcand 
is equal to the total number of candidates if no buffer is used. The CPU cost consists 
of two parts. First, the processing cost for the temporary data structures like PQMerge 
and HTTID. The more crucial part of the CPU cost might arise from the distance calcu-
lations. 

4   A Cost Model Based on Power Law 

We decided to use the fractal dimension as the basis for our cost model. The reason is 
twofold. First, there are many experimental studies, see [17], showing that multidi-
mensional data sets obey a power law. Second, cost models for high-dimensional 
indexing, which go beyond the uniformity assumption, often employ a power law [4, 
17]. Therefore, the fractal dimension seems to be a natural choice for designing a cost 
model. 

In the following, we show that there is a strong relationship between the fractal 
dimension and the performance of nearest neighbor queries, especially in the case of 
multi-step algorithms. Let us assume that the data does not follow a uniform and in-
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dependent distribution and that the query points follow the same distribution as the 
data points. 

Given a set of points P with finite cardinality N embedded in a unit hypercube of 
dimension d and its fractal (correlation) dimension D2, the average number of 

neighbors ( )2, Drnb  of a point within a region of regular shape and radius r obeys the 

power law:  

( ) d
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rVolNDrnb
2

2 )()1(, ⋅−= , 

where Vol(r) is the volume of a shape (e.g. cube, sphere) of radius r, see [17]. The 
average Euclidean distance r of a data point to its k-th nearest neighbor is given by: 
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Since the ratio 
1−N

k  is always smaller than 1, an interpretation of the above for-

mula reveals that a lower fractal dimension leads to a smaller average distance. A 
multi-step algorithm [21], where one index is used for indexing a subspace, is called 
optimal if exactly the points within this region are examined as candidates. The num-
ber of candidates that have to be examined by the optimal multi-step algorithm de-
pends on the fractal dimension 2D′  of the subspace, i.e. partial fractal dimension [25], 

with embedded dimensionality d ′ , as shown in the following formula: 
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The above formula shows that a higher fractal dimension produces fewer candi-
dates for the same radius. Thus, it is obvious that the performance of an optimal 
multi-step algorithm depends on the fractal dimension of the subspace that is indexed. 
In our multi-step algorithm, where more than one indexes are used, a region ri of each 

index i, (1  i  n), such that 
≤≤

=
ni

irr
1

2 is dynamically exploited.  

The average number of candidates for an index on a subspace with finite cardinal-
ity N, embedded in a unit hypercube of dimension di and fractal dimension D2,i, is 
given by: 
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The total number of candidates is: ( ) ( )
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=
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ii Drnbrnb
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,2, .  

In the above formula we include the duplicates that are eliminated during the proc-
ess of our algorithm, but the number of duplicates is of minor importance for our cost 
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model. For the evaluation of this formula some assumptions are necessary. The goal 
of our cost model and dimension assignment algorithm is to establish a good perform-

ance for all indexes. Therefore, we assume that d
n

d
di ′==  and 2,2 DD i ′= for each 

index i. If this assumptions hold it is expected that the indexes are equally exploited 

based on the activity scheduler, thus r
n

r
ri ′== .  

The I/O cost can be one page access per candidate in the worst case. As observed 
in [7] and as confirmed by our experiments this assumption is overly pessimistic. We, 
therefore, assume the I/O cost of the candidates to be the number of candidates di-
vided by 2: 
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The I/O cost of processing a local k nearest neighbor query is equal to the cost of 
the equivalent range query of radius ri. The expected number of page accesses for a 
range query can be determined by multiplying the access probability with the number 

of data pages
effC

N
, where Ceff the effective capacity. Based on the previous assump-

tions, the total cost of processing the local queries is: 
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The cost for processing a local 
nearest neighbor query within the 
lower-dimensional subspaces will 
increase with an increasing partial 
fractal dimension. Therefore our 
cost model defines the number of 
indexes where the sum of all I/O 
is minimized. 

Fig. 3 shows the total cost over 
n indexes in a database consisting 
of 1,312,173 Fourier points in a 
16-dimensional data space. The 

fractal dimension D2 of the dataset is 10.56. We evaluate the parameter k by setting the 
expected average selectivity of a query as 0.01%. There is a clear minimum in n=2. 

In our cost model we assume that the indexes currently maintain partial data points, 
whereas it might also be possible to keep the entire data points (in the leaves). This 
offers the advantage that MDF is not necessary anymore and therefore, Acand = 0. 
However, the cost for processing the local incremental queries increase since, in case 
of the R-tree, the capacity of the leaves is reduced by a factor of n. 

Fig. 3. Total Cost of k-NN query 
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5   Dimension Assignment Algorithm 

In this section, we sketch our algorithm for assigning d dimensions to n indexes, 
 n < d. Based on the observation that subspaces with low fractal dimension produces 
more candidates, we follow two basic goals. First, each of the n indexes should have a 
high fractal dimension. Second, the fractal dimension should be equal for all indexes 
and therefore the indexes should perform similarly. These goals conform to the as-
sumptions of our cost model and enhance the applicability of the cost model. 

In general, an optimal solution of the dimension assignment problem is not feasible 
because of the large number of attributes. Instead, we employ a simple greedy heuris-
tic that is inexpensive to compute while still producing near-optimal assignments. 

A greedy algorithm is developed that starts with assigning the n attributes with the 
highest partial fractal dimension [25] to the indexes, where every index receives ex-
actly one attribute. In the next iterations, an at-
tribute, which has yet not being assigned to an 
index, is assigned to the index with minimum 
fractal dimension. The index receives the attrib-
ute that maximize the fractal dimension of the 
index. Notice that not all indexes have necessar-
ily the same number of attributes. 

Our algorithm is outlined in fig. 4. The func-
tion D2(S) calculates the fractal dimension of a 
subspace S. Ai represents the ith attribute; L refers 
to the set of unassigned attributes, and dai is the 
set of attributes assigned to the ith index. The 
algorithm calls O(d2) times the box-counting 
algorithm [1] which calculates the fractal dimen-
sion in linear time w.r.t. the size of the dataset. 

6   Experimental Validation 

For the experimental evaluation of our approach, indexes were created on two data 
sets from real-world applications. We set the page size to 4K and each dimension 
was represented by a double precision real number. Both data sets contain features 
of 68,040 photo images extracted from the Corel Draw database. The first dataset 
contains 16-dimensional points of image features, while the second dataset contains 
32-dimensional points that represent color histograms. In all our experiments, we 
examined incremental k-NN queries where the distribution of the query points fol-
lows the distribution of the data points.  All our measurements were averaged over 
100 queries. 

In order to illustrate the accuracy of our cost model, we show in Fig. 5 the esti-
mated page accesses and the actual page accesses measured during the execution of 
10-NN queries by Best-Fit. The plot shows the I/O cost for both data sets where the 
fractal dimensions of the 16-dimensional and 32-dimensional datasets are 7.5 and 7.1, 
respectively. Note that the relative error is less than 20% in our experiments. Fur-

assignDimensions() 

L = {A1,…,Ad}; 

for (i=1,…,n) do 

Amax = argmax  A∈L { D2 (A)}; 

dadim  =  Amax ∪ dadim; 
       L = L − {Amax}; 

while (L is not empty) do 

        dim = argmin 1  j  n D2(daj); 

  Amax = argmax A∈L D2(A ∪ dadim); 

  dadim  =  Amax ∪ dadim;  

        L = L − {Amax}; 

Fig. 4. Our Greedy Algorithm 
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thermore, TA-Index+ produces 
fewer page accesses, due to the 
usage of an activity schedule 
which is not considered by the 
cost model. 

In the second experiment, 
we compare the following four 
techniques: TA-Index+, Origi-
nal Space Indexing (OSI), 
Global Dimensionality Reduc-
tion (GDR) and Linear Scan. 
We examined the I/O cost of k-
NN queries for the 32-
dimensional dataset. For TA-
Index+, we created two 16-
dimensional R-trees as it was 
required from our cost model. 
Each of the corresponding sub-
spaces has a fractal dimension 
of almost 3.75, resulting in 
well-performing R-trees.  For 
the GDR method, we used the 
optimal multi-step algorithm on 
a 16-dimensional R-tree. The 
results of our experiment are 
plotted in Fig. 6. The plot con-

tains four curves reporting the I/O as a function of k, where k denotes the desired 
number of neighbors. As illustrated, TA-Index+ constantly outperforms the other 
techniques in our experiment. 

7   Conclusions 

The indexing problem for high-dimensional data is among the practically relevant 
research problems where solutions are difficult to achieve. The processing of nearest 
neighbor queries becomes only meaningful for high-dimensional data if we assume 
that there are high correlations in the data. We provide a new approach for querying 
vertically partitioned high-dimensional data. Three new algorithms for processing 
incremental nearest neighbor queries have been presented. In order to provide fast 
query processing, we addressed the problem of dimension assignment and provided 
approximate solutions based on the usage of the fractal dimension. An accurate cost 
model relying on a power law is presented. The results obtained by the experiments 
with real data sets consistently gave evidence that our technique is also indeed benefi-
cial in practical scenarios. 
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Fig. 6. Comparative Study  
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Abstract. In this paper, we describe a novel co-training based algorithm for iden-
tifying database user sessions from database traces. The algorithm learns to iden-
tify positive data (session boundaries) and negative data (non-session boundaries)
incrementally by using two methods interactively in several iterations. In each it-
eration, previous identified positive and negative data are used to build better
models, which in turn can label some new data and improve performance of fur-
ther iterations. We also present experimental results.

1 Introduction

Database users perform a certain task by submitting a sequence of queries. We call
this sequence of queries a database user session. Session identification from a database
workload is a prerequisite step for task-oriented session analysis that allows us to dis-
cover high-level patterns in user queries, and provides useful insight into database user
behavior. Previous session identification methods, such as the timeout and statistical
language modeling (n-gram) based methods [5,8], have some limitations. For example,
it is hard to find suitable threshold for the timeout method and a large training data is
required for the n-gram method.

In this paper, we propose a novel co-training based session identification method.
The algorithm labels positive data (session boundaries) and negative data (non-session
boundaries) incrementally by using the timeout and n-gram methods interactively in
several iterations. In each iteration, we use previously identified positive and negative
data to build better timeout and n-gram models, which in turn can label some new
data, and improve performance of further iterations. The algorithm does not require
any training data. Our experiment shows that this method overcomes the limitation of
previous methods and can achieve a comparable performance .

The rest of the paper is organized as follows. In Section 2, we discuss the related
research. We describe our co-training algorithm and parameter selection in Section 3.
In Section 4, we describe the data set and experimental results. Finally, we conclude the
paper in Section 5.

� This work is supported by research grants from Communications and Information Technology
Ontario and the Natural Sciences and Engineering Research Council of Canada.

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2005, LNCS 3589, pp. 254–264, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



A Machine Learning Approach to Identifying Database Sessions 255

2 Background and Related Research

In this paper, we assume that queries within a user session use the same database con-
nection, and there is no interleave between two sessions of a connection. This rule
usually holds since a user obtains a database connection before performing a task, and
releases it until the task is finished, even in a connection sharing environment. Then,
the task of identifying sessions is to learn session boundaries from the request log of
a database connection. The most common and simplest method for session identifi-
cation is timeout where a session shift is identified between two requests if the time
interval between the two requests is more than a pre-defined threshold. This method
suffers from the problem that it is difficult to set the time threshold since it may be
significantly different for different applications or users. A survey of different session
detection methods can be found in [5].

In [5], an n-gram statistical language modeling based session detection method was
proposed. The method first builds an n-gram model from a set of training data. Then,
the method assigns a value for each request in the testing data. The value of a request
rm is the empirical entropy of the request history sequence s{r1, ..., rm}, which is
defined as − 1

m log2p(s), where p(s) is the probability of sequence s estimated from

the n-gram model, defined as
m∏

i=1
P (rm|rm−n+1...rm−1). With the method, a session

boundary could be placed between two requests when the change in entropy between
two requests passes a threshold. The method was demonstrated to be more effective than
the timeout and two other session detection methods for discovering interesting associ-
ation rules in a Web mining domain. Recently, we appliedd the method to identifying
database sessions [8]. An important factor that affects the performance of the algorithm
is to choose suitable parameters, such as the n-gram order and entropy threshold. In the
application, we used some domain knowledge to generate some training data by man-
ually identifying all or part of the session boundaries. These training data were used to
adjust the parameters needed by the method. The experiments showed that the method
achieved better performance than the timeout method. However, the performance may
become worse when such domain knowledge is not available.

Co-training is a machine learning technique that was originally proposed by Blum
and Mitchell [1]. It assumes that the description of each example can be partitioned
into two distinct views. The presence of two distinct views suggests strategies in which
two learning algorithms are trained separately on each view, and then each algorithm’s
predictions on new unlabeled examples are used to enlarge the training set of the other.
There are a number of studies that explore the potentials of the co-training method in
recent years. Craven [3] uses co-training to extract knowledge from the WWW. The
result shows that it can reduce the classification error by a factor of two using only
unlabeled data. In [6], Kititchnko and Matwin apply co-training to e-mail classifica-
tion, and they show that the performance of co-training depends on the learning method
it uses. For example, naive Bayesian classifiers perform poorly while support vector
machines work well. In [4], Goldman and Zhou use two different supervised learn-
ing algorithms to label data for each other. Chan, Koprinska, and Poon [2] suggest to
randomly split a single feature space into two different feature sets for the co-training
algorithm.
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3 Session Identification with Co-training

In this section, we present our co-training learning algorithm. The algorithm is an unsu-
pervised algorithm that does not depend on any training data. Instead, it uses the timeout
method and the un-supervised n-gram method together to learn session boundaries in-
crementally. We assume that a sequence of requests that belong to a database connection
is already obtained. The request sequence corresponds to a sequence of sessions. Each
user request contains two features: the time interval with the previous request and the
request history sequence. These two features are not completely correlated, which en-
ables us to use the idea of co-training to identify sessions. We train the timeout model
and the n-gram model1 from the testing data. These models can help to label data inde-
pendently. The new labled data will help to build better models, which in turn results in
more labeled data.

In our method, each user request is described by the following parameters: ID
(id), starting time (stime), ending time (etime), time interval from the previous request
(tvalue), entropy value (evalue), entropy changes (dvalue), and status, which are illus-
trated in Table 1. Given a sequence of queries, we first classify the queries into different
classes [8]. Then each query in the sequence is replaced with the id of the query class.
Whether a request is a session boundary depends on the value of status. Initially, all
requests are unlabeled, and their status is unknown (0). In each iteration, the status of a
request may be changed by either a timeout model or an n-gram model. When a request
is identified as a session boundary by a method, the status value is increased by a con-
fidence value. The confidence value is between 0.8 and 1, and represents the prediction
accuracy of positive or negative samples. Finally, we can identify all sessions according
to the request status.

Table 1. User request entry

Name Meaning
ID (id) the id of the request
Starting time (stime) the time when server received the request
Ending time (etime) the time when server finished processing the request
Time interval (tvalue) tvalue[i] = stime[i] − etime[i − 1]
Entropy value (evalue) the entropy value of current request
Entropy difference (dvalue) the relative entropy changes, dvalue[i] = evalue[i]−evalue[i−1]

evalue[i−1]
Status (status) if status > 0, and it is a session boundary,

if status < 0, and it is non-boundary, other unknown.

We use F-measure as the performance measurement metric in this paper. Suppose
we know the true session boundaries in the test sequence, then F-measure is defined
as 2∗precision∗recall

precision+recall , where precision is defined as the ratio of the correctly detected
session boundaries to the total estimated boundaries, and the recall is the hit-rate, that
is, the ratio of the correctly detected session boundaries to the total number of true
boundaries. A higher F-measure value means a better overall performance.

1 Unlike previous algorithms, the n-gram model is built from the testing data itself instead of
using another training data.
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3.1 Co-training Algorithm

Our co-training algorithm contains two steps: training step, and separating step. The
training step contains several iterations. In each iteration, previously labeled data (i.e.,
the requests with status = 0) is used to learn better timeout and n-gram models, which
is used to obtain more labeled data in the next iteration. In the separating step, the
previously learned labeled data can be used to build semi-supervised n-gram model.
The model is used to separate the log into sessions according to certain strategy.

The training step is listed in Algorithm 1. The algorithm reads user requests from a
log file. In each iteration, it uses the previous labeled data to train a new n-gram model
(the previously labeled postive data can separate a sequence into small sequences, and
these small sequences can be used to build the n-gram model, which is more accurate
than the model built from the un-separated data). Then, we estimate the number of
requests to be labeled in line 5, where pct[i] and nct[i] are the numbers of positive
and negative data, respectively, to be labeled by the timeout method, and pcn[i] and
ncn[i] are the values for the n-gram method. In [1], the authors use constant values
as the number of data to be labeled, which is 1 and 3 for positive and negative data
respectively. However, we believe that the numbers should vary with respect to the
test data and should be based on the trade-off between precision and recall. A small
number leads to a better prediction precision, but a large number can achieve a good
recall. We decide to make the total numbers to be learned dynamically change with
regard to different test data. The number is controlled by the input parameters which
will be discussed in next section. Once the total numbers are determined, we assign the
numbers for each iteration. The strategy is to make the number for the timeout method
decreases when the number of iteration increases, and make that of n-gram method
increases. The reason is that the prediction accuracy for the timeout method decreases
as the iteration increases, but the accuracy for the n-gram method increases since a
better model is obtained.

Both timeout and n-gram methods may make wrong estimations, either false pos-
itives or false negatives. We should allow this wrong estimation be adjusted in further
iterations. Thus, we assign a confidence value for each method in every iteration (in
line 6). The value range is between 0.8 to 1.0. If a method identifies a request as a pos-
itive data in an iteration, the status is increased with the confidence value, otherwise
the value is decreased when it is identified as a negative data. The timeout method has
good prediction presion at early iterations, and the accurancy becomes worse in later
iterations in order to get high coverage. However, the n-gram method becomes better
in later iteration since the previous identified data can improve the n-gram model. As a
result, the confidence value sequence of the timeout method (confn[i] in Algorithm 2)
is assigned decreasingly, but that of n-gram value, confn[i], is assigned increasingly.

Our next question is how to choose threshold values. There are totally 4 values to
be estimated, where lowt[i], and hight[i] are for timeout, and lown[i], and highn[i] are
for n-gram. If the timeout threshold value of a request is larger that hight[i], we will
incease its status with a confidence value conft[i] (in line 10, and 11), and so on. The
method we use to choose threshold value is the histogram technique. We build/update
a timeout value histogram and n-gram entropy change histogram, referred as histt and
histn in line 7,8. The histogram contains several pre-defined buckets, and each request
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Algorithm 1 training(log, porder, piter ,plen, ppos, pneg , pngram)
Input: a user request log file log, and a set of co-training parameters
Output: user request array req
1: read requests from log file data, and create a request array req
2: initialize every item in req
3: for i = 0 to piter do
4: build/rebuild a n-gram model based on the log data, and update evalue, dvalue for each request
5: estimate the number of data to be learned: pct[i] and nct[i] (for timeout), pcn[i] and ncn[i] (for n-gram)
6: estimate prediction confidence: conft[i], confn[i]
7: update timeout histogram histt , select threshold value lowt[i], and hight[i]
8: update n-gram histogram histn , select threshold value lown[i], and highn[i]
9: for all r[j] ∈ req do
10: if tvalue[j] > hight[i] then
11: status[j] = status[j] + conft[i]
12: end if
13: if tvalue[j] < lowt[i] then
14: status[j] = status[j] − conft[i]
15: end if
16: if dvalue[j] > highn[i] then
17: status[j] = status[j] + confn[i]
18: end if
19: if dvalue[j] < lown[i] then
20: status[j] = status[j] − confn[i]
21: end if
22: end for
23: end for
24: return req

Algorithm 2 separating(req,porder,piter,plen,ppos,pneg,pngram)
Input: user request array req, and a set of co-training parameters
Output: a set of sessions
1: rebuild n-gram model with preivous labelled data, and update evalue, dvalue for each request
2: update entropy histogram: histn

3: choose two threshold value: lown, and highn according to histn

4: for all request r[j] ∈ data do
5: if dvalue[j] > highn then
6: status[j] = status[j] + 1.0
7: end if
8: if dvalue[j] < lown then
9: status[j] = status[j] − 1.0
10: end if
11: end for
12: generate sessions by placing boundary points on positive data

must be one of the buckets according to its timeout or n-gram value. Each bucket en-
try contains following information: the low bound (vlow), the high bound (vhigh), the
number of unknown, positive and negative data. In each iteration, we update the his-
tograms and choose a proper upper and lower threshold values to label data. Figure 1
and Figure 2 are examples of histograms after several iterations, where each value in
x-axis is the low bound value of a bucket. The three series illustrute the distribution of
the labeled/unlabelled data, and which is used to choose the thresholds. For example,
suppose we want to identify 5 new positive data for the timeout method, we can choose
a vlow value from histt to allow at least 5 new data with larger timeout value.

After training step, the status of some requests are updated. However, there is still
some requests have unknown status. We will update them in the separating step. The al-
gorithm is illustrated in Algorithm 2. We first rebuild a semi-supervised n-gram model
from the request array, and update request entropy values and histogram correspond-



A Machine Learning Approach to Identifying Database Sessions 259

ingly. Then, we choose a final low and high threshold value for n-gram histogram. The
status of each request is updated according to the threshold values. Finally, we separate
sessions according to request status.

3.2 An Example

In this section, we use an example to show how co-training algorithm works on a data
set. The data set contains 441 requests belonging to 56 true sessions. In the training step,
59 requests labeled positively, and 36 requests negatively. Table 2 shows the log file after
training. We observe that request 31 has a long time interval (24.713s), which leads to
a large positive confidence (4.5) and a positive status. However, request 25 has a small
entropy change (-0.529), and it has a negative confidence (1.0) and a negative status.
A large number of requests are identified as unknown. However, such information is
enough to train a good n-gram model in the separating step.

Table 2. User request log after applying co-training processing

Pos. ID Starting Time Ending Time Time Interval Entropy Value Entropy Change Status
1 30 15:06:41.052 15:06:41.183 0.000 3.182 -1.0 -10.0
2 9 15:06:42.827 15:06:43.987 2.644 1.735 -0.455 0.00
3 10 15:06:44.777 15:06:44.912 0.790 1.265 -0.271 0.00
4 20 15:06:45.525 15:06:45.823 0.613 1.245 -0.016 0.00

....
8 31 15:07:21.800 15:07:21.853 24.713 1.606 0.349 4.50

....
56 25 15:09:37.957 15:09:38.124 2.414 1.442 -0.529 -1.00

We generated the intermediate result for each iteration, and calculated the precision
and recall values. The result is shown in Table 3. At the beginning, the prediction preci-
sion is very high, which means the proposed algorithm can find some session boundaries
correctly. In later iterations, the precision begins to drop. However, the coverage (recall)
increases. The final result has a 0.91 accuracy in term of F-measure.

Table 3. Intermediate result in each iteration

Method Iteration No. Estimated Matched Precision Recall F-Measure
timeout 1 15 15 1.00 0.25 0.41
n-gram 1 15 15 1.00 0.25 0.41
timeout 2 15 15 1.00 0.25 0.41
n-gram 2 15 15 1.00 0.25 0.41
timeout 3 16 16 1.00 0.27 0.43
n-gram 3 20 20 1.00 0.34 0.51
timeout 4 31 30 0.97 0.51 0.67
n-gram 4 43 40 0.93 0.68 0.78
timeout 5 49 42 0.86 0.71 0.78
n-gram 5 61 52 0.85 0.88 0.87
Final N/A 60 53 0.88 0.95 0.91

Figures 1 and 2 show the timeout and n-gram histograms after the training step.
From the figure, we observe that a large amount of unlabeled data is within the middle
range, some positive data is on the right side, and some negative data is on the left side.
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3.3 Co-training Parameters

In this section, we discuss the parameters and how to choose optimal values. Table 4
shows the parameters used in our algorithm and their value ranges. We assume that a
parameter is independent of the others. To study the influence of these parameters, we
did 63,000 experiments with different parameters on our testing data (see table 5 for
details). These results are used to compare the performance under different parameters.

Table 4. Co-training Parameters

Name Meaning Range
porder n-gram order 1-10
piter Iteration number 1-20
plen Average session length vary in applications
ppos Ratio of positive data to be identified 0.0 - 1.0
pneg Ratio of negative data to be identified 0.0 - 1.0
pngram Ratio of data to be identified by n-gram method 0.0 - 1.0

In n-gram modeling, it is assumed that the probability of a word only depends on
its at most previous n-1 words, where n is the order of the model. Parameter porder

represents the n-gram order, it is usually between 1 and 10. The choice of n is based
on a trade-off between detail and reliability, and will be dependent on the quantity of
available training data. In the field of speech recognition, for the quantities of language
model training data typically available at present, 3-gram models strike the best balance
between precision and robustness, although interest is growing in moving to 4-gram
models and beyond. In Figure 3, we plot the best performance in term of F-measure for
different representative porder. We observe that the 3-gram and 4-gram have the better
performance than the others.

Parameter piter is the iteration number. In [1], the authors choose 30 as the itera-
tion number. We conduct experiments with different iterations ranging from 2 to 20,
and compare the performance. The result is shown in Figure 4. We observe that small
iteration number, such as 2, has poor performance. Also, a large number (>8) may not
have benefit, and an iteration number between 5 and 8 is suitable for our algorithm.
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The next parameter plen is an estimated average session length. The purpose of
this parameter is to estimate how many sessions in a testing data, and the number of
positive data as well. In our OLTP testing data, the value is between 6 to 10, and it
is 26 for TPCC benchmark data (see Table 5 for details). We conduct experiments on
different plen values, ranging from 4 to 50. The result, illustrated in Figure 5, shows
that the performance of our algorithm is not very sensitive to this value. Even we makes
wrong estimation (such as 15 for OLTP, 8 for TPCC), the algorithm can still achieve
good performance.

Parameters ppos and pneg determine how many positive/negative data to be learned
in training step. The number of labeled data to be learned by the two methods are certain
ratios (ppos, and pneg) to the session number. Given a log file contains n requests, n

plen
∗

ppos positive labels, and (n− n
plen

)∗pneg negative labels will be learned in training step.
Since many requests are non-session (negative) boundary, and learning large negative
data does not help the algorithm too much. We decide to make pneg smaller than 0.5. We
compare the performance under different positive ratios and negative ratios in Figure 6.
The result shows that an optimal value of ppos is between 0.5 and 0.9, and the algorithm
is not sensitive to pneg value.

The last parameter pngram is the ratio of labeled data to be learned by the n-gram
method. The timeout method and n-gram method have different accuracies for differ-
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ent testing data. For some testing data, the timeout method is more accurate than the
n-gram method, thus we will allow it to identify more labeled data. Otherwise, the n-
gram method will identify more labeled data. We use the parameter pngram to control
the identification ratio between the two methods. Figure 7 shows the result for different
n-gram ratio value. For testing data D2 and D5, a large value achieves the best perfor-
mance. However, a small value achieve better performance for D1 and D4. The result
suggests that the optimal value of pngram is sensitive to the data set.

4 Data Sets and Experimental Results

We collected two data sets to testing our idea. The first one is a clinic OLTP applica-
tion. The clinic is a private physiotherapy clinic located in Toronto. In each day, the
client applications installed in a branch connects to the database and performs different
tasks, such as checking-in customer, making appointments, etc. We collect 400M bytes
database logs within 10 hour observation time. After preprocessing the log, we obtain
7,244 SQL queries. The queries are classified into 190 categories, and 18 connection
log files are obtained. In order to compare performance, we manually separate these log
files into sessions. 5 representative logs as the testing data, and the others are the train-
ing data for the supervised n-gram learning and unsupervised n-gram learning methods
proposed in [8]. The training data has 5,450 requests and 789 session.
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Table 5. Testing Data Set

OLTP Data TPCC Data
Name Requests Sessions Length Name Requests Sessions
D1 677 65 10.0 T0 7062 272
D2 441 56 08.0 T1 5064 193
D3 816 118 07.0 T2 40207 1569
D4 1181 153 07.5 T3 51405 2748
D5 452 69 06.6 T4 82852 3227

Table 6. Experiment Result for the two data set

OLTP Data TPCC Data
Name D1 D2 D3 D4 D5 Overall T1 T2 T3 T4 Overall
Timeout 0.72 0.69 0.63 0.70 0.39 0.63 1.0 1.0 0.72 0.60 0.83
Unsupervised 0.75 0.88 0.89 0.68 0.49 0.73 (16%) 0.92 0.90 0.90 0.82 0.88 (6%)
Supervised 0.77 0.94 0.89 0.84 0.97 0.88 (40%) 0.97 0.97 0.96 0.89 0.95 (14%)
Co-training 0.73 0.91 0.88 0.84 0.85 0.84 (33%) 0.99 0.96 0.94 0.85 0.92 (11%)
Final 0.56 0.87 0.83 0.70 0.63 0.72 (14%) 0.92 0.89 0.94 0.81 0.89 (7%)

The second data set we used is the query log of TPC-C Benchmark [7]. TPC-C
models a wholesale supplier managing orders which involves a mix of 5 different ses-
sions operated against a database of 9 tables. Some sessions contain multiple database
transactions (such as, Delivery transaction), and some even does not corresponds to a
database transaction (such as Stock Level Transaction). Even the business logic of these
transaction is simple, the runtime behavior is complex. Thus, a method is need to sepa-
rated sessions from the query log efficiently. We collect five log files, which are listed in
Table 5, where data T0 is used for training data of algorithms proposed in [8]. The TPC-
C implementation can use the connection sharing technique to improve performance.
In the testing data, T0, T1, and T2 has no connection sharing, but the number of users
who share a connection is 20 and 60 in T3 and T4 respectively.

We first compare the performance of timeout, unsupervised, supervised learning
proposed in [8], and our co-training algorithm in Table 6. We examine the best perfor-
mance that can be achieved by these methods. The result shows that our co-training
method out-perform than the timeout and unsupervised learning, but it is less than
the supervised learning. Then, we choose 3-gram model with 5 iterations. The ses-
sion length is 6 for OLTP application, and 22 for TPC-C benchmark, and 0.8,0.1, and
0.7 are positive ratio, negative ratio and n-gram ratio. The result shows that the final
performance is comparable with the best unsupervised learning, and the average per-
formance is comparable with the best timeout method. Meanwhile, our method does not
need well selected training data. The timeout method performs good when there is no
connection sharing (for data T1, and T2). However, its performance decreases when the
number of users who share the database connection increase (T3 and T4). The reason
is that the time interval between sessions will decrease, and that between request will
increase when shared users increases.

5 Conclusions

We have presented a co-training based session identification algorithm. Unlike previous
algorithms, it does not require any training data or any time threshold. The proposed
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algorithm is evaluated on two data sets. The result demonstrates that our algorithm can
identify sessions effectively from the testing data. One limitation of the algorithm is
that the time and space requirement is larger than previous algorithms. We are currently
investigating how to choose co-training parameters more effectively since some testing
data is sensitive to the training parameters (such as data D5). Also, in Section 3.3, we
assume that the parameters are independent, but they may have certain relationship.
For example, the session length and the positive ratio together determine the number
of positive labels to be learned. We can use this feature to develop a more scalable
algorithm, such as adjusting positive ratio to remedy the wrongly estimated session
length.
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Abstract. Case-based reasoning is one of the most frequently used tools in data 
mining. Though it has been proved to be useful in many problems, it is noted to 
have shortcomings such as feature weighting problems. In previous research, 
we proposed a hybrid system of case-based reasoning and neural network. In 
the system, the feature weights are extracted from the trained neural network, 
and used to improve retrieval accuracy of case-based reasoning. However, this 
system has worked best in domains in which all features had numeric values. 
When the feature values are symbolic, nearest neighbor methods typically resort 
to much simpler metrics, such as counting the features that match. A more 
sophisticated treatment of the feature space is required in symbolic domains. 
We propose another hybrid system of case-based reasoning and neural network, 
which uses value difference metric (VDM) for symbolic features. The proposed 
system is validated by datasets in symbolic domains. 

1   Introduction 

Case-based reasoning (CBR) is frequently applied to data mining with various 
objectives. CBR has common advantages over other learning strategies. It can be 
directly applied to classification without additional transformation mechanisms and 
has strength in learning the dynamic behavior of the system over a period of time. 
Unfortunately, it also has shortcomings to be applied to real world tasks. It suffers 
from the feature weighting problem. In this framework, similar case retrieval plays an 
important role, and the k-nearest neighbor (k-NN) method or its variants are widely 
used as the retrieval mechanism. However, the most important assumption of k-NN is 
that all of the features presented are equally important, which is not true in many 
practical applications. When CBR measures the distance between cases, some input 
features should be treated more important than other features. Many variants of k-NN 
have been proposed to assign higher weights to the more relevant features for case 
retrieval. Though many feature-weighted variants of k-NN have been reported to 
improve its retrieval accuracy on some tasks [1-3], few have been used in conjunction 
with the neural network learning until Shin et al. proposed a hybrid approach of 
neural network (NN) and CBR named as MANN (Memory And Neural Network 
based learning) [4]. 
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In the hybrid approach of MANN [4], the feature weight set, which is calculated 
from the trained neural network, plays the core role in connecting both learning 
strategies and the explanation for prediction, which can be given by obtaining and 
presenting the most similar examples from the case base. And four feature weighting 
methods are suggested - Sensitivity, Activity, Saliency, Relevance. Those methods 
gave large weight value to important features, which improved retrieval accuracy of 
CBR. The system is designed to process data in domains which all features have 
numeric values. It uses normalized Euclidean distance to measure similarity of 
numeric features. In symbolic domains, we must adopt new metric that can measure 
similarity of symbolic features. 

Value Difference Metric (VDM) presented by Stanfill and Waltz takes into account 
the overall similarity of classification of all instances. For each feature, matrix 
defining the distance between all possible feature values is derived statistically based 
on the examples in the training set [5]. We adopted a modified VDM, which has 
introduced in [6], as the distance measure in symbolic domains. We named the 
proposed system CANSY (a hybrid system of Case-based reasoning And Neural 
network for SYmbolic features). 

The paper is organized as follows. The MANN, our previous research, is discussed 
in Section 2.1, and VDM is reviewed in Section 2.2. The overall learning structure of 
the CANSY, our proposed system, is presented in Section 2.3. In Section 3, 
illustrative experimental results are presented. We use datasets from the UCI machine 
learning archive for experiments [7]. We conclude the paper by briefly discussing the 
limitations of the study and future research directions in Section 4. 

2   Hybrid System of Case-Based Reasoning and Neural Network 
Based on VDM 

2.1   MANN : A Numeric Feature Weighting Algorithm Using a Trained Neural 
Network 

Shin. et al. proposed the hybrid approach of case-based reasoning and neural network 
named as MANN (Memory And Neural Network based learning). This hybrid 
approach adopts neural network and memory to realize an analogy to the human 
information processing system. After being trained, the neural network keeps its 
knowledge in the connection weights among the neurons. The neural network is 
expected to contain the intrinsic nature of the training dataset completely, and once 
the network is trained properly the training dataset itself is not utilized any more. 
However, the thinking process of human brain is apparently aided by the memory (the 
training dataset in the machine learning case) as well as the connection weights 
between neurons. In data mining ‘memory’ is realized in the form of database, which 
can store, query, and retrieve large amounts of data in a short time. Now database is 
the fundamental information resource in corporate information systems. It means that, 
with proper case retrieval methods, we can easily benefit from the abundant database. 
The approach uses the k-nearest neighbor (k-NN) method for case retrieval in CBR 
settings. k-NN assumes that each case x = {x1, x2, …, xn, xc} is defined by a set of n 
features, where xc is x’s class value (discrete or numeric). 
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In [4], Given a query q and a case library L, k-NN retrieves the set K of q’s k most 
similar (i.e., of least distance) cases in L and predicts their weighted majority class 
value as the class value of q. Distance is defined as 
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The brief procedure of calculating weights of features, wf (f=1,…,n) are as follows. 
First, a neural network is trained completely with the given dataset. With the trained 
neural network and the training data, we calculate the feature weight set according to 
the methods−Sensitivity, Activity, Saliency, and Relevance. Then, when a new query 
comes in, we can point out k-nearest neighbors in the training data based on the 
feature weight sets. The prediction value of a neural network may also be utilized in 
conjunction with the neighborhood information. This provides extended information 
for the query with most similar cases in the database. 

The hybrid system of case-based reasoning and neural network improved retrieval 
accuracy of CBR. This system has worked best in domains in which all features had 
numeric values, because normalized Euclidean distance was used to compare 
examples. When the features have symbolic or unordered values (e.g., the letters of 
the alphabet, which have no natural inter-letter “distance”), it typically resorts to 
much simpler metrics, such as counting the features that match. Simpler metrics may 
fail to capture the complexity of the problem domains, and as a result may not 
perform well. In symbolic domains, a more sophisticated treatment of the feature 
space is required [6]. 

2.2   Value Difference Metric(VDM) 

In domains with symbolic features, the “overlap” metric is usually used, counting the 
number of features that differ [11]. However, it is observed that the overlap metric 
gives relatively poor performance in their learning tasks in symbolic feature domains 
[6]. A new powerful metric for measuring the difference between two instances in 
domains with the symbolic features was proposed which was called value difference 
metric (VDM) [5]. VDM takes into account similarity of feature values. The value 
difference metric is defined by (3). 
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X and Y are two instances. xi and yi are values of the ith feature for X and Y. N is the 
number of features and n is the number of classes. fi and g indicate the ith predicate 
feature and the class feature, respectively. cl is one of possible classes. D(condition) is 
the number of instances in a given training dataset which satisfy the condition. 

d(xi ,yi) is a term for measuring the difference overall similarity between feature 

values xi and yi. The term 
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==  is the likelihood that an instance with xi 

of ith feature value will be classified as class cl. d(xi, yi) has a small value if two values 
give similar likelihoods for all possible classes and this means that two values are 
similar. Though Stanfill and Waltz used the value of k=2 in their equation, Cost and 
Salzberg observed that experiments indicated that equally good performance is 
achieved when k=1. We also used the value of k=1 for simplicity [6]. 

w(xi, yi) measures the strength with which the ith feature constrain the values of the 
class. This measure represents the importance of each feature in classification. In our 
paper, we remove this term in order to give the same weight to features because the 
classification information is not given in clustering tasks. Our value difference metric 
in this paper is 
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2.3   CANSY : A Symbolic Feature Weighting Algorithm Using a Trained Neural 
Network and VDM 

The framework of the CANSY is shown in figure 1. We extend the method for the 
symbolic feature case, of which all of the input features and the target features are 
symbolic. The learning system is consisted of three processes. 

The first process is evaluating the feature weight set, which is extracted from the 
trained neural network. Because symbolic feature values have no distance between 
two values, it cannot be use as input data of a neural network.  

Therefore, transformation mechanism is required for using symbolic feature values as 
the input data of neural network. That is, before training the neural network, all of the 
symbolic features are transformed into binary features like figure 2, which has d original 
inputs (xi, i=1,…,d), E transformed binary input nodes (bi, i=1,…,E), M hidden nodes 
(zi, i=1,…,M), and c output nodes (yi, i=1,…,c). Every output node represents one of 
possible values of the target feature, namely one of target classes. The number of output 
nodes is the number of possible values of the target feature. 
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Fig. 1. CBR with VDM weighting by Neural Network 

 

Fig. 2. Example of a fully connected feed-forward network having transformation mechanism 

When training of a neural network is finished, we obtain the feature weight set from 
the trained neural network using four feature weighting methods. The four feature 
weighting methods are Sensitivity, Activity, Saliency, and Relevance. Those methods 
calculate importance of each feature using the connection weights and activation 
patterns of nodes in the trained neural network. 

1) Sensitivity: The Sensitivity of an input feature xi is given by 
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where P0 is the normal prediction value for each training instance by the trained neural 
network and Pi is the modified prediction value when the input i is removed. L is the set 
of training data and n is the number of training data. 

2) Activity: The activity of a hidden node zj is given by 
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where var() is the variance function. The activity of a binary input node bl is defined 
as 
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and the activity of an input node xi is given by 
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where ni is the number of values of xi input feature. 
3) Saliency: The saliency of a binary input node bl is given by 
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and the saliency of a input node xi is given by 
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4) Relevance: The relevance of a hidden node zj is given by 
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and the overall relevance of a binary input node bl is 
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and the relevance of an input node xi is given by 
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The second process is constructing VDT (Value Different Tables) from the instances 
in the case base according to VDM, which defines the disances between different values 
of a given feature. For each feature, the value difference matrix is derived statistically 
based on the instances in the training dataset according to (18).  

In fact, (18) is a simpler form of (8). 
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Where V1 and V2 are two possible values for the feature and n is the number of 
classes. C1i is the number of times V1 was classified into class i and C1 is the total 
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number of times value 1 occurred. The term C1i/C1 is the likelihood that an instance will 
be classified as class i given that its ith feature has value V1. Thus (18) computes overall 
similarity between two values by finding the sum of the difference of the likelihood 
over all classifications. 

The third process is case-based reasoning using feature weights extracted from the 
trained neural network and VDT constructed by VDM. If a query is given, the distances 
between the query and the cases is  
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where q is the query and x is a case from the case base, qi and xi are the ith feature values 
of q and x, respectively. The system classifies the new instance following the closest 
cases from the case base. wi  is the weight of the ith input feature. δ(qi,xi) is the distance 
between two values qi and xi of the ith input feature. r is usually set to 1 or 2 according to 
the case bases. In this paper, we set r = 1 for all of our experiments. 

3   Experimental Results 

We apply our methods to two datasets from the UCI machine learning repository [7]. In 
this experiment, we created a neural network with one hidden layer. To train it, we 
applied the gradient descent algorithm with momentum & adaptive learning rate, which 
is implemented in MATLAB 6 as the default training algorithm. For calculating the 
weight values for input features, the four methods – Sensitivity, Activity, Salience and 
Relevance are used and for calculating the distance between two symbolic features, 
VDT obtained from VDM is used.  

We compare the performance of our methods to that of the simple k-nearest neighbor 
(k-nn) algorithms without feature weighting. The experiments are repeated 10 times for 
each dataset and in every experiment. We evaluate the performance of all methods 
according to k, the number of nearest neighbors which, in our experiments, takes odd 
numbers from 1 to 15. Table 1 shows the experimental settings for the problems. 

Table 1. Datasets and neural network settings 

 Datasets Neural Network 

Problem 
Training I
nstances 

Test Insta
nces 

Attribute
s 

Output 
Classes 

# of Hidde
n Nodes 

Trainin
g Goal 

Monk’s-1 124 432 6 2 2 0.01 
Voting Records 300 135 16 2 4 0.01 

3.1   Monk’s Problem 

The learning task is to generalize a binary classification, robots belong either to this 
class or not, with a subset of all 432 possible robots give classes [9]. The domain has 
been partitioned into a train dataset and test dataset. 
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The neural network has 2 hidden neurons. We repeated the neural network training 
10 times for each feature weighting method and k. Table 2 shows the experimental 
results. 

‘Uniform’ column shows the errors of the CBR without feature weighting, that is, 
pure k-nn. Because we experiment with uniform method once, ‘Uniform’ column has 
no variance. The next four columns show the mean errors and the variances of the 
errors of the four method of the CBR with the proposed symbolic feature weighting. 

Table 2. The Monk’s-1 problem – Mean errors and variances of weighting 

K Uniform Sensitivity Activity Saliency Relevance 
1 0.1296 0.0576±0.0250 0.0215±0.0213 0.0231±0.0216 0.0234±0.0219 
3 0.1759 0.1086±0.0114 0.0826±0.0130 0.0829±0.0139 0.0824±0.0147 
5 0.2083 0.1273±0.0160 0.1012±0.0081 0.1014±0.0086 0.1016±0.0102 
7 0.2269 0.1410±0.0061 0.1306±0.0077 0.1306±0.0075 0.1303±0.0076 
9 0.2315 0.1435±0.0127 0.1289±0.0120 0.1308±0.0129 0.1306±0.0138 

11 0.2315 0.1630±0.0043 0.1660±0.0016 0.1662±0.0015 0.1662±0.0015 
13 0.2546 0.1667±0.0000 0.1667±0.0000 0.1667±0.0000 0.1667±0.0000 
15 0.2500 0.1667±0.0000 0.1667±0.0000 0.1667±0.0000 0.1667±0.0000 

 
Fig. 3. The Monk’s-1 : Classification accuracy of feature weighting methods 

Figure 3 shows the prediction accuracy of the feature weighting methods according 
to k. In this problem, the proposed weighting methods show better prediction 
accuracy than uniform method. The difference in the prediction accuracy of the four 
feature weighting methods-the Sensitivity, Activity, Saliency, and Relevance, is very 
small and the trend in the change of the errors according to k is also similar. 

3.2   Congressional Voting Records Database 

This is the 1984 United States Congressional Voting Records Database. This data set 
includes votes for each of the U.S. House of Representatives Congressmen on the 16 



 Hybrid System of Case-Based Reasoning and Neural Network 273 

 

key votes. All of the instances are classified into one of 2 classes, democrat or 
republican.  

We repeated the experiment 10 times and in every experiment and divided the 435 
instances into a training dataset and a test dataset of 300 and 135, respectively. Table 
3 is the experimental results. The neural network had 4 hidden neurons.  

We can see that the four feature weighting methods outperform the pure k-nn in 
every datasets. Especially, when k is greater than 3, the difference in the prediction 
accuracy between the pure k-nn and proposed weighting method is very large. 
Figure 4 shows the prediction accuracy of the feature weighting methods according 
to k. 

Table 3. The Voting Records database – Mean error of feature weighting methods 

K Uniform Sensitivity Activity Saliency Relevance 
1 0.0615±0.0201 0.0556±0.0172 0.0563±0.0168 0.0541±0.0178 0.0533±0.0143 
3 0.0474±0.0117 0.0407±0.0106 0.0415±0.0062 0.0415±0.0062 0.0415±0.0062 
5 0.0526±0.0118 0.0393±0.0093 0.0400±0.0080 0.0378±0.0107 0.0378±0.0107 
7 0.0541±0.0111 0.0385±0.0104 0.0393±0.0086 0.0385±0.0109 0.0393±0.0105 
9 0.0563±0.0157 0.0400±0.0112 0.0385±0.0115 0.0385±0.0104 0.0393±0.0099 
11 0.0578±0.0147 0.0385±0.0120 0.0378±0.0128 0.0385±0.0115 0.0393±0.0121 
13 0.0578±0.0125 0.0385±0.0120 0.0385±0.0120 0.0393±0.0105 0.0393±0.0105 
15 0.0593±0.0126 0.0393±0.0105 0.0393±0.0105 0.0393±0.0105 0.0400±0.0112 

 
Fig. 4. The Voting Records : Classification accuracy of feature weighting methods 

In pure k-nn, the prediction accuracy changes according to change of k. On the 
contrary, the four feature weighting methods prevent the decay of the prediction 
accuracy with the increase of k. The difference in the prediction accuracy of the four 
feature weighting methods is very small and the trend in the change of the errors 
according to k is also similar as you can see in figure 4.  
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4   Conclusion and Future Work 

We adopt trained neural network for feature weighting and VDM for measuring the 
distance between values of symbolic features because the symbolic features need a 
sophisticated distance metric. The prediction accuracy of CBR, specifically the k-nn 
weighted by the four feature weighting methods outperforms that of pure k-nn as 
shown in the experiments. The four feature weighting methods adjust the effect of the 
input features to the distance very appropriately by weight values of features and thus 
enhance the prediction accuracy of the k-nn. Moreover, the feature weighting methods 
offer the k-nn the stability in its prediction ability. As shown in the experiments, 
especially in the results from the Voting Records, the accuracy doesn’t decreases with 
the increase of k despite of decay of the prediction accuracy of the pure k-nn. In 
general, it is difficult to specify the optimum value for k previously. Thus that 
character of the feature weighting methods has significant importance because they 
can provide consistent accuracy to the k-nn. 

The distance metrics for numeric features and symbolic features have different 
characteristics. We have applied the feature weighting methods by neural networks to 
both Euclidean distance as a representative distance metric for numeric features and 
VDM as a representative one for symbolic features. But many problems have mixed 
numeric- and nominal-valued attributes. Therefore, we have to study about many 
variants of VDM which have been proposed to improve heterogeneous distance 
functions [10]. 
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Abstract. Recent advances in communication and information technol-
ogy, such as the increasing accuracy of GPS technology and the minia-
turization of wireless communication devices pave the road for Location–
Based Services (LBS). To achieve high quality for such services, spatio–
temporal data mining techniques are needed. In this paper, we describe
experiences with spatio–temporal rule mining in a Danish data min-
ing company. First, a number of real world spatio–temporal data sets
are described, leading to a taxonomy of spatio–temporal data. Second,
the paper describes a general methodology that transforms the spatio–
temporal rule mining task to the traditional market basket analysis task
and applies it to the described data sets, enabling traditional association
rule mining methods to discover spatio–temporal rules for LBS. Finally,
unique issues in spatio–temporal rule mining are identified and discussed.

1 Introduction

Several trends in hardware technologies such as display devices and wireless com-
munication combine to enable the deployment of mobile, Location–based Ser-
vices (LBS). Perhaps most importantly, global positioning systems (GPS) are be-
coming increasingly available and accurate. In the coming years, we will witness
very large quantities of wirelessly Internet–worked objects that are location–
enabled and capable of movement to varying degrees. These objects include
consumers using GPRS and GPS enabled mobile–phone terminals and personal
digital assistants, tourists carrying on–line and position–aware cameras and wrist
watches, vehicles with computing and navigation equipment, etc.

These developments pave the way to a range of qualitatively new types of
Internet–based services [8]. These types of services, which either make little sense
or are of limited interest in the context of fixed–location, desktop computing,
include: traffic coordination and management, way–finding, location–aware ad-
vertising, integrated information services, e.g., tourist services.

A single generic scenario may be envisioned for these location–based services.
Moving service users disclose their positional information to services, which use
this and other information to provide specific functionality. To customize the
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interactions between the services and users, data mining techniques can be ap-
plied to discover interesting knowledge about the behaviour of users. For exam-
ple, groups of users can be identified exhibiting similar behaviour. These groups
can be characterized based on various attributes of the group members or the
requested services. Sequences of service requests can also be analyzed to dis-
cover regularities in such sequences. Later these regularities can be exploited to
make intelligent predictions about user’s future behaviour given the requests the
user made in the past. In addition, this knowledge can also be used for delayed
modification of the services, and for longer–term strategic decision making [9].

An intuitively easy to understand representation of this knowledge is in terms
of rules. A rule is an implication of the form A ⇒ B, where A and B are sets of
attributes. The idea of mining association rules and the subproblem of mining
frequent itemset was introduced by Agrawal et al. for the analysis of market
basket data [1]. Informally, the task of mining frequent itemsets can be defined
as finding all sets of items that co–occur in user purchases more than a user–
defined number of times. The number of times items in an itemset co-occur in
user purchases is defined to be the support of the itemset. Once the set of high–
support, so called frequent itemsets have been identified, the task of mining
association rules can be defined as finding disjoint subsets A and B of each
frequent itemset such that the conditional probability of items in B given the
items in A is higher than a user–defined threshold. The conditional probability
of B given A is referred to as the confidence of the rule A ⇒ B. Given that coffee
and cream are frequently purchased together, a high–confidence rule might be
that “60% of the people who buy coffee also buy cream.” Association rule mining
is an active research area. For a detailed review the reader is referred to [5].

Spatio–temporal (ST) rules can be either explicit or implicit. Explicit ST
rules have a pronounced ST component. Implicit ST rules encode dependen-
cies between entities that are defined by spatial (north–of, within, close–to,. . . )
and/or temporal (after, before, during,. . . ) predicates. An example of an explicit
ST rule is: “Businessmen drink coffee at noon in the pedestrian street district.”
An example of an implicit ST rule is: “Middle–aged single men often co–occur in
space and time with younger women.” In this paper, we describe our experiences
with ST rule mining in the Danish spatial data mining company, Geomatic.

The task of finding ST rules is challenging because of the high cardinality
of the two added dimensions: space and time. Additionally, straight-forward
application of association rule mining methods cannot always extract all the
interesting knowledge in ST data. For example, consider the previous implicit
ST rule example, which extracts knowledge about entities (people) with different
attributes (gender, age) that interact in space and time. Such interaction will not
be detected when association rule mining is applied in straight-forward manner.
This creates a need to explore the special properties of ST data in relation to
rule mining, which is the focus of this paper.

The contributions of the paper are as follows. First, a number of real world
ST data sets are described, and a taxonomy for ST data is derived. Second,
having the taxonomy, the described data sets, and and the desirable LBSes
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in mind, a general methodology is devised that projects the ST rule mining
task to traditional market basket analysis. The proposed method can in many
cases efficiently eliminate the above mentioned explosion of the search space,
and allows for the discovery of both implicit and explicit ST rules. Third, the
projection method is applied to a number of different type of ST data such that
traditional association rule mining methods are able to find ST rules which are
useful for LBSes. Fourth, as a natural extension to the proposed method, spatio–
temporally restricted mining is described, which in some cases allows for further
quantitative and qualitative mining improvements. Finally, a number of issues in
ST rule mining are identified, which point to possible future research directions.

Despite the abundance of ST data, the number of algorithms that mine such
data is small. Since the pioneering work of [2], association rule mining methods
were extended to the spatial [3,4,6,11], and later to the temporal dimension [12].
Other than in [13,15], there has been no attempts to handle the combination of
the two dimensions. In [15] an efficient depth–first search style algorithm is given
to discover ST sequential patterns in weather data. The method does not fully
explore the spatial dimension as no spatial component is present in the rules, and
no general spatial predicate defines the dependencies between the entities. In [13],
a bottom–up, level–wise, and a faster top–down mining algorithm is presented
to discover ST periodic patterns in ST trajectories. While the technique can
naturally be applied to discover ST event sequences, the patterns found are only
within a single event sequence.

The remainder of the paper is organized as follows. Section 2 introduces
a number of real world ST data sets, along with a taxonomy of ST data. In
Section 3, a general methodology is introduced that projects the ST rule mining
task to the traditional market basket analysis or frequent itemset mining task.
The proposed problem projection method is also applied to the example data
sets such that traditional association rule mining methods are able to discover
ST rules for LBSes. Finally, Sections 4 and 5 identify unique issues in ST rule
mining, conclude, and point to future work.

2 Spatio–temporal Data

Data is obtained by measuring some attributes of an entity/phenomena. When
these attributes depend on the place and time the measurements are taken,
we refer to it as ST data. Hence such ST measurements not only include the
measured attribute values about the entity or phenomena, but also two special
attribute values: a location value, where the measurement was taken, and a time
value, when the measurement was taken. Disregarding these attributes, the non–
ST rule “Businessmen drink coffee” would result in annoying advertisements sent
to businessmen who are in the middle of an important meeting.

Examples of ST Data Sets. The first ST data set comes from the “Space,
Time, and Man” (STM) project [14]—a multi–disciplinary project at Aalborg
University. In the STM project activities of thousands of individuals are con-
tinuously registered through GPS–enabled mobile phones, referred to as mobile
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terminals. These mobile terminals, integrated with various GIS services, are used
to determine close–by services such as shops. Based on this information in cer-
tain time intervals the individual is prompted to select from the set of available
services, which s/he currently might be using. Upon this selection, answers to
subsequent questions can provide a more detailed information about the nature
of the used service. Some of the attributes collected include: location and time
attributes, demographic user attributes, and attributes about the services used.
This data set will be referred to as STM in the following.

The second ST data set is a result of a project carried out by the Greater
Copenhagen Development Council (Hovedstadens Udviklings R̊ad (HUR)). The
HUR project involves a number of city busses each equipped with a GPS receiver,
a laptop, and infrared sensors for counting the passengers getting on and off at
each bus stop. While the busses are running, their GPS positions are continuously
sampled to obtain detailed location information. The next big project of HUR
will be to employ chip cards as payment for the travel. Each passenger must
have an individual chip card that is read when getting on and off the bus. In
this way an individual payment dependent on the person and the length of
the travel can be obtained. The data recorded from the chip cards can provide
valuable passenger information. When analyzed, the data can reveal general
travel patterns that can be used for suggesting new and better bus routes. The
chip cards also reveal individual travel patterns which can be used to provide a
customized LBS that suggests which bus to take, taking capacities and correct
delays into account. In the following, the datasets from the first and second
projects of HUR will be referred to as HUR1 and HUR2, respectively.

The third ST data set is the publicly available INFATI data set [7], which
comes from the intelligent speed adaptation (INtelligent FArtTIlpasning (IN-
FATI)) project conducted by the Traffic Research Group at Aalborg University.
This data set records cars moving around in the road network of Aalborg, Den-
mark over a period of several months. During this period, periodically the lo-
cation and speeds of the cars are sampled and matched to corresponding speed
limits. This data set is interesting, as it captures the movement of private cars
on a day–to–day basis, i.e., the daily activity patterns of the drivers. Additional
information about the project can be found in [10]. This data set will be referred
to as INFATI in the following.

Finally, the last example data set comes from the Danish Meteorology Insti-
tute (DMI) and records at fixed time intervals atmospheric measurements like
temperature, humidity, and pressure for Denmark for 5 km grid cells. This data
set is unique in that unlike the other datasets it does not capture ST character-
istics of moving objects, but nonetheless is ST. This data set will be referred to
as DMI in the following.

A Taxonomy of ST Data. Data mining in the ST domain is yet largely
unexplored. There does not even exist any generally accepted taxonomy of ST
data. To analyze such data it is important to establish a taxonomy.

Perhaps the most important criterion for this categorization is whether the
measured entities are mobile or immobile. The ST data in the DMI data set is
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immobile in the sense that the temperature or the amount of sunshine does not
move from one location to the other, but rather, as a continuous phenomenon,
changes its attribute value over time at a given location. On the other hand, the
observed entities in the other four datasets are rather mobile.

Another important criterion for categorization is whether the attribute values
of the measured entities are static or dynamic. There are many examples of
static attributes values but perhaps one that all entities possess is a unique
identifier. Dynamic attributes values change over time. This change can be slow
and gradual, like in the case of the age of an observed entity, or swift and abrupt,
like in the case of an activity performed by the observed entity, which starts at
a particular time and last for a well-specified time interval only.

3 Spatio–temporal Baskets

Following the methodology of market basket analysis, to extract ST rules for a
given data set, one needs to define ST items and baskets. This task is important,
since any possible knowledge that one can extract using association rule mining
methods will be about the possible dependencies of the items within the baskets.

Mobile Entities with Static and Dynamic Attributes. Consider the STM
data; it is mobile in nature and has several static and dynamic attributes. Base
data contains the identity and some demographic attributes of the user, and the
activity performed by user at a particular location and time. Further attributes
of the locations where the activity is performed are also available. By applying
association rule mining on this base data one can find possible dependencies
between the activities of the users, the demographics of the users, the char-
acteristics of the locations there the activities are performed, and the location
and time of the activities. Since the location and time attributes are items in
the baskets one may find {Strøget,noon,businessman,café} as a frequent itemset
and from it the association rule {Strøget,noon,businessman} ⇒ {café}. Strøget
being a famous pedestrian street district in central Copenhagen in Denmark,
this rule clearly has both a spatial and temporal component and can be used to
advertise special deals of a café shop on Strøget to businessmen who are in the
area around noon.

In the INFATI data set, a record in the base data contains a location, a time,
a driver identifier, and the current speed of the car along with the maximum al-
lowed speed at the particular location. The possible knowledge one can discover
by applying association rule mining on the base data is where and when drivers
or a particular driver occur(s) and/or speed(s) frequently. However, one may in
a sense pivot this table of base data records such that each new row represents
an ST region and records the car identifiers that happen to be in that region.
Applying association rule mining on these ST baskets one may find which cars
co–occur frequently in space and time. Such knowledge can be used to aid in-
telligent rideshare services. It can also be valuable information for constructing
traffic flow models and for discovering travel patterns. While the possible knowl-
edge discovered may be valuable for certain applications, the extracted rules are
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not clearly ST, i.e.: there is no explicit ST component in them. In fact the same
set of cars may frequently co–occur at several ST regions which may be scattered
in space and time. Nonetheless, it can be argued that since the “co–occurrence”
between the items in the ST baskets is actually an ST predicate in itself, the
extracted rules are implicitly ST.

An alternative to this approach might be to restrict the mining of the ST
baskets to larger ST regions. While this may seem useless at first, since the
baskets themselves already define more fine–grained ST regions, it has several
advantages. First, it allows the attachment of an explicit ST component to each
extracted rule. Second, it enhances the quality of the extracted rules. Finally,
it significantly speeds up the mining process, as no two itemsets from different
regions are combined and tried as a candidate. Figure 1 shows the process of
pivoting of some example records abstracted from the INFATI data set. Figure
2 shows the process and results of spatio–temporally restricted and unrestricted
mining of the ST baskets. In this example the shown frequent itemsets are based
on an absolute minimum support of 2 in both cases, however in the restricted
case specifying a relative minimum support would yield more meaningful results.
Naturally the adjective “relative” refers to the number of baskets in each of the
ST regions. Figure 2 also shows the above mentioned qualitative differences in
the result obtained from spatio–temporally restricted vs. unrestricted mining.
While the frequent co–occurrence of cars A and B, and cars A and C are detected
by unrestricted mining, the information that cars A and B are approximately
equally likely to co-occur in area A1 in the morning as in the afternoon, and
that cars A and C only co–occur in area A1 in the morning is missed.

Similar pivoting techniques based on other attributes can also reveal interest-
ing information. Consider the data set in HUR2 and the task of finding frequently
traveled routes originating from a given ST region. In the HUR2 data set a record
is generated every time a user starts and finishes using a transportation service.
This record contains the identifier of the user, the transportation line used, and
the location and time of the usage. For simplicity assume that a trip is defined
to last at most 2 hours. As a first step of the mining, one can retrieve all the

Location Time CarID
1 07:30 A
1 07:30 B
2 07:31 A
2 07:31 B
2 07:31 C
3 07:32 A
3 07:32 C
3 16:20 A
3 16:20 B
2 16:21 A
2 16:21 B
1 16:22 A
1 16:22 B

Location Time CarIDs
1 07:30 A,B
2 07:31 A,B,C
3 07:32 A,C
3 16:20 A,B
2 16:21 A.B
1 16:22 A,B

Base Data Records from INFATI

Spatio-temporal Baskets

Pivoting

Fig. 1. Process of pivoting to obtain ST
baskets from INFATI base data

Location Time CarIDs
1 07:30 A,B
2 07:31 A,B,C
3 07:32 A,C
3 16:20 A,B
2 16:21 A.B
1 16:22 A,B

Spatio-temporal region 1:
Area = A1 Period = 07:30-07:40

Spatio-temporal region 2:
Area = A1 Period = 16:20-16:30

Spatio-temporal Baskets

Spatio-temporally
Unrestricted Mining

Spatio-temporally
Restricted Mining

Itemset Support
{A} 6
{B} 5
{C} 2

{A,B} 5
{A,C} 2

Area Period Itemset Support
A1 7:30-7:40 {A} 3
A1 7:30-7:40 {B} 2
A1 7:30-7:40 {C} 2
A1 7:30-7:40 {A,B} 2
A1 7:30-7:40 {A,C} 2
A1 16:20-16:30 {A} 3
A1 16:20-16:30 {B} 3
A1 16:20-16:30 {A,B} 3

Fig. 2. Process and results of spatio–
temporally restricted vs. unrestricted min-
ing of ST baskets
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records that fall within the ST region of the origin. Following, one can retrieve
all the records within 2 hours of the users that belonged to the first set. By piv-
oting on the user–identifiers, one can derive ST baskets that contain locations
where the user generated a record by making use of a transportation service.
Applying association rule mining to the so–derived ST baskets one may find
frequently traveled routes originating from a specific ST region. The pivoting
process for obtaining such ST baskets and the results of mining such baskets is
illustrated in a simple example in the light bordered box of Figure 3. Naturally,
the frequent itemset mining is only applied to the ”Unique Locations” column
of the ST baskets. As before the minimum support is set to 2. Considering the
spatial relation between the locations one might consider altering the bus routes
to better meet customer needs. For example, if locations A and C are close by on
the road network, but no bus line exists with a suitable schedule between A and
C, then in light of the evidence, i.e., support of A,B,C is 2, such a line can be
added. Note that while the discovered frequent location sets do not encode any
temporal relation between the locations, one can achieve this by simply placing
ST regions into the ST baskets as items. The pivoting process and the results
of mining are shown in the dark bordered box of Figure 3. The discovered ST
itemsets can help in adjusting timetables of busses to best meet customer needs.

Immobile Entities with Static and Dynamic Attributes. So far the ex-
amples considered datasets that are mobile and have either static, dynamic, or
both types of attribute values. Now consider an immobile ST data with mostly
dynamic attribute values, as the DMI data set. The base data can be viewed
as transactions in a relational table with a timestamp, a location identifier and
some atmospheric measurements like temperature, humidity, and pressure. Con-
sidering the geographical locations A, B, C, and D depicted in Figure 4, we might
be interested in trends like, when the temperature in regions A and B is high
and the pressure in regions A and C is low, then at the same time the humidity
in region D is medium. By applying something similar to the pivoting techniques
above, we can extract such information as follows. For each record concatenate
the location identifiers with the atmospheric measurements. Then, for each dis-

Base Data Records from HUR2
User Location Time Line ON/OFF

X A 08:00 7 ON
X B 08:15 7 OFF
X B 08:20 14 ON
X C 08:25 14 OFF
Y A 08:00 7 ON
Y B 08:15 7 OFF
Y D 08:18 18 ON
Y E 08:25 18 OFF
Z A 08:00 7 ON
Z B 08:15 7 OFF
Z B 08:20 14 ON
Z C 08:25 14 OFF

Pivoting

User Locations Unique Locations
X A,B,B,C A,B,C
Y A,B,D,E A,B,D,E
Z A,B,B,C A,B,C

Spatio-temporal Baskets

Frequent Itemset
Mining

Itemset Support
{A} 3
{B} 3
{C} 2

{A,B} 3
{A,C} 2

{A,B,C} 2

Pivoting

User Spatio-temporal Regions
X A_0800, B_0815, B_0820, C_0825
Y A_0800, B_0815, D_0818, E_0825
Z A_0800, B_0815, B_0820, C_0825

Spatio-temporal Baskets

Frequent
Itemset
Mining

Itemset Support
{A_0800} 3
{B_0815} 3
{C_0825} 3

{A_0800,B_0815} 3
{A_0800,C_0825} 2

{A_0800,B_0815,C_0825} 2

Fig. 3. ST baskets and frequent itemset
mining for HUR2

Location Time T H P
A 08:00 lo hi hi
B 08:00 lo hi hi
C 08:00 hi me me
D 08:00 me me me
A 09:00 me hi me
B 09:00 hi lo lo
C 09:00 lo lo me
D 09:00 lo hi hi
A 10:00 lo hi hi
B 10:00 hi lo lo
C 10:00 hi hi me
D 10:00 lo hi hi

Time Spatial Measurements
08:00 ATlo,AHhi,APhi,BTlo,BHhi,BPhi,CThi,CHme,CPme,DTme,DHme,DPme
09:00 ATme,AThi,APme,BThi,BHlo,BPlo,CTlo,CHlo,CPme,DTlo,DHhi,DPhi
10:00 ATlo,AHhi,APhi,BThi,BHlo,BPlo,CThi,CHhi,CPme,DTlo,DHhi,DPhi

Pivoting

Base Data Records from DMI

Spatio-temporalBaskets
Frequent Itemset Mining

Geographical Locations

A

DC

B

Longest Frequent Itemset (out of 157)
{BThi,BHlo,BPlo,CPme,DTlo,DHhi,DPhi}

Fig. 4. ST baskets and frequent itemset
mining of DMI
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tinct time interval when measurements are taken, put all concatenated values,
each of which is composed of a location identifier and an atmospheric measure-
ment, into a single, long ST basket. By performing association mining on the
derived ST baskets one can obtain the desired knowledge.

As an illustrative example, depicted in Figure 4, consider the four neighbor-
ing cells A, B, C, and D and the corresponding measurements of temperature
(T), humidity (H), and pressure (P) at three different times. Items in the ST
baskets are derived by concatenating a location identifier followed by an at-
tribute symbol and an attribute value. Hence, the item ‘ATlo‘ in the ST basket
at time ‘08:00’ encodes the fact that at ‘08:00’ at location ‘A’ the temperature
(‘T’) was low (‘lo’). Notice that the extracted knowledge refers to specific loca-
tions. If one is interested in obtaining knowledge about the inter–dependencies
of these attributes relative (in space) to one another, for each base data record
at each distinct time interval when measurements are taken, an ST basket can
be constructed that encodes measurements from neighboring cells only. So, for
example considering the immediate 8 neighbors of a cell and assuming three
different attributes the number of items in each basket is 3 + 8 × 3 = 27. Con-
sidering a five–by–five relative neighborhood centered around a cell the number
of items in each basket is 75, and the number of possible itemsets, given three
possible attribute values for each of the attributes is 375 ≈ 6.1× 1034. To reduce
complexity, top–down and bottom–up mining can occur at different spatial and
temporal granularities.

While in the above examples the type of ST data that was analyzed and
the type of ST knowledge that was extracted is quite different the underlying
problem transformation method—referred to as pivoting—is the same. In gen-
eral, one is given base records with two sets of attributes A and B, which are
selected by a data mining expert and can contain either spatial, temporal and/or
ordinary attributes. Pivoting is then performed by grouping all the base records
based on the A–attribute values and assigning the B–attribute values of base
records in the same group to a single basket. Bellow, attributes in A are referred
to as pivoting attributes or predicates, and attributes in B are referred to as
pivoted attributes or items. Depending on the type of the pivoting attributes
and the type of the pivoted attributes the obtained baskets can be either or-
dinary, spatial, temporal, or ST baskets. Table 1 shows the different types of
baskets as a function of the different types of predicates used to construct the
baskets and the different types of items placed in the baskets. The symbols s, t,
st, i, and b in the table are used to abbreviate the terms ‘spatial’, ‘temporal’,
‘spatio–temporal’, ‘items’, and ‘baskets’ respectively.

In the “co-occurrence” mining task, which was earlier illustrated on the IN-
FATI data, the concept of restricted mining is introduced. This restriction is
possible due to a side effect of the pivoting technique. When a particular basket
is constructed, the basket is assigned the value of the pivoting attribute as an
implicit label. When this implicit basket label contains a spatial, temporal, or
ST component, restricting the mining to a particular spatial, temporal, or ST
subregion becomes a natural possibility. It is clear that not all basket types can
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Table 1. Types of baskets as a function of
predicate type and item type

pred/item type s–i t–i st–i ordinary–i
s–predicate s–b st–b s–b
t–predicate st–b t–b t–b
st–predicate st–b st–b st–b st–b

other–predicate s–b t–b st–b ordinary–b

Table 2. Possible mining types of dif-
ferent types of baskets

basket/mining type s–r t–r st–r unr
s–basket X X
t–basket X X
st–basket X X X X

other–basket X

be mined using spatial, temporal, or ST restrictions. Table 2 shows for each bas-
ket type the type of restrictions for mining that are possible. The symbols s, t,
st, r, and unr in the table are used to abbreviate the terms ‘spatial’, ‘temporal’,
‘spatio–temporal’, ‘restricted’, and ‘unrestricted’ respectively.

4 Issues in Spatio–temporal Rule Mining

The proposed pivoting method naturally brings up questions about feasibility
and efficiency. In cases where the pivoted attributes include spatial and/or tem-
poral components, the number of items in the baskets is expected to be large.
Thus, the number and length of frequent itemsets or rules is expected to grow.
Bottom–up, level–wise algorithms are expected to suffer from excessive candi-
date generation, thus top–down mining methods seem more feasible. Further-
more, due to the presence of very long patterns, the extraction of all frequent
patterns has limited use for analysis. In such cases closed or maximal frequent
itemsets can be mined.

Useful patterns for LBSes are expected to be present only in ST subregions,
hence spatio–temporally restricted rule mining will not only make the proposed
method computationally more feasible, but will also increase the quality of the
result. Finding and merging patterns in close–by ST subregions is also expected
to improve efficiency of the proposed method and the quality of results.

Placing concatenated location and time attribute values about individual
entities as items into an ST basket allows traditional association rule mining
methods to extract ST rules that represent ST event sequences. ST event se-
quences can have numerous applications, for example an intelligent ridesharing
application, which finds common routes for a set of commuters and suggests
rideshare possibilities to them. Such an application poses a new requirement on
the discovered itemsets, namely, they primarily need to be “long” rather than
frequent (only a few people will share a given ride, but preferably for a long dis-
tance). This has the following implications and consequences. First, all subsets
of frequent and long itemsets are also frequent, but not necessarily long and of
interest. Second, due to the low support requirement a traditional association
rule mining algorithm, disregarding the length requirement, would explore an
excessive number of itemsets, which are frequent but can never be part of a
long and frequent itemset. Hence, simply filtering out “short” itemsets after the
mining process is inefficient and infeasible. New mining methods are needed that
efficiently use the length criterion during the mining process.
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5 Conclusion and Future Work

Motivated by the need for ST rule mining methods, this paper established a tax-
onomy for ST data. A general problem transformation method was introduced,
called pivoting, which when applied to ST datasets allows traditional association
rule mining methods to discover ST rules. Pivoting was applied to a number of
ST datasets allowing the extraction of both explicit and implicit ST rules useful
for LBSes. Finally, some unique issues in ST rule mining were identified, pointing
out possible research directions.

In future work, we will devise and empirically evaluate algorithms for both
general and spatio–temporally restricted mining, and more specialized types of
mining such as the ridesharing suggestions. Especially, algorithms that take ad-
vantage of the above–mentioned “long rather than frequent” property of
rideshare rules will be interesting to explore.
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Abstract. Mining outliers from large datasets is like finding needles in a hay-
stack. Even more challenging is sifting through the dynamic, unstructured, and 
ever-growing web data for outliers. This paper presents HyCOQ, which is a hy-
brid algorithm that draws from the power of n-gram-based and word-based sys-
tems. Experimental results obtained using embedded motifs without a diction-
ary show significant improvement over using a domain dictionary irrespective 
of the type of data used (words, n-grams, or hybrid). Also, there is remarkable 
improvement in recall with hybrid documents compared to using raw words and 
n-grams without a domain dictionary. 

1   Introduction 

Web content mining, deals with classifying web pages into categories based on their 
content so that similar pages can be grouped together to enhance performance. The 
varying content of the web makes web content mining very challenging and wide 
ranging encompassing several fields in computer science (e.g., multimedia, IR, data 
mining, artificial intelligence, etc.).  

Many intelligent systems have been developed for mining web information. How-
ever, only a few [1, 2] are dedicated to finding web documents with varying content 
from their parent category, called web content outliers. Web content outliers are web 
documents with different content compared to similar documents taken from the same 
category [1]. Mining web content outliers may lead to the discovery of emerging 
business trends, improvement in the quality of results returned from search engines, 
and the identification of competitors in e-commerce [1, 2], among others.  

This paper proposes the HyCOQ algorithm for mining web content outliers which 
uses hybrid data without a dictionary. HyCOQ uses IR techniques to extract useful 
features from the documents and then applies dissimilarity algorithms to determine 
outlying documents based on computed nearest dissimilarity densities. 

The HyCOQ algorithm which uses hybrid data as input without using a query vec-
tor (domain dictionary). The hybrid data has the added advantage of the strengths of 
both word-based and n-grams-based systems. The experimental results using embed-
ded motifs without a domain dictionary produces an improvement of more than 100% 
in recall over using a domain dictionary. Similarly, using hybrid documents show 
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remarkable improvements in recall irrespective of whether a domain dictionary is 
used or not. A very importance feature of HyCOQ is that it is domain independent. 
Motifs are defined as documents or sets of documents taken from a known category 
other than the category being mined. They are referred to as embedded motifs if they 
are combined with the category being mined. 

The rest of the paper is organized as follows. Section 2 presents a detailed review 
of outlier mining techniques. Section 3 discusses the hybrid web content outlier min-
ing approach and the HyCOQ algorithm. The experimental results are reported in 
Section 4. Conclusions and future work are in Section 5. 

2   Related Work 

In statistics, outliers are data objects that show different characteristics from standard 
distributions. Over a hundred tests, called discordancy tests, have been developed for 
different scenarios [4]. The statistical techniques require a priori knowledge of the 
data distribution (e.g., Normal, Poisson) and distribution parameters (e.g., mean, vari-
ance), which is a major setback. In addition, most of the distributions used are uni-
variate. Depth-based techniques represent every data object in a k-d space and assign 
a depth to each object [12]. Data objects with smaller depths are declared outliers. 
Depth-based algorithms become inefficient for higher dimensional data (k  4) be-
cause they rely on the computation of k-d convex hull, which has lower bound com-
plexity of (nk/2) for n objects, where k is the number of dimensions.  

The distance-based technique assigns numeric distances to data objects and com-
putes outliers as data objects with relatively larger distances [13, 14]. It generalizes 
many of the existing notions of outliers, and enjoys better computational complexity 
than depth-based techniques for higher dimensional data. Ramaswamy et al [16] use 
distance to the k-nearest neighbor to rank outliers. Efficient algorithm for computing 
the top-n outliers using their rankings is provided. However, distance-based outlier 
algorithms are not capable of detecting all forms of outliers [3]. The local outlier 
factor technique addresses this major setback. It assigns a ‘degree of outlying’ to 
every object and declares data objects with high local outlier factor values as outliers 
[3, 11]. The local outlier factor depends on the remoteness of an object from its im-
mediate neighbors. Every object is treated as potential outlier; this can capture all the 
different forms of outliers that are ignored by the earlier algorithms. 

The algorithms discussed so far are designed solely for numeric data. To find non 
numeric outliers, Liu et al [15] propose algorithms for finding unexpected informa-
tion from a competitor’s website. Though very successful on real world datasets, there 
are major differences between their approach and our work. Their approach requires a 
query vector. It also requires the miner to identify a competitor’s website before the 
mining process begins. Their approach finds interesting and unexpected patterns, 
which may not necessarily be outlying patterns. Agyemang et al [1, 2] propose the 
general framework for mining web outliers. Algorithms based on n-grams and words 
are proposed for mining web content outliers. The major drawback is that both algo-
rithms use domain dictionary. In addition n-grams tend to be slow for large datasets 
and words do not support partial matching of strings. 
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3   A Hybrid Web Content Outlier Mining Approach 

N-grams are n-continuous character slices of a larger string into smaller strings each 
of size n. In general, the string can be a single word or a set of words occurring to-
gether in a document. This paper uses n-grams as an n-consecutive character slice of a 
word into smaller substrings each of size n.  N-gram techniques have been applied in 
different domains such as language identification, document categorization, robust 
handling of noisy text, and many other domains of natural language processing [5, 9]. 
The success of n-gram-based systems arises because strings are decomposed into 
smaller parts causing errors to affect only a limited number of parts rather than the 
whole string. The number of higher order n-grams common to two strings is a meas-
ure of their similarity, which is resistant to a large variety of textual errors [9]. 

In word-based systems, direct comparison of words to the dictionary is performed. 
Stemming algorithms are usually applied to convert similar but different words to 
their root terms. For example, educate, educational, and educated are each replaced 
with education. Similarity algorithms declare two documents as similar if a reason-
able number of words from the document and the query vector match in precision and 
recall. Word-based and n-gram-based systems have been thoroughly studied in IR for 
document classification. The strengths of word-based systems translate to weaknesses 
of n-gram-based systems and vise versa.  For example, n-gram-based systems are 
very efficient in memory utilization because they have fixed lengths compared to 
words with variable lengths. However, n-gram-based systems become slow for very 
large datasets because of the huge number of n-gram vectors generated during mining. 
Similarly, n-gram-based systems support partial matching of strings, which is a good 
property for outlier detection whereas word-based systems do not.  

3.1   The HyCOQ Algorithm 

The algorithm draws from the strengths of n-gram-based and word-based systems, 
while eliminating the weaknesses in both systems. It also takes advantage of the html 
structure of the web by assigning weights to html tags containing the keywords in the 
documents. The texts are extracted from the documents and processed. The extracted 
keywords are merged with higher order n-grams to form the hybrid documents. Hy-
brid document profiles are generated and used as input to the outlier detection algo-
rithm. The k-dissimilarity algorithm uses pair-wise document dissimilarities as input 
to generate k-dissimilarities, neighborhood dissimilarities and nearest dissimilarity 
densities for each document. Documents with high nearest dissimilarity densities are 
more likely to be outliers than those with very low densities.   

The HyCOQ algorithm shown in Figure 1 does not use a domain dictionary unlike 
its predecessors WCO-Mine [1] and WCON-Mine [2] for the following reasons. First, 
using a dictionary (query vector) requires the services of a domain expert, which can 
be very expensive and error prone. Second, using a dictionary can produce unrealistic 
and global outliers. The documents in the category do not have much influence on the 
type of outliers produced. Thus, the dictionary becomes more important than the 
documents themselves. Third, the mining process can produce false positive results if 
the dictionary is over exhaustive (i.e., the dictionary covers more than the domain 
being mined) and false negative results otherwise. Finally, using a dictionary means a 
domain must be identified a priori for the mining process to begin. Thus, data with 
unidentified domains cannot be mined. 
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HyCOQ Algorithm 

Input: Documents (di), weights w(Tkit), k-dissimilarity 
Output: Outlying documents 

1. Read the contents of the documents (di) 
2. Generate hybrid documents 
3. Generate hybrid document profile 
4. Compute dissimilarities (using Equations (1) to (6)) 
5. For(int i = 0;  i< NoOfDoc; i++){ 
6. Compute k-dissimilarites 
7. Compute neighborhood dissimilarities 
8. Compute nearest dissimilarity densities 
9. } // end of for 
10. Rank the nearest dissimilarity densities 
11. Declare top-n documents outliers 

Fig. 1. The HyCOQ Algorithm 

Hybrid Algorithm 
Input: documents  
Output: hybrid  
1. For (int i= 0; i<NoOfDoc; i++){ 
2. Read the content of the document 
3.  for(int j=0; j <NoOfWords; j++) { 
4.    if (word.length() >= ngram.size) { 
5.     for (int r =0; r< word.length – ngram.size +1; r++){ 
6.         ngram = ngram + substring(word, r , r + size) 
7.       } //end for 
8.     } //end if 
9.    hybrid = word + ngram 
10.  } // end for 
11. } // end of outer for 

Fig. 2. The Hybrid Algorithm 

3.1.1   Extraction and Preprocessing 
The extraction involves downloading the required documents from the web and ex-
tracting the text contained in the html tags (i.e., <Title>, <Meta> and <Body>) for 
further processing. The paper uses already extracted dataset taken from the webkb 
data repository [18]. During preprocessing, any data besides text embedded in the 
html tags are removed. Symbols, numeric characters, and stop-words are also re-
moved. The stop-word removal is done using independent publicly available list of 
stop-words [19]. Keywords are grouped under their respective html tags.  

3.1.2   N-Gram Generation and Hybridization 
This phase generates higher order n-grams for each document. The n-grams of a 
string of length k are obtained by sliding a window of size n over the string and re-
cording the characters that appear in the window at every position. For example, the 
string student has ‘stude’, ‘tuden’, ‘udent’ 5-grams. The maximum number of n-
grams generated from a string of length k is (k-n+1). The hybrid documents are 
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formed by merging the n-grams with the keywords. The hybridization algorithm is 
shown in Figure 2. 

3.1.3   Hybrid Document Profile Generation 
The hybrid documents are compared, and the number of times a term appears in each 
document is identified. The results are hashed to keep track of terms and their fre-
quency in each document. The terms and their respective counts are sorted and output 
to a file. The sorted files constitute the hybrid document profiles which are used as 
input to the outlier detection algorithm.  

3.1.4   Outlier Detection  
The goal of HyCOQ is to compute dissimilarity for determining documents with vary-
ing content. The paper employs the vector space model as a representation scheme. 
Each document is represented as a vector of indexed terms (keywords). Weights are 
assigned to terms within a document based on html tags that enclosed their root words 
and whether or not a term occurs in a document. Let ti be an indexed term and z be the 
number of terms in all documents so T = {t1, t2, t3, … , tz} is the set of all terms.  A 
document Di characterized by a set of index terms Tk is represented in vector space 
model as follows: 

Di = (Wi1, Wi2, Wi3, …, Wik)    (1) 

where Wij represents the weight of term Tj in document Di; Wij >0 if term Tj appears in 
a document and zero otherwise. The weight Wij is obtained by adopting Salton’s term-
weighting formula [17]. 
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where tfik is  the term frequency of document Di, N is the size of the document collec-
tion and nk  represents the number of documents with term Tk. The denominator in 
Equation (2) is used for content normalization which ensures relevant documents are 
ranked accordingly. The algorithm assigns specific importance to the html tags that 
contain the terms. In particular, terms contained in metadata (i.e., <meta>, <title>) are 
assigned larger weights than terms contained in the body tag using the function:  
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where w(Tkit) is the weight assigned to term Tk  from document  Di  in html tag Ht.  It is 
important to note that a term Tk can appear multiple times in multiple tags within a 
document. Thus, given that term Tk has a count Cik in document Di, the term fre-
quency tfik in Equation (3) is computed as follows: 
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The dissimilarity between the document vectors di, and query dj is computed by 
measuring the angle between them, using the function defined in Equation (5). The 
computed pair-wise dissimilarities require further processing to get the actual individ-
ual document dissimilarities. The individual document dissimilarities are derived 
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using k-dissimilarity, neighborhood dissimilarity, and nearest dissimilarity density 
adapted from the local outlier concept [3], and defined next.  
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Definition 1: Let d be a document from a category C, let k be a natural number, and 
let dis be dissimilarity metric on C, then the k-dissimilarity of d, denoted  k-diss(d), is 
the dissimilarity dis(d, m) between d and a document  m ∈C, such that at least for k 
documents  m1∈C: it holds that dis(d,m1) < dis(d, m), and for at most k-1 document 
m1∈C: it holds that dis(d, m1) < dis(d,m).                          

The motive for computing k-dissimilarity of d is to determine which documents con-
stitute the neighbors of d. It also helps in determining whether the neighborhood 
around d is dense or sparse.  Any document with dissimilarity from d greater than k-
dissimilarity of d cannot be considered a neighbor of d. The number of neighbors a 
document has may vary for documents, even if they have the same k.   

Definition 2: The neighborhood dissimilarity denoted Neighd(d) contains every 
document that has a dissimilarity not greater than k-dissimilarity of d. Non-trivial 
neighborhood dissimilarity consists of all the documents in the category.            

Definition 3:  The nearest dissimilarity density of a document d, denoted Nearestd(d) 
is defined as the ratio of the cardinality of neighborhood dissimilarity of d to the sum 
of the actual document dissimilarities within the neighborhood, and is given by:  
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where DIS are the dissimilarities of documents within the dissimilarity neighborhood 
The nearest dissimilarity density shows the distribution of document dissimilarities 

with respect to other documents. High nearest dissimilarity density means the 
neighborhood of the document is very dense, and hence has high potential of being an 
outlier. The nearest dissimilarity densities are sorted in descending order and the top-n 
documents with the highest nearest dissimilarity densities are declared outliers, where 
n is the number of outliers needed. The outliers produced are local with respect to the 
individual documents in the category.  

4   Experimental Results and Analysis 

The dataset for the experiment is the course and faculty corpus taken from the webkb 
dataset [18].  In this experiment we rely on embedded motifs to determine the effec-
tiveness of HyCOQ algorithm. The experiment consists of embedding some faculty 
pages in the course pages and then checking how many of these are correctly identi-
fied. We test the effectiveness of HyCOQ with a baseline using full-words and n-grams 
with and without a dictionary. The running times of HyCOQ using different data 
types, first with a dictionary and then without one are also compared. Embedded mo-
tifs are used in this experiment because there are no benchmark data for testing web 
content outliers.  
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Fig. 3. Top-n Outliers without Dictionary            Fig. 4. Top-n Outliers with Dictionary 
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    Fig. 5. Top-n Outliers using Words          Fig. 6. Top-n Outliers using 5-grams 
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Fig. 7. Top-n Hybrid 5-gram Outliers               Fig. 8. Top-n Outliers with 6-garms 

The effectiveness of HyCOQ is tested using 300 course pages and 30 faculty pages 
embedded in them as motifs to be identified. The rationale for choosing 30 faculty 
pages as embedded motifs is that outliers usually constitute less than 10% of the entire 
dataset [4]. The content is extracted and preprocessed. Hybrid document profiles are 
generated using 5-grams and 6-grams because experimental results show higher order 
n-grams are very effective in capturing similarities between document [5, 9]. The algo-
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rithm is tested without a domain dictionary with words, 5-grams (5G), 6-grams (6G), 
5-grams + words (5GW) and 6-grams+ words (6GW). The number of motifs correctly 
identified among the top-n (n = 5, 10, 15, 20, 30) outliers are shown in Figure 3.  The 
experiment is repeated using a domain dictionary on the same data set. The dictionary 
is created from 50 course pages taken from the course corpus using simple random 
sampling without replacement. The 50 pages are excluded from the 300 pages used as 
our baseline dataset. The algorithm stops after computing document dissimilarities 
because every document is compared with the same dictionary, and hence does not 
produce pair-wise dissimilarities. The results obtained using words; 5-grams (5G-D), 
6-grams (6G-D), 5-grams + words (5GW-D) and 6-grams + words (6GW-D) are 
shown in Figure 4.  Figures 3 and 4 show mining web content outliers without a do-
main dictionary is more effective than with a domain dictionary. About 70% of the 
motifs are correctly identified without a dictionary compared to less than 40% with a 
domain dictionary, irrespective of the type of data used. Moreover, hybrid documents 
produce highest recall irrespective of whether a dictionary is used or not.  

Figures 5 to 8 show the performance of HyCOQ with and without a domain dic-
tionary for different data types. There is consistent improvement of over 100% when 
a dictionary is not used compared to using the dictionary. The maximum recall re-
corded for words, n-grams and hybrid without a domain dictionary is 80% compared 
to 40% for words with domain dictionary. The average recall is even higher reaching 
100% at the top 1.5% when a hybrid of words and 6-grams are used without a dic-
tionary as shown in Figure 9. Finally, Figure 10 reveals using a hybrid document 
achieves a better recall than using either the raw n-grams or words. 
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Fig. 9. Top-n Hybrid 6-gram Outliers        Fig. 10. Top-n Outliers: Words, GG & 6GW 

4.2   Testing for Response Time 

The response time dataset consists of 1000 web pages from the course corpus of 
webkb dataset [18]. The HyCOQ algorithm is applied using words, 5GW and 6GW 
without a domain dictionary. The response times are recorded for different data size 
as shown in Figure 11. Each 100KB data consist of approximately 100 processed 
files. The experiment is repeated on the same dataset but this using a domain diction-
ary with the results depicted in Figure 12. The overall response time for using words 
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alone is better than using either of the hybrids (5GW and 6GW) irrespective of 
whether or not a dictionary is used. Among the hybrids, 6GW has a better response 
time than 5GW as shown in Figures 11 and 12.   

Though the overall response time of using a dictionary is better than not using it, the 
quality of the results returned cannot be under estimated. In outlier mining where the 
entire data contains very few outliers, the quality of the results is very important. Thus, 
using the hybrid dataset without a domain dictionary with a recall of about 70% is 
better than using a domain dictionary with an average recall of less than  40% which 
cannot even be guaranteed because the results depend on the quality of the  dictionary. 
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  Fig. 11. Response Time without Dictionary  Fig. 12. Response Time with Dictionary 

5   Summary and Conclusions  

This paper proposes the HyCOQ algorithm for mining web content outliers using 
hybrid documents as data input. The proposed algorithm has two major advantages 
over its predecessor: 1) it does not require a domain dictionary, hence eliminating the 
need for a domain expert; 2) the use of hybrid documents eliminates the weaknesses 
associated with n-gram and word-based systems. The experimental results with em-
bedded motifs show using the hybrid documents especially 6GW (6-grams + words) 
performs better (recall) than using the words or the n-grams alone irrespective of 
whether a dictionary is used or not. The overall results indicate using any data type 
(i.e., words, n-grams, or hybrids) without a dictionary has a better recall than using the 
same dataset with a domain dictionary. The results show an average of about 70% 
recall without a dictionary compared to less than 40% with domain dictionary. There is 
a remarkable improvement of more than 100% when domain dictionary is not used 
compared to when it is used. However, the response time reported for the same dataset 
with a domain dictionary is more promising than without a domain dictionary.  

Though the overall response time of using a dictionary is better than without it, the 
quality of results returned cannot be under estimated. In an area like outlier mining 
where the entire data contains very few outliers, the quality of the results is very im-
portant. Thus, using the hybrid dataset without a domain dictionary with a recall of 
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about 70% is better than using a domain dictionary with average recall less than 40%.  
We note here that even the 40% recall is not guaranteed and depends very much on 
the quality of the dictionary as opposed to the data being mined. 
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Abstract. Data mining is an iterative process. Users issue series of simi-
lar data mining queries, in each consecutive run slightly modifying either
the definition of the mined dataset, or the parameters of the mining algo-
rithm. This model of processing is most suitable for incremental mining
algorithms that reuse the results of previous queries when answering a
given query. Incremental mining algorithms require the results of previ-
ous queries to be available. One way to preserve those results is to use
materialized data mining views. Materialized data mining views store
the mined patterns and refresh them as the underlying data change.
Data mining and knowledge discovery often take place in a data ware-
house environment. There can be many relatively small materialized
data mining views defined over the data warehouse. Separate refresh
of each materialized view can be expensive, if the refresh process has to
re-discover patterns in the original database. In this paper we present
a novel approach to materialized data mining view refresh process. We
show that the concurrent on-line refresh of a set of materialized data
mining views is more efficient than the sequential refresh of individual
views. We present the framework for the integration of data warehouse
refresh process with the maintenance of materialized data mining views.
Finally, we prove the feasibility of our approach by conducting several
experiments on synthetic data sets.

1 Introduction

Data mining, or knowledge discovery in databases, is a non-trivial process of
finding valid, novel, useful, and ultimately understandable patterns and regular-
ities in very large data volumes [5]. Data mining systems are quickly evolving
from specific to general-purpose systems that are tightly coupled with the exist-
ing relational database technology. Integration is usually performed in the data
warehouse, which serves high quality data to various mining techniques. Mining
processing characteristics differs significantly from typical database workload.
Hence, new methods of data mining query processing and optimization are be-
ing developed. One of these methods is incremental discovery of patterns.
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The patterns discovered as the result of the execution of a data mining algo-
rithm can be regarded as an answer to a sophisticated database query. A user
defines the set of mined data using standard SQL commands and determines
the parameters governing a given data mining algorithm. In response, relevant
patterns are returned to the user for evaluation. Users usually do not achieve sat-
isfying results immediately. It is an iterative process, where in each consecutive
step the user evaluates the patterns and, suitably to the needs, expectations, and
experience, modifies either the mined dataset, or algorithm parameters, or both.
Because of this iterative and repetitive nature of mining processing, a data min-
ing system must efficiently exploit the results of previous queries when fulfilling
user requests. Data warehouses facing similar requirements in on-line analytical
processing are materializing the results of queries as snapshots and rewrite in-
coming queries to use the materialized data. The same principle applies to data
mining systems, where previously discovered patterns are stored in materialized
data mining views and used to efficiently answer user queries.

The main problem in using materialized patterns gathered during mining
is the freshness of the patterns. Each update of the source data can potentially
invalidate some or all patterns stored in a materialized data mining view. This is
particularly important in a data warehouse, where refresh of the source data hap-
pens regularly, often on a daily or even hourly basis. To cope with this problem,
incremental mining techniques were proposed that aim at efficient maintenance
of materialized patterns by running the base algorithm only on the difference set,
and minimizing the number of full data reads necessary to validate the patterns.
The main drawback of this approach is the fact, that the proposed methods
refresh materialized data mining views separately, disregarding the properties of
the data warehouse environment.

The refresh cycle of modern data warehouses becomes more and more fre-
quent. As the result, the volume of the data loaded upon each refresh becomes
relatively smaller as compared to the size of the entire data warehouse. On the
other hand, the number of materialized data mining views defined in a data ware-
house increases. In practice, materialized data mining views that span entire fact
tables are rare. Instead of having a single large materialized data mining view,
users define several well-focused views that cover a specific area of analysis (e.g.,
buyers of a particular product, purchases made during particular time of day,
etc.). Usually, only a small subset of a huge fact table is used as the data source
for such materialized data mining view. Consequently, the probability that a
given tuple contained in the data loaded into a data warehouse upon refresh is
likely to influence the patterns stored in a materialized data mining view is much
smaller than assumed in traditional approaches. In such circumstances, using the
entire load of new data and repeating incremental maintenance procedures for
all materialized data mining views separately is a waste of resources.

We propose to tackle the problem of materialized data mining view main-
tenance from another perspective. Our solution is concurrent online refresh of
a set of materialized data mining views. In our approach the maintenance of
materialized data mining views becomes an integral part of the data warehouse
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refresh process. When a tuple is loaded into the warehouse, materialized data
mining views that could become affected by that tuple are updated simultane-
ously. In this paper we present a framework for online maintenance of a set of
materialized data mining views. We argue that our assumptions are reasonable
with respect to practical data warehouse implementations. Our contribution is
the following. We demonstrate the structure for fast lookup of candidate mate-
rialized data mining views that could become affected by an insert of a tuple.
We present a novel algorithm for concurrent online incremental mining and we
experimentally prove the feasibility of the proposed approach by comparing our
algorithm with other algorithms. Experimental comparison of our algorithm with
two algorithms proposed in the literature so far (Apriori and IUA) shows that
our algorithm outperforms previous proposals.

The remainder of the paper is organized as follows. Following this paragraph
we present the related work and definitions of basic terms used throughout the
paper. The idea of using materialized results of previous data mining queries
to answer subsequent user requests is presented in Section 2. In Section 3 we
present a novel approach to the materialized pattern maintenance problem which
consists in concurrent online refresh of materialized data mining views. Experi-
mental evaluation of our approach is presented in Section 4. The conclusions are
contained in Section 5.

1.1 Related Work

The problem of association rule mining was introduced in [2]. The paper identi-
fied the discovery of frequent itemsets as a key step in association rule mining. In
[3] the authors presented basic algorithm called Apriori, which quickly became
the seed of several other data mining algorithms. The first algorithm for main-
taining discovered association rules using incremental technique, called FUP, was
proposed in [4]. In [13] a new Incremental Updation Algorithm (IUA) was pro-
posed. IUA minimized the number of full database scans to discover association
rules in the updated data using the idea of the negative border of the collection
of frequent itemsets [7].

The work on materialized views started in the 1980s. Multiple algorithms
for view maintenance were developed [12]. Further research led to the creation
of cost models for materialized view maintenance and applying views to enforce
integrity constraints in databases. A summary of view maintenance techniques
can be found in [6]. Materialized data mining views were first proposed in [10],
and quickly became an important tool in data mining query optimization [8,9,14].
To the best of our knowledge the idea of concurrent online refresh of a set of
materialized data mining views has not been presented yet.

1.2 Basic Definitions

Let I = {i1, . . . , in} be a set of literals called items. Let D be a set of variable
length transactions and ∀T ∈ D : T ⊆ I. We say that the transaction T sup-
ports an item x if x ∈ T . We say that the transaction T supports an itemset X
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if it supports every element x ∈ X . The support of an itemset is the number of
transactions supporting the itemset. The problem of discovering frequent item-
sets consists in finding all itemsets with the support higher than user-defined
minimum support threshold denoted as minsup. An itemset with the support
higher than minsup is called a frequent itemset. Given a collection of frequent
itemsets L. The negative border NBd(L) of the collection L consists of all sets
si, such that si /∈ L ∧ ∀s′i ⊂ si : s′i ∈ L.

An association rule is an implication of the form X → Y where X ⊂ I, Y ⊂ I
and X ∩ Y = ∅. X is called the body of the rule whilst Y is called the head of
the rule. Two measures represent statistical significance and strength of a rule.
The support of a rule is the number of transactions that support X ∪ Y . The
confidence of a rule is the ratio of the number of transactions that support
the rule to the number of transactions that support the head of the rule. The
problem of discovering association rules consists in finding all rules with support
and confidence higher than the user-specified thresholds of minimum support
and confidence, called minsup and minconf respectively.

2 Data Mining Using Materialized Views

MineSQL [11] is a multi-purpose data mining query language which uses data
mining queries to express data mining tasks. The syntax of MineSQL resembles
standard SQL and provides excellent means of integration of data mining re-
quests with the underlying database management system. MineSQL allows to
issue commands that discover frequent itemsets, association rules, and sequen-
tial patterns. MineSQL uses additional data types (e.g. SET, ITEMSET, RULE) as
well as operators and functions for those data types (e.g. CONTAINS, BODY(x),
HEAD(x)). The following data mining query discovers all association rules with
support higher than 2.5% and confidence higher than 70%, which contain an
item ‘Bordeaux Pomerol ’ in the body of the rule. Mining is performed over
transactional data on premium customers for the 2nd half of the year 2004 .

MINE RULE r, HEAD(r), BODY(r)
FOR products FROM (
SELECT SET(product) AS products
FROM PurchaseFacts
WHERE time_id >= ’01.07.2004’
AND time_id <= ’31.12.2004’
AND customer_type = ’Premium’

GROUP BY transaction_id )
WHERE SUPPORT(r) > 0.025
AND CONFIDENCE(r) > 0.7
AND BODY(r) CONTAINS TO_SET(’Bordeaux Pomerol’);

In traditional databases a view defines a mapping function from a set of base
relations to the derived relation. The function is computed upon each reference
to the view. Views hide complex data structures from a user and provide an ad-
ditional independence layer between an application and the underlying database
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schema. Changes occurring in the database schema are reflected only in the view
definition with no impact on the end-user application. In order to avoid compu-
tational overhead, the contents of the view can be materialized in the database.
The materialized copy of the data can be quickly accessed, thus bypassing ex-
pensive computation of the view. Data stored in a materialized view are not
automatically refreshed when base relations change. Therefore, view mainte-
nance techniques are necessary to reflect changes that occur in base relations of
a materialized view. Often, modifications of base relations affect only a part of
the materialized view. Incremental view maintenance techniques avoid recompu-
tation of the entire view contents by determining the parts of the materialized
view that should be updated.

Similarly to traditional database views, data mining views can be used to sim-
plify application development, hide the complexity of data mining algorithms
behind standard view interface, and enable incremental mining techniques by
materializing results of data mining queries for further processing. Consider
the following MineSQL statement that defines a materialized data mining view
v_saint_emilion.

CREATE MATERIALIZED VIEW v_saint_emilion
REFRESH 7 AS
MINE RULE r, BODY(r), SUPPORT(r), CONFIDENCE(r)
FOR products FROM (
SELECT SET(product) AS products
FROM PurchaseFacts
WHERE time_id >= ’01.01.2004’
AND time_id <= ’31.12.2004’

GROUP BY transaction_id
HAVING AVG(price) >= 10 )

WHERE SUPPORT(r) > 0.025
AND HEAD(r) CONTAINS TO_SET(’Saint Emilion’);

The definition of the view contains two classes of constraints: database con-
straints appear within the WHERE clause in the SELECT subquery, whereas min-
ing constraints appear within the WHERE clause in the MINE statement. Database
constraints delimit the part of the database that constitutes the source dataset.
Mining constraints define patterns that are interesting to the user. Materialized
data mining view not only separates the user from the technical details of the
underlying mining algorithm, but provides the storage for discovered patterns.
Every pattern in a materialized data mining view has a timestamp representing
its creation time and validity period. One can provide the REFRESH clause that
defines the period after which the contents of the materialized data mining view
should be refreshed. Materialized views can be refreshed manually or automati-
cally. The refresh of a materialized view could be performed by an incremental
mining algorithm, or could involve the recomputation of the entire view.

The importance of materialized data mining views stems from the fact that
the contents of the materialized data mining view can be used to efficiently an-
swer a data mining query which is similar to the materialized view definition.
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Depending on the relations between a query and the view definition, several dif-
ferent mining methods are available. These methods include incremental mining,
complementary mining, verifying mining, and full mining. Data mining query
optimization using materialized data mining views is covered in [8,14].

3 Concurrent Online Refresh of Materialized Data
Mining Views

Data warehouse is an integrated collection of high-quality data supporting deci-
sion making. Based on this data, users can define multiple, possibly overlapping,
collections of related data that serve as data sources for data mining queries.
We argue that in typical applications users perform a focused selection of source
data of interest and constraint their data mining activities to the selected sub-
sets of the original data. We attribute this behavior to the fact that very large
volumes of data produce patterns that are too general to be useful in analysis
and decision making. Rather, users concentrate on smaller sets of data that are
relevant to a given data mining query. After determining the subset of interest-
ing data and setting the parameters of a mining algorithm, users can store their
mining activity as a materialized data mining view and decide on the refresh
frequency. Therefore, one should perceive a data warehouse as an environment
for multiple different materialized data mining views that can be refreshed and
maintained independently. Moreover, as changes to the data warehouse do not
happen continuously over time, but are loaded in chunks during periodical data
warehouse refresh, the refresh of materialized data mining views can be inte-
grated with the process of the entire data warehouse refresh. It is worth noticing
that during data warehouse refresh, when new tuples are loaded into base tables,
they do not necessarily invalidate all materialized data mining views. Whether
a tuple invalidates the patterns stored in a materialized data mining view or
not, depends solely on the definition of the materialized data mining view, in
particular, on the database constraints of the view.

In our implementation we are using a special index table to store the defini-
tions of materialized data mining views. For all database tables that are used as
the source for data mining views, table attributes are mapped to columns in the
index table. Each materialized data mining view is described as a single row in the
index table. In addition to columns representing attributes of relational tables, the
index table stores the thresholds of minimum support and confidence provided in
the view definition. If the definition of the materializeddata mining view contains a
database constraint defined on a base table attribute, this fact is reflected in the in-
dex table by inserting the relational operator (=,≤,≥, =,etc.) with the associated
constant value into the appropriate column of the index table. A special symbol
’*’ is used if attributes of a base table are used in the materialized data mining
view without any constraints. The index table is used to quickly decide, which of
the materialized data mining views defined in the data warehouse are affected by
the insertion of a given tuple. This is done by comparing the values in the inserted
tuple with the constants stored in the appropriate attributes of the index table.
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Each materialized data mining view is implemented as a relational table.
The table contains both frequent itemsets constituting the answer to the data
mining query, and the negative border of the collection of frequent itemsets. Each
itemset is represented as a single row having two attributes: a numerical attribute
containing the support of the itemset and a collection of items implemented as
a nested table of varying length. This schema can be easily extended to support
the storage of association rules. Given an association rule X → Y . Both X
and Y must be frequent itemsets. Therefore, both itemsets appear in the base
relational table. The row representing the itemset X has an additional column
HEADS which is a nested table of head objects. Each head object consists of the
numerical confidence measure and the pointer to the itemset forming the head of
the rule (in the above example the pointer points to the location of the itemset
Y ). Analogously, every itemset has an additional column BODIES implemented as
a nested table of body objects. Again, each body object consists of the confidence
measure of the rule and the pointer to the itemset forming the body of the rule.
Pointers are either artificial primary keys or physical row addresses. Using bi-
directional pointers to rule elements allows for fast lookup of rules containing a
given itemset in the body or the head of the rule.

The algorithm for concurrent online refresh of materialized data mining
views, denoted OUA for Online Updation Algorithm, proceeds as follows. The
insertion of new tuples into the data warehouse base table triggers the verifica-
tion procedure. First, definitions of all materialized data mining views defined
on the updated base table are retrieved from the index table. Next, values of
attributes of a newly inserted tuple are compared to the values of attributes
used in database constraints of materialized data mining views. The comparison
is performed using a special function which selects appropriate relational oper-
ators to test, whether the tuple satisfies all constraints defined in the definition
of a materialized data mining view. If the comparison succeeds, the procedure
updates the view.

Given a materialized data mining view MDMV and a newly inserted tuple
t that affects the view. Let L denote the collection of frequent itemsets present
in the materialized data mining view MDMV . Let NBd(L) denote the negative
border of the collection of frequent itemsets L and let Ck denote the collection
of candidate itemsets of the size k.

In the first step the set of items contained in the newly inserted tuple t
is divided to form the collection of one-element candidate itemsets C1. For all
elements in C1 the algorithm searches for itemsets s ∈ L ∪ NBd(L), such that
s = c, and increases the support count of these itemsets. If, during this step,
an itemset from the negative border NBd(L) becomes frequent, it is moved
to L and the negative border is expanded to reflect this move. Next, itemsets
C1 ∩ L are used to generate the set of candidate 2-itemsets C2. Observe that
only 2-itemsets contained in the inserted tuple are used to grow L and NBd(L).
This procedure repeats until no more candidate k-itemsets can be generated
(candidates are generated using standard apriori-gen procedure of the Apriori
algorithm). After processing all new tuples the algorithm checks if the negative
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border of the collection of frequent itemsets should be updated. This happens if
there is a set that moved from the negative border to the collection of frequent
itemsets. This step may require a full database scan.

Example 1. Given the materialized view MDMV with L = {A, B, C, AB, AC}
and NBd(L) = {BC}. Let the newly inserted tuple t = 〈A, B, C〉. First, all
elements of the tuple t are used to create the collection of candidate 1-itemsets
C1 = {A, B, C}. This collection is compared with L ∪ NBd(L) and the appro-
priate support counts are incremented. No itemsets are moved from the neg-
ative border to the set of frequent itemsets. Next, the set L1 is determined
as L1 = C1 ∩ L = {A, B, C}. These itemsets are used to generate the set of
candidate 2-itemsets C2 = {AB, AC, BC}. Again, these itemsets are compared
with L ∪ NBd(L) to increase appropriate support counts. As the result, the
itemset BC is moved from NBd(L) to L and the negative border NBd(L) is
expanded with the itemset ABC. As in previous step, the set L2 is determined
as L2 = C2 ∩ L = {AB, AC, BC}. This procedure repeats until no new candi-
dates can be generated. Support counts for itemsets from the expanded negative
border are determined during additional database scan.

4 Experimental Results

All experiments were conducted on Dell Pentium M 1,4GHz with 768MB of
RAM running Windows 2000 and Oracle 9i. Data sets were created using DB-
Gen generator from the Quest Project [1]. Original database contained 100 000
transactions, the average size of the transaction was 40, and the number of dif-
ferent items was set to 100 000. For comparison we have chosen the basic Apriori
algorithm (no incremental mining at all) and Incremental Updation Algorithm
[13]. The size of the base table update varied from 500 to 5000 new transactions
(i.e., from 0.5% to 5% of the original data volume). The percentage of the orig-
inal base table covered by the materialized data mining view varied from 2.5%
to 50%, the support threshold changed from 1.5% to 5%, the number of materi-
alized data mining views that were simultaneously updated varied from 5 to 20.

The results of experiments are depicted in Figures 1-4. As expected, our al-
gorithm works best when the number of materialized data mining views is large
and the degree of coverage of base table is small. Again, we argue that this sit-
uation is typical for most applications using data mining techniques within the
data warehouse environment. An important factor that affects the performance
of our algorithm is the size of the update. For larger updates the cost of process-
ing of each tuple separately surpasses the gain of not reading the update several
times (especially when the number of concurrently updated materialized views
is small). In such cases Incremental Updation Algorithm is a winner. We be-
lieve that this result is not discouraging, because we are observing a continuous
shrinking of the data warehouse refresh window. Our algorithm is best suited
for frequently refreshed warehouses, where the contents of the data warehouse
must be synchronized with operational databases on a daily or hourly basis.



Incremental Data Mining Using Concurrent Online Refresh 303

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 0.015  0.02  0.025  0.03  0.035  0.04  0.045  0.05

tim
e 

[s
]

minimum support

2.5% coverage, 500 transactions

Apriori
IUA

OUA

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 0.015  0.02  0.025  0.03  0.035  0.04  0.045  0.05

tim
e 

[s
]

minimum support

2.5% coverage, 500 transactions

Apriori
IUA

OUA

Fig. 1. time vs. support, 2.5% coverage
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5 Conclusions

In this paper we have presented Online Updating Algorithm, which implements a
novel approach to materialized data mining view maintenance problem. Instead
of performing separate refresh of a set of materialized data mining views we pro-
pose to update them simultaneously, during the data warehouse refresh process.
Our algorithm outperforms previously proposed methods in environments where
many materialized data mining views are defined over relatively small subsets of
source data. We argue that this assumption holds in most practical applications,
hence our algorithm provides improvement over other approaches.
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Abstract. Data mining and machine learning must confront the problem of pat-
tern maintenance because data updating is a fundamental operation in data man-
agement. Most existing data-mining algorithms assume that the database is 
static, and a database update requires rediscovering all the patterns by scanning 
the entire old and new data. While there are many efficient mining techniques 
for data additions to databases, in this paper, we propose a decremental algo-
rithm for pattern discovery when data is being deleted from databases. We con-
duct extensive experiments for evaluating this approach, and illustrate that the 
proposed algorithm can well model and capture useful interactions within data 
when the data is decreasing. 

1   Introduction 

The dynamics of databases can be represented in two aspects: (1) content updates 
over time and (2) incremental size changes. When some transactions of a database are 
deleted or modified, the content of the database has been updated. This database is 
referred to as an updated database and mining with the updated database is referred to 
as decremental mining. When some new transactions are inserted or appended into a 
database, the size of the database has been changed. This database is referred to as an 
incremental database and mining with the incremental database is referred to as in-
cremental mining. This paper investigates the issue of mining updated databases 1.  

When a database is updated on a regular basis, running a data-mining program all 
over again each time when there is an update might produce significant computation 
and I/O loads. Hence, there is a need for data-mining algorithms to perform frequent 
pattern maintenance on incrementally updated databases without having to run the 
entire mining algorithm again [PZOD99]. This leads to many efficient mining tech-
niques for data additions to databases, such as the FUP algorithm [CHNW96], ISM 

                                                           
*  This work is partially supported by large grants from the Australian Research Council 

(DP0449535 and DP0559536), a China NSFC major research program (60496321), and a 
China NSFC grant (60463003). 

1  For simplicity, this paper deals with deletions only, because a modification can be imple-
mented as a deletion followed by an insertion. 
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[PZOD99], negative-border based incremental updating [TBAR97], incremental in-
duction [U94] and the weighting model [ZZY03].  

Unfortunately, no research efforts have been reported on pattern discovery when 
data is deleted from databases. Indeed, delete is one of the most frequently used op-
erations in many DBMS systems, such as IBM DB2, MS SQL SERVER, and 
ORACLE. Usually, these DBMS systems use log files to record the committed 
changes in order to maintain the database consistency. Therefore we can easily obtain 
the data that is deleted from the original database by using the delete operation. 

To solve the decrement problem, one can simply re-run an association rule mining 
algorithm on the remaining database. However, this approach is very inefficient, with-
out making use of the previous computation that has been performed. In this paper, 
we propose an algorithm DUA (Decrement Updating Algorithm) for pattern 
discovery in dynamic databases when data is deleted from a given database. Experi-
ments show that DUA is 2 to 13 times faster than re-running the Apriori algorithm on 
the remaining database. The accuracy of DUA, namely, the ratio of the frequent item-
sets found by DUA in the remaining database over the itemsets found by re-running 
Apriori, is more than 99%.  

The rest of the paper is organized as follows. We provide the problem description in 
Section 2. In Section 3, the DUA algorithm is described in detail. Experimental results 
are presented in Section 4. Finally, conclusions of our study are given in Section 5. 

2   Problem Statement 

2.1   Association Rule Mining  

Let I = {i1, i2, …, iN,} be a set of N distinct literals called items, and DB be a set of 
variable length transactions over I, where transaction T is a set of items such that T ⊆ I. 
A transaction has an associated unique identifier called TID. An itemset X is a set of 
items, i.e., a subset of I. The number of items in an itemset X is the length of the item-
set. X is called a k-itemset if the length of X is k. A transaction T contains X if and only 
if X ⊆ T. An association rule is an implication of the form X → Y, where X, Y ⊂ I, 

X ∩ Y=φ . X is the antecedent of the rule, and Y is the consequent of the rule. The 

support of a rule X → Y, denoted as supp(X ∪ Y), is s if s% transactions in DB contain 
X. and the confidence of rule X → Y, denoted as conf(X → Y), is c if c% transactions in 
DB that contain X also contain Y. That is, conf(X → Y) = supp(X ∪ Y)/ supp(X). 

The problem of mining association rules from database DB is to find out all the as-
sociation rules whose support and confidence are greater than or equal to the mini-
mum support (minsupp) and the minimum confidence (minconf) specified by the user 
respectively. Usually, an itemset X is called frequent, if supp(X) ≥ minsupp, and X is 
called infrequent if supp(X) < minsupp. The first step of association rule mining is to 
generate frequent itemsets using an algorithm like Apriori [AR94] or the FP-Tree 
[HPY00]. The second step then generates association rules based on the discovered 
frequent itemsets. This second step is straightforward, so the main problem of mining 
association rules is to find out all frequent itemsets in DB. 
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2.2   Updated Databases 

The update operations include deletions and modifications on databases. Consider a 
transaction database TD = {{A, B}; {A, C}; {A, B, C}; {B, C}; {A, B, D}} where the 
database has several transactions, separated by a semicolon, and each transaction 
contains several items, separated by a comma. 

The update operation on TD can basically be 

Case-1. Deleting transactions from the database TD. For example, after deleting 
transaction {A, C} from TD, the updated database is TD1 as  

TD1 = {{A, B}; {A, B, C}; {B, C}; {A, B, D}} 

Case-2. Deleting specified attributes from all transactions in the database TD. For 
example, after deleting B in TD, the updated database is TD2 as  

TD2 = {{A}; {A, C}; {A, C}; {C}; {A, D}} 

Case-3. Updating a specified attribute with another attribute in all transactions. For 
example, after updating the attribute C to E in TD, the updated database is TD3 as 

TD3 = {{A, B}; {A, E}; {A, B, E}; {B, E}; {A, B, D}} 

Case-4. Modifying a transaction in the database TD. For example, after modifying the 
transaction {A, C} to {A, C, D} for TD, the updated database is TD4 as 

TD4 = {{A, B}; {A, C, D}; {A, B, C}; {B, C}; {A, B, D}} 

Mining updated databases generates a significant challenge: the maintenance of 
their patterns. To capture the changes of data, for each time of updating a database, 
we can possibly re-mine the updated database, but this would be a time-consuming 
procedure. In particular, when a database to be mined is very large and the changed 
content of each updating transaction is relatively small, re-mining the database is not 
an intelligent strategy. Our strategy for mining in updated databases is decremental 
discovery. To simplify the description, this paper focuses on the above Case-1 and 
Case-2. 

2.3   Maintenance of Association Rules 

Let DB be the original transaction database, db be a dataset randomly deleted from 
DB, and DB-db be the remaining database. |DB|, |db|, and |DB-db| denote the size of 
DB, db, and DB-db, respectively. Let S0 be the minimum support specified by the 
user, L, L’, L” be the set of frequent itemsets in DB, db, and DB-db respectively. As-
sume that the frequent itemsets L and the support of each itemset in L are available in 
advance. After a period of time, some useless data is deleted from DB, forming the 
deleted database db. Suppose there is an itemset X in DB, and we know that X could 
be frequent, infrequent or absent in db. Also suppose the support of X in DB-db is 
Xsupp, with respect to the same minimum support S0, and X is expected to be frequent 
only if Xsupp ≥ S0. So, a frequent itemset X in DB may no longer be frequent again in 
DB-db after some data is deleted from DB. Similarly, an infrequent itemset X can 
become frequent in DB-db.  
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There are two maintenance tasks for association rules: i) evaluating the approxi-
mate upper and lower support bounds between those itemsets in DB that are most 
likely to change their frequentness in the remaining database DB-db, and ii) finding 
out all the frequent itemsets in DB-db. 

3   A Decremental Algorithm 

This section presents our DUA algorithm. In the DUA algorithm, we take into ac-
count (1) the changes of frequent and infrequent itemsets in a database when some 
data is subtracted from the original database; and (2) the approximation range of the 
itemset support in DB between those itemsets that have a chance to change their 
frequentness in DB-db. 

Algorithm DUA 

Input: DB: the original database with size |DB|; db: the deleted dataset from DB with 
size |db|; L: the set of frequent itemsets in DB; S0: the minimum support speci-
fied by the user; 

Output: L”: the set of frequent itemsets in DB-db; 

1.    compute S’ ;  /* S’ is explained later in this section and also in Section 4.1. */ 

2.    mine db with minimum support S’ and put the frequent itemsets into L’ ; 

3.    for each itemset in L do 

4.          for each itemset in L’  do 

5.                 identify the frequent itemsets in DB-db, eliminate them from L’ and 
store to L” ; 

6.    randomly sample a set of transactions from DB, denoted as db’ ; 

7.    mine db’ with the threshold S0, and obtain frequent itemsets L’’’ ; 

8.    eliminate the itemsets from L’’’  that occur in L and L’  ; 

9.  for each remaining itemset in L’ and L’’’ 

10.          scan DB  to obtain their support in DB ; 

11.          identify the frequent itemsets in DB-db and append them to L” ; 

12.  end for; 

13.  return L”; 

14.  end procedure; 

From the above description, after eliminating the itemsets from L’ and L’’’ that are 
infrequent or frequent in DB-db, it is obvious that the remaining itemsets in L’ are all 
infrequent in DB, while the remaining itemsets in L’’’ are infrequent in DB and they 
do not occur in db. 
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Based on the previous work on the theoretical analysis for determining a lower 
threshold [Toivonen96], in DUA, we set S’ as 062.0 S× . In our experiments in Sec-

tion 4, we demonstrate that S’= 062.0 S×  is an appropriate support threshold that 

satisfies the requirements for both efficiency and accuracy when mining db. 

4   Experiments 

The above sections have discussed the problem of pattern maintenance when delet-
ing data from a large database, and have proposed an algorithm named DUA to deal 
with this problem. This section presents experiments we have conducted on a DELL 
Workstation PWS650 with 2G main memory and 2.6G CPU. The operating system 
is WINDOWS 2000. 

4.1   Experiments for Determining S’ When Mining db  

We employ a traditional algorithm Apriori [AR94] with a lower minimum support 
threshold S’ to get some infrequent itemsets in db. In order to choose an appropriate 
threshold experimentally, we take into account the theoretical analysis for obtaining a 
lower threshold [Toivonen96] and have conducted some experiments on synthetic 
databases.  

We first generated a database T10.I4.D100K as DB and also a db of 10% transac-
tions randomly deleted from DB. We set the minimum support S0 to 1.5% and 1% 
respectively, and use a threshold of S’ from 0.3×S0 to 0.9×S0 to mine db. Those item-
sets in DB, whose supports are greater than the lower bound Slower (the lower support 
constraint) and less than S0, are most likely to become frequent in DB-db. We denote 
these infrequent itemsets in db as IIS. The itemsets whose supports are greater than S0 
and less than Supper (the upper support constraint) are called unstable frequent itemsets, 
denoted as UFIS.  Similarly, those itemsets whose supports are less than S0 and 
greater than Slower are called unstable infrequent itemsets (UIIS). Table 1 shows the 
execution time, total itemsets in db, IIS and UIIS when using a different minimum 
support S’ to mine db. 

It is possible that most of the transactions in db contain some identical items. For 
example, the user deleted all the transactions that contain either item “5” or item “8” 
from the database. Thus, the transactions in db either contain item “5” or item “8”.  In 
Table 2, we use another database T10.I4.D100K as DB, and construct db by deleting 
all transactions that contain item “120” from DB. The minimum support S0 is 1.5% 
and 1% respectively.  

As explained before, all the UIIS in DB must be examined in order to find out 
whether they will become frequent in DB-db. So a lower threshold S’ is used to find 
out as many UIIS as possible in db. From these tables, we can see that the computa-
tional costs are less with fewer UIIS found when S’ is set to 0.9×S0, 0.8×S0 and 0.7×S0 
respectively. More UIIS can be found when S’ is below 0.6×S0, but more computa-
tional costs are also required. The appropriate tradeoff point for S’ is in the interval 
[0.6×S0, 0.7×S0]. We use 0.62×S0  as the minimum support threshold S’ for mining db. 
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Table 1. Using different S’ for mining db (with random deletions) 

S’ S0 Execute ime(s) Total itemsets IIS UIIS 

1.5% 195.406 266 26 7 0.9×S0 

1% 434.265 387 36 13 

1.5% 283.891 294 54 13 0.8×S0 

  1% 525.282 442 91 24 

1.5% 341.906 339 99 13 0.7×S0 

1% 617.453 482 131 28 

1.5% 429.875 387 147 13 0.6×S0 

1% 745.625 538 187 28 

1.5% 578.937 465 225 13 0.5×S0 

1% 887.015 628 277 28 

1.5% 746.719 538 298 13 0.4×S0 

1% 1090.937 1065 714 28 

1.5% 980.485 727 487 13 0.3×S0 

1% 1369.718 2658 2307 28 

Table 2. Using different S’ for mining db (with specified deletions) 

S’ S0 Execute 
ime(s) 

Total itemsets IIS UIIS 

1.5% 24.985 1631 52 0 0.9×S0 

1% 53.047 1955 106 0 

1.5% 32.469 1733 154 0 0.8×S0 

1% 77.453 3025 1176 0 

1.5% 43.937 1849 270 0 0.7×S0 

1% 91.156 1651 1802 1 

1.5% 53.047 1955 376 1 0.6×S0 

1% 115.25 5397 3818 2 

1.5% 75.188 3025 1446 2 0.5×S0 

1% 166.546 8867 7018 2 

1.5% 115.25 5397 3818 2 0.4×S0 

1% 379.578 18103 16254 2 

1.5% 380.594 18103 16254 2 0.3×S0 

1% 872.64 37301 35452 2 
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4.2   Experiments on Algorithm DUA 

We have conducted two sets of experiments to study the performance of DUA. The 
first set of experiments is done when db is generated by randomly deleting transac-
tions from DB. The second set of experiments is done when db is generated by delet-
ing transactions that contain specified items from DB. 

4.2.1   Experiments with db Formed by Random Deletions  
We construct db by randomly deleting some transactions from DB (T10.I4.D100K), 
and then use DUA on db to study its performance against the Apriori algorithm. We 
define the accuracy of DUA as the ratio of the number of frequent itemsets found by 
DUA against the number of frequent itemsets found by Apriori in DB-db. 

We set |db|=1%|DB|, 5%|DB|, 10%|DB|, 20%|DB| and 30%|DB| respectively. The 
following figures present the performance ratio against Apriori and the accuracy of 
DUA. 

 

Fig. 1. Performance ratio between DUA and Apriori 

 

Fig. 2. Accuracy of DUA 
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Figures 1 and 2 reveal that DUA performs 6 to 8 times faster than Apriori for sev-
eral databases of 100K transactions, and the accuracy of DUA is 99.2% to 100%. A 
trend also can be seen that with the decrease of the minimum support from 1.5% to 
0.5%, the accuracy is dropping. The reason is that there are many itemsets with lower 
supports in a database in general. When the minimum support threshold S0 is set very 
low, many itemsets whose supports are slightly below S0, namely UIIS, may become 
frequent in DB-db. While only a fraction of the UIIS can be found in db and the sam-
pling database db’ when using DUA. This means that there are some frequent itemsets 
in DB-db that cannot be found using DUA. So the accuracy of DUA drops when a 
lower minimum support threshold is given.  

 

Fig. 3. Execution time against decrement size 

 

Fig. 4. Average accuracy with different decrement size 

With the increase of the size of db, the average time ratio against Apriori slows 
down. In Figures 3 and 4, when |db|=30%|DB|, DUA is only 1.2 times faster than 
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4.2.2   Experiments with  db Formed by Specified Deletions 
In the following experiments, we construct db by deleting transactions that contain a 
specified item from DB. Figures 5 and 6 present the performance and accuracy of 
DUA on db that is formed by deleting transactions containing the specified item 
“100”, which has a moderate support in DB. In this case, DUA is still 6 to 10 times 
faster than re-running Apriori on DB-db. 

 

Fig. 5. Performance ratio between DUA and Apriori 

 

Fig. 6. Accuracy of DUA 
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In practice, the operations of data insertions and deletions are interleaving, which 
make the problem of pattern maintenance in large databases more complicated. Also, 
a theoretical analysis of the error bounds for DUA is very important. These are items 
for our future work. 

References 

[AR94] R. Agrawal and R. Srikant, Fast Algorithms for Mining Association    Rules. 
VLDB94, 1994: 487–499. 

[CHNW96] D. Cheung, J. Han, V. Ng, and C. Wong.  Maintenance of Discovered Associa-
tion Rules in Large Databases: An Incremental Updating Technique. ICDE’96, 
1996: 106–114. 

[HPY00] J. Han, J. Pei, and Y. Yin, Mining Frequent Patterns without Candidate Genera-
tion. SIGMOD00, 2000: 1–12. 

[PZOD99] S. Parthasarathy, M. Zaki, M. Ogihara, and S. Dwarkadas, Incremental and 
Interactive Sequence Mining. CIKM’99, 1999: 251–258. 

[TBAR97] S. Thomas, S. Bodagala, K. Alsabti and S. Ranka, An Efficient Algorithm for 
the Incremental Updation of Association Rules in Large Databases. KDD’97, 
1997: 263–266. 

[Toivonen96] H. Toivonen, Sampling Large Databases for Association Rules. VLDB96, 1996: 
134–145. 

[U94] P. Utgoff, An Improved Algorithm for Incremental Induction of Decision Trees. 
ICML’94, 1994: 318–325. 

[ZZY03] S. Zhang, C. Zhang, and X. Yan, Post-mining: Maintenance of Association 
Rules by Weighting.  Information Systems, Vol. 28, 7(2003): 691–707. 



Discovering Richer Temporal Association Rules
from Interval-Based Data

Edi Winarko and John F. Roddick

School of Informatics and Engineering,
Flinders University, PO Box 2100, Adelaide, South Australia 5001,

{edi.winarko, roddick}@infoeng.flinders.edu.au

Abstract. Temporal association rule mining promises the ability to dis-
cover time-dependent correlations or patterns between events in large
volumes of data. To date, most temporal data mining research has fo-
cused on events existing at a point in time rather than over a temporal
interval. In comparison to static rules, mining with respect to time points
provides semantically richer rules. However, accommodating temporal in-
tervals offers rules that are richer still. In this paper we outline a new
algorithm to discover frequent temporal patterns and to generate richer
interval-based temporal association rules.

1 Introduction

Temporal data mining can be defined as the search for interesting correlations or
patterns in large sets of temporal data. Temporal data mining has the capabil-
ity to discover patterns or rules which might be overlooked when the temporal
component is ignored or treated as a simple numeric attribute [1]. A large vol-
ume of research has therefore been focused on temporal data mining to discover
temporal rules such as sequential patterns [2], episodes [3], temporal association
rules [4,5] and inter-transaction association rules [6]. However, almost all of these
studies have been focused on data that are stamped with, and interpreted as,
time points, whereas intervals, and their relationships, have been largely over-
looked. Moreover, the source data is commonly accumulated for other purposes,
such as in web server or on line transaction logs, financial data, sensor data or
even for backups [7].

Mining temporal rules from interval-based data is more complex and requires
a different approach from mining point-based data. An interval has duration and
therefore the generated patterns have different semantics than simply before and
after. Allen’s temporal interval logic (and its extensions) [8,9,10] are commonly
used to describe the relationships among intervals.

There is some previous work on the discovery of temporal patterns from
interval-based data [11,12,13]. Villafane et al. [11] propose a technique to dis-
cover containment relationships from interval time series. While existing tech-
niques consider time series as point-based events, this paper treats time series
as interval-based events. One of the applications of containment relationships is
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the medical field where containment relationships among diseases can be discov-
ered. For example, we may discover that during a flu infection, a certain strain
of skin-borne bacteria is present. However, the containment rules discussed are
constrained to the Allen relations contain or during. Kam and Fu [12] consider
the discovery of temporal patterns for interval-based events stored in a temporal
database, using an algorithm based on the Apriori algorithm [14]. The algorithm
transforms the original database into vertical data format, as used in [15], instead
of transforming it into a list of sequences, as in [2].

The problem of discovering temporal patterns and rules from a state sequence
is presented in [13]. Suppose s is a state, b is the start-time of the state, and f
is the end-time of a state, a state sequence is defined a series of triples defining
state intervals (b1, s1, f1), (b2, s2, f2), (b3, s3, f3), . . . , (bn, sn, fn), where bi ≤ bi+1
and bi < fi. A temporal pattern is defined as a set of states together with their
interval relationships. These relationships are represented as a square matrix R
whose elements R[i, j] denote the relationship between state intervals i and j. To
discover the patterns, the algorithm is based on the Apriori algorithm [14] and
is designed to work with a single sequence of states. After all frequent temporal
patterns are found, the temporal rule X �→ Y is generated from every pair (X, Y )
of frequent temporal patterns where X is a subpattern of Y .

In this paper, we consider the problem of finding temporal patterns in
interval-based data. While this is similar to the framework described in [12],
our definition of temporal patterns follows the one presented in [13]. We propose
a new algorithm by extending the MEMISP (MEMory Indexing for Sequential
Pattern mining) algorithm [16] for the discovery of the temporal patterns from
interval data. We choose to base our algorithm on the MEMISP algorithm be-
cause the MEMISP is more efficient than both GSP1[17] and PrefixSpan2 [18]
algorithms in finding sequential patterns from transactional databases [16]. Fur-
thermore, our database contains a list of interval sequences, which can be viewed
as an extension of a list of (point) sequences used in the sequential mining.

Similar to the MEMISP algorithm, our algorithm also requires one database
scan and does not require candidate generation or database projection. When
the database is too large to fit into memory, the algorithm divides the database
into several partitions and mines each partition. A second pass of the database
is then required to validate the true patterns in the database. After discovering
all frequent temporal patterns, we show the method to generate temporal rules
from the frequent patterns.

The remainder of the paper is organised as follows. Section 2 discusses the
temporal pattern mining problem. The proposed algorithm for mining frequent
temporal patterns is explained in section 3. Section 4 defines the temporal rules
and describes the method to generate the rules. Our conclusions and areas for
further research will be presented in Section 5. Due to space restrictions, some
of the discussion is abbreviated and the reader is directed to the longer technical
report [19].

1 An Apriori based algorithm.
2 An FP-Growth based algorithm.
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2 Problem Statement

Definition 1. Given a temporal database D = {t1 . . . tn}, each record ti con-
sists of a client-id, several other attributes, a start-time, and an end-time, where
start-time < end-time. We assume that the interval between the start-time and
end-time, indicating the interval during which the record values are valid, is
a relatively short interval (as compared to the total period under analysis).
Each client-id can be associated with more than one record. We assume a sin-
gle temporal attribute is timestamped with the interval, and denote it as a
state.

In most databases, several temporal attributes can be recorded. Each of these
attributes represents a different temporal dimension of the data. For example,
in a medical database the date of birth of a patient, the dates of medical exam-
inations, the dates of important medical incidents and other dates concerning
different facts of the evolution of the health of a patient can be recorded [20]. In
these cases, we can choose one or more temporal attributes as our target in the
mining process.

Definition 2. Let S denote the set of all possible states. A state s ∈ S that holds
during a period of time [b, f)3 is denoted as (b, s, f), where b is the start-time
and f is the end-time. A client’s sequence of states is defined as a list of states
where each state is associated with the same client such that for client i we have
a state sequence csi = 〈(b1, s1, f1), (b2, s2, f2), . . . , (bn, sn, fn)〉, where bi ≤ bi+1
and bi < fi.

Definition 3. If s is a single state type in S, then s is a temporal pattern,
denoted as 〈s〉.
Definition 4. A temporal pattern of size n > 1 is defined by a pair (s, R), where
s : {1, . . . , n} → S maps index i to the corresponding state, and R is an n × n
matrix whose elements R[i, j] denotes the relationship between interval i and
j. The number of intervals in the temporal pattern P is denoted as dim(P ). If
dim(P ) = k, then P is called a k-pattern.

As for Höppner [13], we use normalized temporal patterns in which the state
intervals within the patterns are ordered in increasing index according to their
start times, end times, and states. Thus, the normalized temporal patterns only
require seven relations out of thirteen relations listed in [8], namely, before (b),
meets (m), overlaps (o), is-finished-by (fi), contains (c), equals (=), and starts
(s), as shown in Fig. 1. The first five relationships are when the start times
differ. In this case, the ordering is based on the start times. If both intervals are
identical, we use the order on the states so that we have A equals B, instead of
B equals A. If the start times are the same and the end times are different, the
ordering is based on the end times.

3 As for most temporal databases, we assume the begin time is inclusive but the end
time is not.
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A before B

A meets B

A overlaps B

A is-finished-by B

A contains B

A equals B

A starts B

 A  B 
Time

Fig. 1. Seven Relations in Normalized Temporal Patterns
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Definition 5. The temporal relation (sA, RA) is a subpattern of (sB, RB), de-
noted (sA, RA) ! (sB , RB), if dim(sA, RA) ≤ dim(sB , RB) and there is an in-
jective mapping π : {1, . . .,dim(sA, RA)} → {1, . . .,dim(sB, RB)} such that
∀i, j ∈ {1, . . .,dim(sA, RA)}: sA(i) = sB(π(i)) ∧ RA[i, j] = RB[π(i), π(j)]

Definition 6. A client state sequence C supports a pattern P = (sP , RP ) if
(sP , RP ) ! (sC , RC), where (sC , RC) is a pattern that represent the relationships
between intervals in the client state sequence. The support of a pattern P is
defined as σ(P ) = |DP |

|D| , where |DP | is the number of client sequences that
support the pattern P , and |D| is the number of clients in the database D.

Definition 7. Given a minimum support minsup, a pattern is called frequent if
its support is greater than or equal to minsup.
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Table 1. Frequent Temporal Patterns

1-patterns (A) (σ = 75%), (B) (σ = 75%), (C) (σ = 75%),
(D) (σ = 100%), (E) (σ = 50%)

2-patterns

⎛⎝A B
= o
∗ =

⎞⎠ (σ = 50%),

⎛⎝A D
= b
∗ =

⎞⎠ (σ = 75%),

⎛⎝A C
= b
∗ =

⎞⎠ (σ = 50%),⎛⎝B D
= b
∗ =

⎞⎠ (σ = 75%),

⎛⎝B C
= b
∗ =

⎞⎠ (σ = 50%),

⎛⎝D C
= c
∗ =

⎞⎠ (σ = 75%)

3-patterns

⎛⎜⎝A B D
= o b
∗ = b
∗ ∗ =

⎞⎟⎠ (σ = 50%),

⎛⎜⎝A B C
= o b
∗ = b
∗ ∗ =

⎞⎟⎠ (σ = 50%),

⎛⎜⎝B D C
= b b
∗ = c
∗ ∗ =

⎞⎟⎠ (σ = 50%),

⎛⎜⎝A D C
= b b
∗ = c
∗ ∗ =

⎞⎟⎠ (σ = 50%)

4-patterns

⎛⎜⎜⎜⎝
A B D C
= o b b
∗ = b b
∗ ∗ = c
∗ ∗ ∗ =

⎞⎟⎟⎟⎠ (σ = 50%)

Given a temporal database and a minsup, our goal is to discover all frequent
patterns whose support is greater than or equal to minsup.

As an example, suppose we are given a temporal database D, which stores
a list of clinical records, as shown in Fig. 2. Each record contains a patient-id,
a disease code and a pair of ordered time points, indicating the period during
which the patient exhibited a given disease. Records in the database have been
sorted on the patient-id, the start time, the end time, and the disease code.
The last column in the table is used to visualize the relative position of state
intervals in each patient. Using a minsup of 40%, the frequent temporal patterns
are shown in Table 14.

3 Discovery of Temporal Patterns

Our proposed algorithm discovers temporal patterns in three steps. First, the
algorithm reads the database into memory. While reading the database, it counts
the support of each state and generates frequent 1-patterns. The algorithm then
constructs an index set for each frequent 1-pattern and finds frequent patterns
using the state sequences indicated by elements of the index set. Finally, using a
recursive find-then-index strategy, the algorithm discovers all temporal patterns
from the in-memory database. Each of these steps is described in the following
sections. Pseudo code of our algorithm is shown in Algorithm 1. To illustrate it,
we use the algorithm to discover frequent patterns from the example database
shown in Fig. 2 and a minsup of 40%. Definition 8 is needed for describing the
algorithm.

4 For brevity, we do not put labels on the rows of the matrix because they are always
similar to the column labels.
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Definition 8. Given a pattern ρ, where dim(ρ) = n, and a frequent 1-pattern
〈s〉 in the database, a pattern ρ′ of size (n+1) can be formed by adding the s as
a new element to ρ and setting the relationships between s and each element of
ρ. The frequent 1-pattern 〈s〉 is called stem-state of the pattern ρ′ and ρ is the
Prefix pattern (abbreviated as P-pat) of ρ′.

Input: : a temporal database D, minsup
Output: : all frequent normalized temporal patterns
1: while scan D into in-memory database MDB do
2: find S = the set of all frequent 1-patterns
3: end while
4: for each s ∈ S do
5: form the pattern ρ = 〈s〉 and output ρ;
6: call IndexSet(s, 〈 〉, MDB) ;
7: call Mine(ρ, ρ-idx) ;
8: end for

Algorithm 1. Algorithm to Generate Frequent Temporal Patterns

Step 1 - Reading the Database into Memory
In this first step, the algorithm reads the database D into memory. The in-
memory database is referred to as MDB. While reading each client sequence from
the database, the algorithm computes the support count of every state, then finds
the set of all frequent 1-patterns S. From the example database, the algorithm
finds frequent 1-patterns 〈A〉 (σ = 75%, supported by 3 client sequences cs1, cs3,
and cs4), 〈B〉 (σ = 75%), 〈C〉 (σ = 75%), 〈D〉 (σ = 100%), and 〈E〉 (σ = 50%).
Therefore, we have a set of frequent 1-patterns S = {A, B, C, D, E}.

Step 2 - Constructing the Index Set
In this step, the algorithm first outputs the pattern ρ formed by combining
current P-pat and a stem s ∈ S, and then constructs the index set ρ-idx. Initially,
the P-pat is an empty pattern 〈 〉. Each element of the index set contains three
fields ptr cs, a intv , and pos, where ptr cs is a pointer to a client sequence
cs, a intv is an array of intervals in a client sequence cs which become part of
a pattern ρ, and pos is the first occurring position of s in a customer sequence
cs. An index element (ptr cs, a intv, pos) for a client sequence cs is created
only if cs supports 〈s〉. Subroutine 2 shows the subroutine for constructing an
index set.

Continuing on our example, we start with a stem s = A and the P-pat = 〈 〉.
We output a pattern ρ = 〈A〉, and then call IndexSet(A, 〈 〉, MDB) to construct
the index set 〈A〉-idx. This index set is shown in Fig. 3(a), in which pos is 1
for cs1 and cs3, and 2 for cs4. The array a intv contains an interval of a state
within a pattern ρ = 〈A〉, i.e., a state A. Note that cs2 is not pointed to by any
pointer in the index set because it does not support 〈A〉.
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1: // Construct the index set ρ′-idx
2: // ρ′ is a pattern formed by combining ρ and s
3: Subroutine IndexSet(s, ρ, range-set)
4: for each client sequence cs in range-set do
5: if range-set = MDB then
6: start-pos = 0
7: else
8: start-pos = pos
9: end if

10: for pos = (start-pos+1 ) to |cs| do
11: if stem state s is first found at position pos in cs then
12: insert (ptr cs, a intv, pos) to the index set ρ′-idx, where ptr cs points to cs
13: end if
14: end for
15: end for
16: return index set ρ′-idx

Subroutine 2. Subroutine to Construct an Index Set

Step 3 - Mining Patterns from the Index Set
In this step, the algorithm uses the index set ρ-idx to find stems with respect
to P-pat ρ. Any state appearing after the pos position in the client sequence cs
pointed by ptr cs of the entry (ptr cs, a intv, pos) in ρ-idx could be a potential
stem (with respect to ρ). Thus, for every cs existing in ρ-idx, the algorithm
increases the support count of such state by one. The algorithm then determines
the set of all stems S having enough support to form patterns. A subroutine for
mining an index set is shown in Subroutine 3.

1: // Mine patterns from an index set ρ-idx;
2: Subroutine Mine(ρ, ρ-idx);
3: for each cs pointed by ptr cs of an entry (ptr cs, a intv, pos) in ρ-idx do
4: for pos = pos + 1 to |cs| in cs do
5: count(s) = count(s) + 1, where s is a potential stem state
6: end for
7: end for
8: find S = the set of stems s having enough support to form a pattern;
9: for each stem state s ∈ S do

10: output the pattern ρ′ by combining P-pat ρ and stem s;
11: call IndexSet(s, ρ, ρ-idx) // to construct the index set ρ′-idx ;
12: call Mine(ρ′, ρ′-idx) //to mine patterns with index set ρ′-idx ;
13: end for

Subroutine 3. Subroutine to Mine an Index Set

We continue our example by processing 〈A〉-idx (Fig. 3(a)). This can be done
by calling Mine(〈A〉, 〈A〉-idx). We process each client sequence cs pointed by a
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<(8,D,14), (10,C,13), (10,G,13), (15,F,22)>

<(8,B,16), (18,A,21), (24,D,27), (25,E,28)>

<(6,A,12), (7,B,13), (14,D,20), (17,C,19)>

<(2,A,7) , (5,E,10), (5,B,12), (11,D,17),(13,C,15)>

<(8,D,14), (10,C,13), (10,G,13), (15,F,22)>

<(8,B,16), (18,A,21), (24,D,27), (25,E,28)>

<(6,A,12), (7,B,13), (14,D,20), (17,C,19)>

<(2,A,7) , (5,E,10), (5,B,12), (11,D,17),(13,C,15)>

<(8,D,14), (10,C,13), (10,G,13), (15,F,22)>

<(8,B,16), (18,A,21), (24,D,27), (25,E,28)>

<(6,A,12), (7,B,13), (14,D,20), (17,C,19)>

<(2,A,7) , (5,E,10), (5,B,12), (11,D,17),(13,C,15)>

<(8,D,14), (10,C,13), (10,G,13), (15,F,22)>

<(8,B,16), (18,A,21), (24,D,27), (25,E,28)>

<(6,A,12), (7,B,13), (14,D,20), (17,C,19)>

<(2,A,7) , (5,E,10), (5,B,12), (11,D,17),(13,C,15)>

< A >-idx Created by calling IndexSet(A, < >, MDB)(a) < A >-idx Created by calling IndexSet(A, < >, MDB)(a)

A B
= o
* =

- idx Created by calling IndexSet(B, < A >, < A >-idx)(b)
A B
= o
* =

- idx Created by calling IndexSet(B, < A >, < A >-idx)(b)
A B
= o
* =

- idx Created by calling IndexSet(B, < A >, < A >-idx)(b)

2

1

1

[18,21]

[6,12]

[2,7]

2

1

1

[18,21]

[6,12]

[2,7]

2

3

[6,12], [7,13]

[2,7], [5,12]

2

3

[6,12], [7,13]

[2,7], [5,12]

Fig. 3. Examples of Index Sets

pointer in 〈A〉-idx. Since the pos of the (ptr cs, a intv, pos) pointing to cs1 is 1,
we only count the states occurring after position 1. Therefore, the support count

of a potential stem E for a potential pattern P2E =
(A E

= o
∗ =

)
is increased

by one. There is also a stem B for a pattern P2B =
(A B

= o
∗ =

)
, a stem D for

a pattern P2D =
(A D

= b
∗ =

)
, and a stem C for a pattern P2C =

(A C

= b
∗ =

)
.

Using the same process, we count states occurring after position 1 and 2 for
client sequences cs3 and cs4, respectively. After validating the support counts,
we obtain stems B (σ = 50%), C (σ = 50%), and D (σ = 75%) to form patterns
P2B, P2C , and P2D, respectively.

Next, we call IndexSet(s, ρ, ρ-idx) and Mine(ρ′, ρ′-idx) recursively, where
s ∈ {B, C, D}, ρ = 〈A〉, and ρ′ is a pattern formed by combining ρ and s. We
proceed with the mining by taking P-pat ρ = 〈A〉 and s = B. Combining ρ =

〈A〉 and s = B, we obtain a pattern ρ′ =
(A B

= o
∗ =

)
. We then call IndexSet(B,

〈A〉, 〈A〉-idx ) to construct the index set ρ′-idx. To create ρ′-idx, we only need
to check the client sequences indicated by the index set 〈A〉-idx, rather than in
MDB. Therefore, the search for the occurring position of a stem B (with respect
to P-pat = 〈A〉) finds a state B at position 3 in cs1 and 2 in cs3. The interval
values of a state B in cs1 and cs3 are added to the array a intv . No entry is
created for cs4 since a state B that can produce a pattern ρ′ cannot be found
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after position 2. We thus have a new index set ρ′-idx as shown in Fig. 3(b). The
index set 〈A〉-idx is stored for later mining.

Calling Mine(ρ′, ρ′-idx), we find stems C (σ = 50%), and D (σ = 50%) to

form patterns P3C =

⎛⎝
A B C

= o b
∗ = b
∗ ∗ =

⎞⎠ and P3D =

⎛⎝
A B D

= o b
∗ = b
∗ ∗ =

⎞⎠, respectively.

Continuing the recursive process on P-pat ρ =
(A B

= o
∗ =

)
and a stem C, we

output a pattern ρ′ = P3C . Since there are no further patterns we stop this

process. Next, we continue with P-pat ρ =
(A B

= o
∗ =

)
and a stem D. We output

a pattern ρ′ = P3D, then create and mine ρ′-idx to find a stem C.
Taking P-pat ρ = P3D and a stem C, we output a pattern ρ′ and create

an index set ρ′-idx, where ρ′ =

⎛⎜⎜⎝
A B D C

= o b b
∗ = b b
∗ ∗ = c
∗ ∗ ∗ =

⎞⎟⎟⎠. The mining of ρ′-idx finds

no more stems. Since we cannot continue the recursive process, we repeat the
process by taking P-pat ρ = 〈A〉 and a stem s, where s ∈ {C, D}. This process

will generate patterns:
(A C

= b
∗ =

)
,

(A D

= b
∗ =

)
, and

⎛⎝
A D C

= b b
∗ = c
∗ ∗ =

⎞⎠. At this stage,

we have finished the mining process of a stem A with P-pat ρ = 〈 〉. All frequent
patterns can be discovered by continuing the mining process on stems B, C, D,
and E with P-pat ρ = 〈 〉.

4 Generating Temporal Rules

After all frequent temporal patterns have been discovered, we can generate tem-
poral rules based on Definition 9 below, which was first introduced in [13].

Definition 9. A temporal rule X ⇒ Y can be constructed from every pair
(X, Y ) of frequent temporal patterns with X ! Y (X is a subpattern of Y ).
The confidence of a temporal rule conf(X ⇒ Y ) = σ(Y )

σ(X) . Given a minimum
confidence minconf, the temporal rule X ⇒ Y will be generated if its confidence
is greater than or equal to minconf.

We are interested in generating the forward rules, that is, the rules that are
used for predicting the future rather than in the past. As an example, from a

frequent pattern X =
(A B

= o
∗ =

)
and a temporal pattern Y =

⎛⎝
A B D

= o b
∗ = b
∗ ∗ =

⎞⎠
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(see table 1), we can get a rule X ⇒ Y with the confidence of 100%. This rule
means that if A overlaps B occurs, then it is highly likely that A before D and
B before D will also occur.

The rule generation process works as follows. If Y is a frequent n-pattern,
where n > 1, and S = 〈s1, s2, . . . , sn〉 is a list of states in Y (S has been or-
dered in increasing index according to the order within Y ), then we will find
all subpatterns X of Y which have ordered list of states Si = 〈s1, s2, . . . , si〉,
i = 1, 2, . . . , (n− 1). Therefore, for each frequent n-pattern Y , there are at most
(n− 1) subpatterns X of Y . For every such subpattern X , we generate a rule of
the form X ⇒ Y if its confidence is greater than or equal to minconf.

The process of finding X starts by taking i = (n − 1) so that X has a list
of states Sn−1 = 〈s1, s2, . . . , sn−1〉. If X ⇒ Y has enough confidence, we will
generate this rule and continue to test the next subpattern. If X ⇒ Y does not
have enough confidence, we do not have to check for X where i < (n−1) because
the generated rule will have a smaller confidence.

5 Conclusion and Future Work

In this paper we have studied the discovery of temporal patterns along with their
temporal association rules from interval-based data. We have proposed a new
algorithm by extending MEMISP , an existing algorithm for mining sequential
patterns, to discover the frequent temporal patterns from interval-based data.
The proposed algorithm is illustrated using an example. Our implementation of
the algorithm which incorporates maximum gap time constraint and the results
of our experiments are presented in [19]. Future work includes an application
to real-world problem domains and enhancements to the interface to facilitate
the discovery of temporal patterns and rules directly from relational temporal
databases.
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Abstract. Query expansion techniques are used to find the desired set of query 
terms to improve retrieval performance. One of the limitations with the query 
expansion techniques is that a query is often expanded only by the linguistic 
features of terms. This paper presents a novel semantic query expansion 
technique that combines association rules with ontologies and information 
retrieval techniques. We propose to use the association rule discovery to find 
good candidate terms to improve the retrieval performance. These candidate 
terms are automatically derived from collections and added to the original 
query. Our method is differentiated from others in that 1) it utilizes the 
semantics as well as linguistic properties of unstructured text corpus and 2) it 
makes use of contextual properties of important terms discovered by association 
rules. Experiments conducted on a subset of TREC collections give quite 
encouraging results. We achieve from 15.49% to 20.98% improvement in term 
of P@20 with TREC5 ad hoc queries. 

1   Introduction 

A typical goal of an information retrieval (IR) system is to find a set of documents 
containing information needed by searchers in the given indexed database(s). In 
processing queries that searchers formulate, the conventional IR query languages 
require the searcher to state precisely what they want. Searchers need to be able to 
express their needs in terms of precise queries (either in Boolean form or natural 
languages). However, due to searchers' lack of knowledge in the search domain 
(anomalous state of knowledge -- An anomaly in one's state of knowledge, or lack of 
knowledge, with respect to a problem faced), a query syntax formulated by searchers 
often does not meet the searchers’ information needs. In addition, a single term based 
query that a normal user formulates retrieves many irrelevant articles as well as fails 
to find hidden knowledge or relationships buried in content of the articles. 

To overcome this issue with query formulation, many IR systems provide facilities 
for relevance feedback, with which searchers can identify documents of interest to 
them. IR systems can then use the keywords assigned to these desired documents to 
find other potentially relevant documents. However, these IR systems fail to 
distinguish among the attributes of the desired documents for their relative importance 
to the searchers' needs. 
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With these issues in current Query Expansion (QE) techniques in mind, we 
introduce a novel querying technique, called SemanQE, combining association rules 
and ontologies and IR techniques to retrieve promising documents for information 
extraction. SemanQE has several unique strengths over other QE techniques. First, it 
proposes a hybrid query expansion algorithm combining association rules with 
ontologies and natural language processing techniques. Second, our technique utilizes 
the semantic as well as linguistic properties of unstructured text corpus. Third, our 
technique makes use of contextual properties of important terms discovered by 
association rules. To evaluate the performance of SemanQE, cosine similarity-based 
QE and SLIPPER, a rule-based QE technique are compared. We also investigate 
whether ontologies impact on the retrieval performance. 

This paper makes the following contributions: (1) our method utilizes the 
semantics as well as linguistic properties of unstructured text corpus and thus our 
system is able to expand queries based on indirect associations embedded among the 
terms (2) Our method makes use of contextual properties of important terms 
discovered by association rules. (3) We demonstrate the effectiveness of our method 
through experiments. The experiments conducted on a subset of TREC collections 
give quite encouraging results. We achieve from 15.49% to 20.98% improvement in 
term of P@20 with TREC5 ad hoc queries. 

The rest of paper consists of the following chapters: Section 2 summarizes the 
related work. Section 3 describes the overall architecture of SemanQE. Section 4 
describes the evaluation. Section 5 concludes the paper. 

2   Related Works 

The quality of a query fed to an IR system has a direct impact on the success of the 
search outcome. In fact, one of the most important but frustrating tasks in IR is query 
formulation [3]. Relevance feedback is a popular and widely accepted query 
reformulation strategy. The main idea consists of selecting important terms, or 
expressions, attached to the documents that have been identified as relevant by the 
user, and of enhancing the importance of these terms in a new query formulation. The 
expected effect is that the new query will be moved towards the relevant documents 
and away from the non-relevant ones.  

Pseudo-relevance feedback methods improve retrieval performance on average but 
the results are not as good as relevance feedback. In pseudo-relevance feedback, 
problems arise when terms or phrases taken from assumed-to-be relevant documents 
that are actually non-relevant are added to the query causing a drift in the focus of the 
query. To tackle this issue, Mitra, et al. [9] incorporated term co-occurrences to 
estimate word correlation for refining the set of documents used in query expansion.  

Mihalcea and Moldovan [8] found that using the selected passages from documents 
for query expansion is effective in reducing the number of inappropriate feedback 
terms taken from non-relevant documents. Lam-Adesina and Jones [5] applied 
document summarization to query expansion. In their approach, only terms present in 
the summarized documents are considered for query expansion. Lam-Adesina and 
Jones adopted a summarization technique based on sentence-extracted summaries that 
are found by scoring the sentences in the documents. The scoring method is simply a 
sum of the scores gained by the four summarization methods: 1) Luhn’s keyword 
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cluster, 2) title terms frequency, 3) location/header, and 4) query-bias methods. 
Whereas their technique is based on simple mathematical properties of terms, our 
techniques are information theory-based as well as mathematically solid.        

Liu et al. [6] used noun phrases for query expansion. Specifically, four types of 
noun phrases were identified: proper names, dictionary phrases, simple phrases, and 
complex phrases. A document has a phrase if all the content words are in the phrase 
within the defined window, and these documents that have matched phrases are 
considered to be relevant. They also apply a similarity measure to select the content 
words in the phrases to be positively correlated in the collection.  

Latiri et al. [7] approached query expansion by considering the term-document 
relation as fuzzy binary relations.  Their approach to extract fuzzy association rules is 
based on the closure of an extended fuzzy Galois connection, using different 
semantics of term membership degrees. 

Because we also investigate whether adding concepts from WordNet to query sets by 
SemanQE improves the retrieval performance, we briefly survey some related works to 
our approach.  Liu et al. [6] add selected synonyms, hyponyms, and compound words 
based on their word sense disambiguation technique. Our approach to word sense 
disambiguation is different in that we disambiguate word sense by similarity criteria 
between all the non-stopwords from the synonyms and definitions of the hyponym 
synsets and keyphrases extracted from the retrieved documents. Voorhees’ [12] used 
WordNet for adding synonyms of query terms whereas we use WordNet to add 
synonyms and substantial hyponyms of the top N ranked terms and phrases. 

3   The Semantic Query Expansion System 

In this section, we describe the semantic query expansion system.  In Section 3.1, we 
present the system architecture of our semantic query expansion system. In Section 
3.2, we discuss the ontology used in our method. Finally, Section 3 explains our 
semantic query expansion algorithm called SematicQE. 

3.1 The System Architecture 

The system architecture of our semantic query expansion system, SemantiocQE, is 
illustrated in Fig. 1. SemanQE consists of three major components: 1) core 
association rule-based query expansion 2) feature selection, and 3) ontologies-based 
expansion components.  

We use the Lemur IR system as a backend engine for SemanQE. Lemur is 
developed by collaboration between the Computer Science Department at the 
University of Massachusetts and the School of Computer Science at Carnegie Mellon 
University. Lemur is designed to facilitate research in language modeling and 
information retrieval. The core association rule-based expansion algorithm is based on 
a well-known Apiori algorithm [1]. The apriori algorithm has been widely used to 
mine useful knowledge in large transaction databases. The support of a set of items in 
a transaction database is the fraction of all transactions containing the itemset. An 
itemset is called frequent if its support is greater or equal to a user-specified support 
threshold.  An  association  rule  is  an implication of the form X => Y where X and Y  
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Fig. 1. System architecture of SemanQE 

are disjoint itemsets. To apply association rule mining to our query expansion, we 
assume that each document can be seen as a transaction while each separate word 
inside can also be seen as items, represented by wordset. 

The feature selection component processes the input documents to select 
important terms. In doing so, unimportant words such as functional words and stop 
words are excluded. We applied TF*IDF technique to extract important terms and 
phrases. In addition, we applied a POS tagging technique to filter out less important 
terms in terms of POS tags.  TF*IDF was first proposed by Salton and Buckley [10]. 
It is a measure of importance of term in a document or class. Brill POS Tagger is 
chosen for our POS tagger. Brill's technique is one of the high quality POS tagging 
techniques. 

Ontologies component expands queries selected from the core component. 
WordNet is used as ontologies for our system. With a set of terms and phrases, 
WordNet is referenced to find relevant entries semantically and syntactically.  

The outline of the approach described in Figure 1 is as follows: 

Step 1: Starting with a set of user-provided seed instances (the seed instance can 
be quite small), our system retrieves a sample of documents from the backend 
indexes via a search engine. At the initial stage of the overall document retrieval 
process, we have no information about the documents that might be useful for 
extraction. The only information we require about the target answer sets is a set of 
user-provided seed instances. We use some simple queries (just use the attribute 
values of the initial seed instances) to extract the document sample of pre-defined 
size from the search engine. 
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Step 2: On the retrieved document set, we parse each document into sentences and 
apply IR and natural language processing techniques to select important terms and 
phrases from the input documents. 

Step 3: Applying a hybrid querying expansion algorithm that combines association 
rules and ontologies to derive queries targeted to match and retrieve additional 
documents similar to the positive examples. 

Step 4: Reformulate queries based on the results of Step 3 and query the search 
engine again to retrieve the improved result sets matched to the initial queries. 

Fig. 2 shows the how SemanQE works and what output it generates in each step. 

 

Fig. 2. Procedures of the System Workflow 

3.2   Ontologies 

We adopted WordNet for ontologies of SemanQE. WordNet is an online lexical 
reference system in which English nouns, verbs, adjectives and adverbs are organized 
into synonym sets, each representing one underlying lexical concept. Different 
relations link the synonym sets. WordNet was developed in the Cognitive Science 
Laboratory at Princeton University. Published results on sense based query 
expansions are not very recent [11][12]. A more recent work [4] analyzes the effect of 
expanding a query with WordNet synsets, in a "canned" experiment where all words 
are manually disambiguated. Our usage of WordNet is for retrieving the promising 
documents by expanding queries syntactically and semantically. We traverse 
WordNet hierarchy to find out the best WordNet entries for the given terms to be 
expanded. 
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3.3   The SemanQE Algorithm 

In this section, we provide details of SemanQE algorithm. As shown in Table 1,  

Table 1. Association Rule-based SemanQE Algorithm 

 
(1) Retrieve initial results from Lemur based on the queries provided by a 

user 
(2) Select important noun and phrases from CL by POS ad TF*IDF  
(3) Apply Apriori to find all X->Y rules  

For (i = 1; i < Size of iL ; i++) do 
(4) Build Qi based on rules generated by Step 2. 
(5) Apply Ontologies to expand Qi. 

(6) Query Lemur with iQ  constructed by Step 5  
If hit count != 0  

(7) Retrieve TREC records for information extraction 
 

SemanQE takes the user-provided queries to retrieve the initial set of documents 
from Lemur. The general description of the algorithm is as follows: Once the data was 
parsed, the important noun and noun phrases were extracted based on the following 
two techniques: TF*IDF and Brill’s Part of Speech (POS) tagging technique [2]. 
TF*IDF stands for Term Frequency * Inverse Document Frequency, which is a 
powerful IR technique to select important terms. We make use of Brill’s POS tagging 
technique to capture candidate noun and noun phrases. After the important noun and 
noun phrases are extracted, Apriori algorithm [1] is applied. SemanQE builds a set of 
queries based on the rules generated by Apriori. We finally applied ontologies to 
expand queries generated by association rules. The example of the query is as follows:  

(Adult+AND+Antineoplastic+Combined+Chemotherapy+Protocols+AND+Daca
rbazine)+NOT+raynaud  

Lemur was then searched with the query constructed by Step 4 and retrieve TREC 
records. In the feature selection, important terms or phrases are represented in the 
following term x document matrix.  

 imiii tttD ,...,, 21=   (1) 

Each document in the retrieved results ( iD ) consists of vector of selected terms or 

phrases ( imt ).  The terms and phrases that exceed the threshold are included in the 

vector as the input for semantic association rules. 

4   Evaluation  

In this section, we present the data collections used for the experiments, the 
experimental methods, and the other QE techniques for comparison. To evaluate 



332 M. Song et al. 

 

SemanQE, we compare it with two other query expansion techniques: 1) Cosine 
similarity-based, a traditional IR technique for the vector space model, 2) SLIPPER, a 
rule-based query expansion. Performance of these techniques is measured by F-
measure and P@20. The data used for experiments are retrieved from TREC via the 
Lemur search engine. 

4.1   Data Collection 

The Text Retrieval Conference (TREC) is sponsored by both the National Institute of 
Standards and Technology (NIST) and U.S. Department of Defense. NIST TREC 
Document Databases, hereafter called TREC data, are distributed for the development 
and testing of IR systems and related natural language processing research. The 
document collections consist of the full text of various newspaper and newswire articles 
plus government proceedings. The documents have been used to develop a series of 
large IR test collections known as the TREC collections.  

The format of the documents on the TREC disks is a labeled bracketing expressed in 
the style of SGML. The different datasets on the disks have identical major structures 
but have different minor structures. Every document is bracketed by <DOC></DOC> 
tags and has a unique document identifier, bracketed by <DOCNO></DOCNO> tags. 

Table 2 show the statistics of records contained in three disks respectively.  

Table 2. Statistics of TREC Disk 5 

Data Description Size of Dataset 
Foreign broadcast information service Approx. 130,000 documents 

Approx. 470 MB 
Los Angeles Times (from 1989 to 1990)  Approx. 130,000 documents 

Approx. 475 MB 

4.2   Cosine Similarity Model  

There are a number of different ways to compute the similarity between documents 
such as cosine and correlation-based similarity. In our comparison, we use the cosine 
similarity-based model which is a proven IR technique in the vector space model.  In 
the case of cosine similarity, two documents are thought of as two vectors in the m 
dimensional user-space. The similarity between them is measured by computing the 
cosine of the angle between these two vectors. Formally, in the nm ×  ratings matrix 
in Fig. 2, similarity between items i and j, denoted by sim(i,j) is given by  

 
2*2

),cos(),(
ji

ji
jijisim

⋅==
  (2) 

where “.”' denotes the dot-product of the two vectors.  

4.3   SLIPPER 

We chose SLIPPER to compare the performance of SemanQE in generating queries. 
SLIPPER is an efficient rule-learning system, which is based on confidence-ruled 
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boosting, a variant of AdaBoost [3]. SLIIPPER learns concise rules such as “protein 
AND interacts” --> Useful, which shows that if a document contains both term 
protein and term interacts, it is declared to be useful. These classification rules 
generated by SLIPPER are then translated into conjunctive queries in the search 
engine syntax.  For instance, the above rule is translated into a query “protein AND 
interacts.” 

4.4   Experimental Results  

We conducted a set of experiments to measure the performance of the four 
techniques: 1) Cosine similarity, 2) SLIPPER, 3) SemanQE-Base, and 4) SemanQE-
Ontologies. Since we are interested in whether ontologies have positive impact on the 
retrieval performance, we evaluate SemanQE in two different ways: 1) SemanQE 
with ontologies and 2) SemanQE without ontologies. Fig. 3 shows the results of the 
performance among these four techniques. The y axis is F-measure. F-measure 
combines precision and recall in order to provide a single number measurement for 
information extraction systems (3).  

 
RPb

PRb
bF

+

+=
2

)12(
  (3) 

where P is precision, R is recall, b=0 means F = precision, b= ∞  means F = recall, 
b=1 means recall and precision are equally weighted, b=0.5 means recall is half as 
important as precision. b=2.0 means recall is twice as important as precision. Because 

1,0 ≤≤ RP , a larger value in the denominator means a smaller value overall. 

As shown in Fig. 3, SemanQE-Ontologies outperforms the other three techniques 
from 9.90% to 10.98% better in F-measure in all five cases. The second best 
technique is SemanQE-base. The performance of the cosine similarity technique is 
almost equivalent to the SemanQE-base one. SLIPPER turns out to be ranked fourth.  

Table 3 shows the overall performance of the four algorithms executing the query 
set 1-5 on TREC 5 data. The results indicate the improvements in precision at top 
twenty ranks (P@20) of each algorithm compared to its preceding algorithm. Among 
the algorithms, SemanQE with Ontologies in P@20 shows the best improvement 
among the algorithms.  

Table 3. Results for TREC 5 with Four Query Expansion Algorithms by P@20 

TREC 5 Algorithm 

P@20 
Cosine 0.2531 
SLIPPER 0.3252 
SemanQE+base 0.3368 
SemanQE+Ontologies 0.3398 
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Fig. 3. Performance Comparisons among the Four Techniques 

Overall, the results of the experiments show that SemanQE combined with 
ontologies achieve the best performance in both F-measure and P@20.  

5   Conclusion 

We proposed a novel effective query technique for information extraction, called 
SemanQE. SemanQE is a hybrid QE technique that applies semantic association rules 
to the information retrieval problem. Our approach automatically discovers the 
characteristics of documents that are useful for extraction of a target entity. Using 
these seed instances, our system retrieves a sample of documents from the database. 
Then we apply machine learning and information retrieval techniques to learn queries 
that will tend to match additional useful documents.  

Our technique is different from other query expansion techniques in the following 
aspects. First, it proposes a hybrid query expansion algorithm combining association 
rules with ontologies and information retrieval techniques. Second, our technique 
utilizes semantics as well as linguistic properties of unstructured text corpus. Third, 
our technique makes use of contextual properties of important terms discovered by 
association rules. 

We conducted a series of experiments to examine whether our technique improves 
the retrieval performance with TREC5 data. We compared our technique, 
SemanQE+Ontologies with cosine similarity, SLIPPER, and SemanQE without 
Ontologies. The results show that SemanQE+Ontologies outperforms the other three 
techniques from 9.2 % to 11.90% better in terms of F-measure in all five cases. In 
addition, in terms of P@20, SemanQE+Ontologies is significantly better than other 
technique from 15.49% to 20.98%. 
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As future studies, we will apply SemanQE to extract entity relations such as 
protein-protein interactions. We are interested in how SemanQE performs in 
discovering novel connections among the disjoint literatures where indirect 
connections exist among the segmented literatures.  
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Abstract. Mining generalized association rules among items in the presence of 
taxonomies has been recognized as an important model in data mining. Earlier 
work on mining generalized association rules ignore the fact that the taxonomies 
of items cannot be kept static while new transactions are continuously added into 
the original database. How to effectively update the discovered generalized as-
sociation rules to reflect the database change with taxonomy evolution and 
transaction update is a crucial task. In this paper, we examine this problem and 
propose a novel algorithm, called IDTE, which can incrementally update the 
discovered generalized association rules when the taxonomy of items is evolved 
with new transactions insertion to the database. Empirical evaluations show that 
our algorithm can maintain its performance even in large amounts of incremental 
transactions and high degree of taxonomy evolution, and is more than an order of 
magnitude faster than applying the best generalized associations mining algo-
rithms to the whole updated database. 

1   Introduction 

Mining association rules from a large database of business data, such as transaction 
records, has been a popular topic within the area of data mining [1, 2]. An association 
rule is an expression of the form X  Y, where X and Y are sets of items. Such a rule 
reveals that transactions in the database containing items in X tend to contain items in Y, 
and the probability, measured as the fraction of transactions containing X also con-
taining Y, is called the confidence of the rule. The support of the rule is the fraction of 
the transactions that contain all items in both X and Y. For an association rule to be 
valid, the rule should satisfy a user-specified minimum support, called ms, and mini-
mum confidence, called mc, respectively. 

In many applications, there are taxonomies (hierarchies), explicitly or implicitly, 
over the items. It may be more useful to find associations at different levels of the 
taxonomies than only at the primitive concept level [8, 14]. For example, consider the 
taxonomies of items in Fig. 1. It is likely to happen that the association rule,  

Carrot  Apple (Support = 30%, Confidence = 60%), 

does not hold when the minimum support is set to 40%, but the following association 
rule may be valid.  
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Vegetable  Fruit 

Tomato

Vegetable

Carrot

Kale

Non-root
Vegetable

Pickle

Apple

Fruit

Papaya

 

Fig. 1. An example of taxonomies 

Up to date, all work on mining generalized association rules, to our best knowledge, 
confined the taxonomies of items to be static, ignoring the fact that the taxonomy may 
change as time passes while new transactions are continuously added into the original 
database [7]. For example, items corresponding to new products have to be added into 
the taxonomy, and whose insertion would further introduce new classifications if they 
are of new invented types. On the other hand, items and/or their classifications will also 
be abandoned if they do not be produced any more. All of these changes would reshape 
the taxonomy, and in turn would invalidate previously discovered and/or introduce new 
generalized associations rules, no mention the change caused by the transaction update 
to the database. Under these circumstances, how to update the discovered generalized 
association rules effectively becomes a critical task. In this paper, we examine this 
problem and propose an algorithm called IDTE (Incremental Database with Taxonomy 
Evolution) which is capable of effectively reducing the number of candidate sets and 
database re-scanning, and so can update the generalized association rules efficiently. 
Empirical evaluations show that our algorithm can maintain its performance even at 
relative low support thresholds, large amounts of incremental transactions, and high 
degree of taxonomy evolution, and is more than an order of magnitude faster than ap-
plying the best generalized associations mining algorithms to the whole updated  
database. 

The remaining of this paper is organized as follows. We discuss related work in 
Section 2, and describe the problem in Section 3. Detail description of the IDTE algo-
rithm is given in Section 4. In Section 5, we evaluate the performance of the proposed 
IDTE algorithm. Finally, we conclude the work of this paper in Section 6. 

2   Related Work 

The problem of mining association rules in the presence of taxonomy information was 
first introduced in [8] and [14], independently. In [14], the problem aimed at finding 
associations among items at any level of the taxonomy, while in [8], the objective was 
to discover associations of items in a progressively level-by-level fashion along the 
taxonomy. The problem of updating association rules incrementally was first addressed 
by Cheung et al. [4], whose work was later be extended to incorporate the situations of 
deletion and modification [6]. Since then, a number of techniques have been proposed 
to improve the efficiency of incremental mining algorithm [9, 10, 13, 15]. But all of 
them were confined to mining associations among primitive items. Cheung et al. [5] 
were the first to consider the problem of maintaining generalized (multi-level) asso-
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ciation rules. We then extended the problem model to that adopting non-uniform 
minimum support [16]. To our knowledge, no work to date has considered the issue of 
maintaining generalized associations while the taxonomy is evolving with the transac-
tion update. 

3   Problem Statement 

In real business applications the database are changing over time; new transactions 
(may consist of new types of items) are continuously added, while outdated transac-
tions (may consist of abandoned items) are deleted, and the taxonomy that represents 
the classification of items are also evolved to reflect such changes. This implies that if 
the updated database is processed afresh, the previously discovered associations might 
be invalid and some undiscovered associations should be generated. That is, the dis-
covered association rules must be updated to reflect the new circumstance. Analogous 
to mining associations, this problem can be reduced to updating the frequent itemsets.  

3.1   Problem Description 

Consider the task of mining generalized frequent itemsets from a given transaction 
database DB with the item taxonomy T. In the literature, although different proposed 
methods have different strategies in the implementation aspect, the main process in-
volves adding to each transaction the generalized items in the taxonomy. For this rea-
son, we can view the task as mining frequent itemsets from the extended database ED, 
the extended version of DB by adding to each transaction the ancestors of each primi-
tive item in T. We use LED denote the set of discovered frequent itemsets. 

Now let us consider the situation when new transactions in db are added to DB and 
the taxonomy T is changed into a new one T’. Following the previous paradigm, we can 
view the problem as follows. Let ED’ and ed’ denote the extended version of the 
original database DB and incremental database db, respectively, by adding to each 
transaction the generalized items in T’. Further, let UE’ be the updated extended da-
tabase containing ED’ and ed’, i.e., UE’ = ED’ + ed’. The problem of updating LED 
when new transactions db are added to DB and T is changed into T’ is equivalent to 
finding the set of frequent itemsets in UE’, denoted as LUE’. 

3.2   Situations for Taxonomy Evolution and Frequent Itemsets Update 

In this subsection, we will describe different situations for taxonomy evolution, and 
clarify the essence of frequent itemsets update for each type of taxonomy evolutions. 
According to our observation, there are four basic types of item updates that will cause 
taxonomy evolution: item insertion, item deletion, item rename and item reclassifica-
tion. Each of them will be elaborated in the following. For simplicity, in all figures 
hereafter item “A” stands for “Vegetable”, “B” for “Non-root Vegetable”, “C” for 
“Kale”, “D” for “Carrot”, “E” for “Tomato”, “F” for “Fruit”, “G” for “Papaya”, “H” for 
“Apple”, “I” for “Pickle”, “J” for “Root Vegetable”, “K” for “Potato”, “B1” for 
“Non-root Vegetable New”, and “G1” for “Papaya New”. 
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Type 1: Item Insertion. The strategies to handle this type of update operation are 
different, depending on whether an inserted item is primitive or generalized. When the 
new inserted item is primitive, we do not have to process it until an incremental data-
base update containing that item indeed occurs. This is because the new item does not 
appear in the original database, neither in the discovered associations. However, if the 
new item is a generalization, then the insertion will affect the discovered associations 
since a new generalization often incurs some item reclassification. Fig. 2 shows this 
type of taxonomy evolution, where a new item “K” is inserted as a primitive item and 
“B” is a generalized item. 

Type 2: Item Deletion. Unlike the case of item insertion, the deletion of a primitive 
item from the taxonomy would incur inconsistence problem. In other words, if there is 
no transaction update to delete the occurrence of that item, then the refined item tax-
onomy will not conform to the updated database. An outdated item still appears in the 
transaction of interest! To simplify the discussion, we assume that the evolution of the 
taxonomy is always consistent with the transaction update to the database. Addition-
ally, the removal of a generalization may also lead to item reclassification. So we al-
ways have to deal with the situation caused by item deletion. Fig. 3 shows this type of 
taxonomy evolution, where a primitive item “C” and a generalized item “B” are deleted 
respectively. 
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Fig. 2. Item insertion Fig. 3. Item deletion 

Type 3: Item Rename. When items are renamed, we do not have to process the da-
tabase; we just replace the frequent itemsets with new names since the process codes of 
renamed items are the same. Fig. 4 shows this type of taxonomy evolution, where items 
“G” and “B” are renamed to “G1” and “B1”, respectively.  

Type 4: Item Reclassification. Among the four types of taxonomy updates this is the 
most profound operation. Once an item, primitive or generalized, is reclassified into 
another category, all of its ancestor (generalized items) in the old and the new tax-
onomies are affected. For example, in Fig. 5, the two shifted items “E” and “G” will 
affect the support counts of itemsets containing “A”, “B”, or “F”.  
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4   The Proposed Method 

A straightforward method to update the discovered generalized frequent itemsets 
would be to run any of the algorithms for finding generalized frequent itemsets, such as 
Cumulate and Stratify [14], on the updated extended database UE’. This simple way, 
however, does not utilize the discovered frequent itemsets and ignores the fact that 
scanning the whole updated database would be avoided. Instead, a better approach is to, 
within the set of discovered frequent itemsets LED, differentiate the itemsets that are 
unaffected with respect to the taxonomy evolution from the others, and then utilize 
them to avoid unnecessary computation in the course of incremental update. To this 
end, we first have to identify the unaffected items whose supports does not change with 
respect to the taxonomy evolution, and then use them to identify the unaffected item-
sets. We introduce the following notation to facilitate the discussion: I, J denote the set 
of primitive items and the set of generalized items in T, respectively, and I’, J’ represent 
the counterparts in T’. 

Definition 1. An item in T is called an unaffected item if its support does not change 
with respect to a taxonomy evolution. 

Lemma 1. Consider a primitive item a in T∪T’. Then 

(a) supED’(a) = supED(a) if a ∈ I ∩I’, and 
(b) supED’(a) = 0 if a ∈ I’− I,  
where supED(a) and supED(a) denote the supports of item a in ED’ and ED, respectively.  

Lemma 2. Consider a generalized item g in T’. Then supED’(g) = supED(g) if desT’(g) = 
desT(g), where desT’(g) and desT(g) denote the sets of descendant primitive items of g in 
T’ and T, respectively. 

In summary, Lemmas 1 and 2 state that an item is unaffected by the taxonomy 
evolution if it is a primitive item before and after the taxonomy evolution or it is a 
generalized item whose descendant set of primitive items remains the same.  

Definition 2. An itemset A in ED’ is called an unaffected itemset if its support does not 
change with respect to a taxonomy evolution.  

Lemma 3. Consider an itemset A in ED’. Then  

(a) supED’(A) = supED(A) if A contains unaffected items only; or  
(b) supUE’(A) does not exist if A contains at least one item a, for a ∈I – I’. 

Now that we have clarified how to identify the unaffected itemsets, we will further 
show how to utilize this information to alleviate the overhead in updating the supports 
of itemsets. Consider a candidate itemset A generated during the mining process. We 
observe that there are six different cases in arriving at the support counts of A in the 
whole updated database UE’. 

(1) If A is an unaffected itemset and is frequent in ed’ and ED’, then it is also frequent 
in the updated extended database UE’. 

(2) If A is an unaffected itemset and is infrequent in ed’ and ED’, then it is also in-
frequent in UE’.  
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(3) If A is an unaffected itemset and is infrequent in ed’ but frequent in ED’, then a 
simple calculation can determine whether A is frequent or not in UE’.  

(4) If A is an unaffected itemset and is frequent in ed’ but infrequent in ED’, then it is 
an undetermined itemset in UE’, i.e., it may be frequent or infrequent. 

(5) If A is not unaffected and is frequent in ed’, then it is an undetermined itemset in 
UE’.  

(6) If A is not unaffected and is infrequent in ed’, then it is an undetermined itemset in 
UE’. 

Note that only Cases 4 to 6 requires an additional scan of ED’ to determine the sup-
port count of A in UE’. For Case 4, after scanning ed; and comparing with ms, if A is 
frequent in ed’, A may become frequent in UE’. Then we need rescan ED’ to determine 
the support count of A. For Cases 5 and 6, since A is not an unaffected itemset its support 
count would be changed in ED’. Therefore, we need further scan ED’ to decide whether it 
is frequent or not.  

For Cases 1 to 3, there is no need to further scan ED’ to determine the support counts 
of itemset A. That is, we have utilized the information of unaffected itemsets and dis-
covered frequent itemsets to avoid such a database scan. Furthermore, the identification 
of itemsets satisfies Case 2 provides another opportunity for candidate pruning.  

The IDTE algorithm is shown in Fig. 6. An example for illustrating the proposed 
IDTE algorithm is provided in Fig 7, where ms = 20%. 

1. k = 1; 

2. repeat 

3. if k =1 then generate 
1C fromT’; 

4. else 
kC = apriori-gen( '

1
UE
kL − ); 

5. Delete any candidate in
kC that consists of an item and its ancestor; 

6. Load original frequent k-itemsets ED
kL ; 

7. Divide Ck into two subsets: CX and CY;   /* CX consists of unaffected  
itemsets in DE ′ , and CY = CK − CX. */ 

8. Divide CX into two subsets: CXa and CXb;   /* CXa consists of frequent  

itemsets in ED
kL , and CXb = CX − CXa . */ 

9. Scan ed’ to count suped’(A) for each itemset A in Ck; 
10. 'ed

kL = {A | A ∈ Ck and suped’(A) ≥ ms}; 

11. Delete any candidate A from CXb if A∉ 'ed
kL ;  /* Case 2 */ 

12. Scan ED’ to count supED’(A) for each itemset A in CXb and CY having no 
new primitive item;   /* Case 4, 5 & 6, and Lemma 1(b) */ 

13. Calculate supUE’(A) for each itemset A in Ck; 

14. 'UE
kL = {A|A ∈ Ck and supUE’(A) ≥ ms}; 

15. until 'UE
kL = ∅ 

16. Result = Uk
'UE

kL ; 

Fig. 6. Algorithm IDTE 
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Fig. 7. Illustration of algorithm IDTE 
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5   Experiments  

In order to examine the performance of IDTE, we conducted experiments to compare 
its performance with that of applying generalized association mining algorithms, in-
cluding Cumulate and Stratify, to the whole updated database. Synthetic datasets gen-
erated by the IBM data generator [2] were used in the experiments. The parameter 
settings for synthetic data are shown in Table 1. The comparisons were evaluated from 
different aspects: include minimum support, incremental transaction size, fanout, 
number of groups, and percent of affected items, i.e., the ratio of affected items to total 
items. In the implementation of each algorithm, we also adopted two different support 
counting strategies: one with the horizontal counting [1, 2, 3, 11] and the other with the 
vertical intersection counting [12, 17]. For the horizontal counting, the algorithms are 
denoted as Cumulate(H), Stratify(H), and IDTE(H) while for the vertical intersection 
counting, the algorithms are denoted as Cumulate(V), Stratify(V), and IDTE(V). All 
experiments were performed on an Intel Pentium-IV 2.80GHz with 2GB RAM, run-
ning on Windows 2000. 

Minimum Supports: We first compared the performance of these three algorithms 
with varying minimum supports at 40,000 incremental transactions with constant af-
fected item percent. The experimental results are shown in Fig. 8. As shown in the 
figure, IDTE perform significantly better than Cumulate and Stratify. Besides, algo-
rithms with vertical counting strategy are better than their counterpart with horizontal 
strategy. 

Transaction Sizes: We then compared the three algorithms under varying transaction 
sizes at ms = 1.0% with constant affected item percent. As the results shown in Fig. 9, 
the running time of all algorithms increase in proportional to the incremental size. 
Furthermore, IDTE(H) significantly outperforms Cumulate(H) and Stratify(H) and 
similarly, IDTE(V) beats Cumulate(V) and Stratify(V). 

Fanout: We changed the fanout from 3 to 11 at ms = 1.0% with constant affected item 
percent and 40,000 incremental transactions. The experimental results are shown in 
Fig. 10. It can be observed that all algorithms perform faster as the fanout increases 
because the number of generalized items decreases upon increasing the number of 
fanout. Again, IDTE significantly outperforms Cumulate and Stratify, either with ver-
tical or horizontal counting strategy. 

Number of Groups: We varied the number of groups from 15 to 35 at ms = 1.0% with 
constant affected item percent and 40,000 incremental transactions. As Fig. 11 shows, 
the effect of increasing the number of groups is similar to that of increasing the fanout. 
The reason is that the number of items within a specific group decreases as the number 
of groups increases, so the probability of a generalized item decreases. 

Affected Item Percent: We finally compared the three algorithms under varying af-
fected item percent at ms = 1.0% and 40,000 incremental transactions. The affected 
items were randomly chosen, undergoing reclassification. The results are depicted in 
Fig. 12. 
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Table 1. Parameter settings 

Fig. 8. Different ms 

  

Fig. 9. Different transactions Fig. 10. Varying fanout 

  

Fig. 11. Varying number of groups Fig. 12. Different affected item percent 

In summary, we observe that IDTE(V) performs better than Cumulate(V) and Strat-
ify(V) while IDTE(H) performs better than Cumulate(H) and Stratify(H) in all aspects of 
evaluation. Besides, all algorithms with vertical support counting strategy perform better 
than their counterpart with horizontal counting strategy. 

6   Conclusions 

We have investigated in this paper the problem of updating generalized association rules 
when new transactions are inserted into the database and the taxonomy of items is 
evolved over time. We also have presented a novel algorithm, IDTE, for updating gen-
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eralized frequent itemsets. Empirical evaluation on synthetic data showed that the IDTE 
algorithm is very efficient, which outperforms applying the best generalized association 
mining algorithms to the whole updated database. In the future, we will extend the 
problem of updating generalized association rule to a more general model that adopts 
non-uniform minimum support to solve the problem that new introduced items usually 
have much lower supports.  
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Abstract. The problem of the relevance and the usefulness of extracted
association rules is becoming of primary importance, since an overwhelm-
ing number of association rules may be derived, even from reasonably
sized databases. To overcome such drawback, the extraction of reduced
size generic bases of association rules seems to be promising. Using the
concept of minimal generator, we propose an algorithm, called Prince,
allowing a shrewd extraction of generic bases of rules. To this end,
Prince builds the partial order. Its originality is that this partial order
is maintained between minimal generators and no more between closed
itemsets. A structure called minimal generator lattice is then built, from
which the derivation of the generic association rules becomes straightfor-
ward. An intensive experimental evaluation, carried out on benchmarking
sparse and dense datasets, showed that Prince largely outperforms the
pioneer level-wise algorithms, i.e., Close, A-Close and Titanic.

Keywords: Data mining, Formal Concept Analysis, generic rule bases,
minimal generator lattice.

1 Introduction

The last decade was marked by an ”obsessional” algorithmic effort to reduce
the computation time of the interesting pattern extraction step. The obtained
success is primarily due to prowesses of programming conjuncted with intensive
handling of compact data structures in the main memory. However, it seems ob-
vious that this frenzy made loses sight of the essential objective of this step, i.e.,
to extract a reliable knowledge, of exploitable size for end-users. Thus, almost all
these algorithms focused on enumerating maximal or closed patterns – presenting
a frequency of appearance considered to be satisfactory [1]. As a drawback of this
success, this enumeration will generate an impressive and not exploitable num-
ber of association rules, even for a reasonable context size. In this situation, the
approach based on the extraction of closed patterns (or itemsets) [2] presented a
clear promise to reduce considerably the association rule list size. This approach,
relying on the Formal Concept Analysis (FCA) mathematical background [3],
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proposes to reduce the search space by detecting intrinsic structural properties.
Thus, the use of monotonous and non monotonous constraints, during the brows-
ing of the search space, is a typical behavior of this approach [4]. Therefore, the
problem of mining association rules might be reformulated, under the (frequent)
closed itemsets discovery point of view, as the following two steps [4]:

1. Discover two distinct ”closure systems”, i.e., sets of sets which are closed
under the intersection operator, namely the set of closed itemsets and the set of
minimal generators. Also, the upper cover (Covu) of each closed itemset should
be available.

2. From all the discovered information during the first step, i.e., both closure
systems and the upper cover sets, derive generic bases of association rules (from
which all the remaining rules can be derived).

The essential report after an overview of the state of the art of algorithms
[2,5,6,7,8] aiming to discover closed itemsets can be summarized in what follows:

1. Modest performances on sparse contexts. Indeed, computing itemset clo-
sures in this type of contexts is heavily handicapping these algorithm perfor-
mances.

2. Negligence of maintaining the order covering the relationship between the
closed itemsets.

In this paper, we propose a new algorithm, called Prince, aiming to extract
generic bases of association rules. Prince performs a level-wise browsing of the
search space. Its main originality is that it is the only one who accepted to bear
the cost of building the partial order. Interestingly enough, to amortize this pro-
hibitive cost, the partial order is maintained between minimal generators and not
between closed itemsets. Hence, itemset closures are not computed but derived
when Prince performs a simple sweeping of the partially ordered structure to
derive generic bases of association rules. Experimental results, carried out on
typical benchmark datasets, are very encouraging and showed that this astute
partial order construction is not handicapping. Indeed, Prince performances
largely outperformed those of well known level-wise browsing algorithms, i.e.,
Close [2], A-Close [5], and Titanic [7]. These last determine at least the
”key” information provided by the minimal generator set. Due to space limit,
we report our results only on two datasets.

The remainder of the paper is organized as follows. Section 2 presents the
basic mathematical foundations for the derivation of generic bases of associa-
tion rules. We describe related work and motivations in section 3. Section 4 is
dedicated to the presentation of the algorithm Prince. Experimental results
showing the utility of the proposed approach are presented in section 5. The
conclusion and future work are presented in section 6.

2 Mathematical Background

Due to lack of available space, interested reader for key results from the Galois
lattice-based paradigm in FCA is referred to [9].
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Frequent Closed Itemset: An itemset I ⊆ I is said to be closed if
ω(I) = I (1) [2]. I is said to be frequent if its relative support, Supp(I) = |ψ(I)|

|O| ,
exceeds a user-defined minimum threshold, denoted minsup. In the remainder,
we will use the absolute support.

Minimal Generator [10]: An itemset g ⊆ I is said to be minimal generator
of a closed itemset f , if and only if g′′ = f and does not exist g1 ⊆ g such that
g′′

1
= f . The set MG

f
of the minimal generators of f is: MG

f
= {g ⊆ I |g′′ = f

∧ � g1 ⊂ g such as g′′
1

= f}.
Iceberg Galois Lattice: When only frequent closed itemsets are considered
with set inclusion, the resulting structure (L̂,⊆) only preserves the Join opera-
tor [9]. This is called a join semi-lattice or upper semi-lattice and referred to as
”Iceberg Galois Lattice” [7]

Minimal Generator Lattice: A minimal generator lattice is equivalent to an
Iceberg Galois lattice such as each equivalence class contains only the associated
minimal generators [11].

3 Related Work and Motivations

Since the apparition of the approach based on the extraction of the frequent
closed itemsets [2], several generic bases were introduced among which those of
Bastide et al. [10] and which are defined as follows:

1. The generic basis for exact association rules is defined as follows:

Definition 1. Let FCIK be the set of frequent closed itemsets extracted from
the extraction context K. For each frequent closed itemset f∈ FCIK, let MGf

be the set of its minimal generators. The generic basis of exact association rules
GB is given by: GB = {R: g ⇒ (f - g) | f ∈ FCIK and g ∈ MGf and g =
f (2)}.

2. The transitive reduction of the informative base [10] is defined as follows:

Definition 2. Let FMGK be the set of frequent minimal generators extracted
from the extraction context K. The transitive reduction RI is given by: RI = {R
| R: g ⇒ (f - g) | f ∈ FCIK and g ∈ FMGK and g′′ ≺ f (3) and Conf(R) ≥
minconf }.
In the remainder of the paper, we will refer to the generic association rules
formed by the couple (GB,RI). This couple is informative, sound and lossless
[10,12] and the rules forming it are referred as informative association rules.
Thus, given an Iceberg Galois lattice – in which each frequent closed itemset is
decorated by its list of the minimal generators – the derivation of these rules can
1 In the remainder, the closure operator ω is indicated by ′′.
2 The condition g 	= f ensures discarding non-informative rules of the form g ⇒ ∅.
3 The notation ≺ indicates that f covers g′′ in (L̂, ⊆).
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A B C D E
1 × × ×
2 × × ×
3 × × × ×
4 × ×
5 × × × ×

 ({∅};5)

({BE};4) 

({BCE};3)

({ABCE};2) 

{C}                               {B} {E} 

{∅} 

({C};4) 

({AC};3) 

{AB} {AE} 

 {A}                            {BC} {CE} 

Exact generic rules
R1 : E⇒B R2 : B⇒E

R3 : A⇒C R4 : BC⇒E

R5 : CE⇒B R6 : AB⇒CE

R7 : AE⇒BC

Approximative generic rules

R8 : ∅0.8⇒BE R13 : E
0.75⇒ BC

R9 : ∅0.8⇒C R14 : A
0.66⇒ BCE

R10 : C
0.75⇒ A R15 : BC

0.66⇒ AE

R11 : C
0.75⇒ BE R16 : CE

0.66⇒ AB

R12 : B
0.75⇒ CE

Fig. 1. Left: Extraction context K Center: The associated Iceberg Galois lattice for
minsup=2. Right: Informative association rules for minsup=2 and minconf =0.5.

be performed straightforwardly. Indeed, generic approximative rules represent
”inter-node” implications, assorted with the confidence measure, between two
adjacent comparable equivalence classes, i.e., from a frequent closed itemset to
another frequent closed itemset immediately covering it.

According to the definition of the informative association rules, we note that
they require the extraction of the frequent closed itemsets and their associated
minimal generators as well as the upper cover of each frequent closed itemset.
Then, constructing the partially ordered structure is a sine qua non condition
for obtaining the RI basis. Thus, information conveyed by minimal generator
set and partial order are of paramount importance.

In order to palliate the insufficiencies of existing frequent closed based al-
gorithms, i.e., the cost of the closure computation as well as neglecting the
partial order construction, we will introduce a new algorithm called Prince.
Prince highly reduces the cost of closure computation and generates the par-
tially ordered structure, which makes it able to extract generic rule bases without
coupling it with another algorithm.

4 Prince Algorithm

Prince takes as input an extraction context K, the minimum threshold of sup-
port minsup and the minimum threshold of confidence minconf. It outputs the
list of the frequent closed itemsets and their associated minimal generators as
well as generic bases of association rules. Thus, Prince operates in three suc-
cessive steps: (i) Minimal generator determination (ii) Partial order construction
(iii) Extraction of generic rule bases.

4.1 Minimal Generator Determination

Following the ”Test-and-generate” technique, Prince traverses the search space
by level to determine the set of frequent minimal generators FMGK sorted by
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decreasing support values as well as the negative border of minimal generators
GBd−(4)[13]. In the second step, the set of frequent minimal generators will
serve as a backbone to construct the minimal generator lattice. As in the case of
Titanic, the negative border will be used, in the second step, to determine the
support of a non-minimal generator using the following proposition:

Proposition 1. [7] Let MGK=FMGK ∪ GBd− be the set of minimal genera-
tors extracted from the context K. If X is not a minimal generator then Supp(X)
= min {Supp(g) | g ∈ MGK and g ⊂ X}.
Prince uses, in this step, the same pruning strategies introduced in Titanic
namely minsup, the ideal order of the minimal generators and the estimated
support.

4.2 Partial Order Construction

In this step, the frequent minimal generator set FMGK will form a minimal gen-
erator lattice, and this without any access to the extraction context. The main
idea is how to construct the partial order without computing itemset closures,
i.e., how guessing the subsumption relation by only comparing minimal genera-
tors? To achieve this goal, the list of immediate successors(5) of each equivalence
class will be updated in an iterative way. The processing of the frequent minimal
generator set is done according to the order imposed in the first step (i.e., by de-
creasing support values). Each frequent minimal generator g of size k (k ≥ 1) is
introduced into the minimal generator lattice by comparing it to the immediate
successors of its (k-1)-subsets(6). This is based on the isotony property of the
closure operator [14]. Indeed, let g1 , a (k-1)-itemset, be one of the subsets of g,
g1 ⊆ g ⇒ g′′

1
⊆ g′′. Thus, the equivalence class to which belongs g is a successor

(not necessarily an immediate one) of the equivalence class to which belongs g1 .
While comparing g to the list of the immediate successors of g1 , noted L,

two cases are to be distinguished. If L is empty then g is added to L. Otherwise,
g is compared to the elements already belonging to L (cf. Proposition 2). The
imposed order in the first step allows to distinguish only two cases sketched
by Proposition 2 by replacing the frequent minimal generators X and Y by
respectively g and one of the elements of L.

Proposition 2. [15] Let X, Y ∈ FMGK, CX and CY their respective equiva-
lence classes:
a. If Supp(X) = Supp(Y ) = Supp(X ∪ Y ) then X and Y belong to the same
equivalence class.
b. If Supp(X) < Supp(Y ) and Supp(X) = Supp(X ∪ Y ) then CX (resp. CY ) is
a successor (resp. predecessor) of CY (resp. CX).
4 An itemset belong to GBd− if it is an infrequent minimal generator and all its subsets

are frequent minimal generators.
5 By the term ”immediate successor”, we indicate a frequent minimal generator, unless

otherwise specified.
6 In the first step and for each candidate of size k, links towards its subsets of size

(k-1) are stored during the check of the ideal order property.
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During these comparisons and to avoid redundant closure computations,
Prince introduces two complementary functions. These functions make it pos-
sible to maintain the concept of equivalence class throughout processing. To this
end, each equivalence class C will be characterized by a representative item-
set, which is the first frequent minimal generator introduced into the minimal
generator lattice. Both functions are described below:

1. Manage-Equiv-Class: This function is used if a frequent minimal gen-
erator, say g, is compared to the representative itemset of its equivalence class,
say R. The Manage-Equiv-Class function replaces all occurrences of g by R
in the immediate successor lists in which g was added. Then, comparisons to
carry out with g will be made with R. Thus, for each equivalence class, only its
representative itemset appears in the lists of the immediate successors.

2. Representative: This function makes it possible to find, for each frequent
minimal generator g, the representative R of its equivalence class in order to
complete the immediate successors of Cg. This allows to manage only one list of
the immediate successors for all frequent minimal generators belonging to the
same equivalence class.

The pseudo-code of the second step is given by the Gen-Order procedure
(Algorithm 1). Each entry, say g, in FMGK is composed by the following fields:
(i)support: the support of g (ii) direct-subsets: the list of the (k-1)-subsets
of g (iii)immediate-succs: the list of the immediate successors of g.

4.3 Extraction of Generic Rule Bases

In this step, Prince extracts the informative association rules. For this purpose,
Prince finds the frequent closed itemset corresponding to each equivalence class
by using Proposition 3.

Proposition 3. [15] Let f and f1 be two closed itemsets such that f covers f1
in the Galois lattice LCK . Let MGf be the set of minimal generators of f . The
closed itemset f can be composed as follows: f = ∪{g|g ∈ MGf} ∪ f1 .

The traversal of the minimal generator lattice is carried out in an ascending
manner from the equivalence class whose minimal generator is the empty set(7)

(denoted C∅) to the non subsumed equivalence class(es). If the closure of the
empty set is not null, the informative exact rule between the empty set and its
closure is then extracted. Having the partial ordered structure built, Prince
extracts the informative approximative rules between the empty set and the
frequent closed itemsets of the upper cover of C∅. These closures are found, by
applying Proposition 3, using the minimal generators of each equivalence class
and the closure of the empty set. Equivalence classes forming the upper cover of
C∅ are stored which makes it possible to apply the same process to them. By the
7 This class is called the Bottom element of the lattice [9]. The corresponding closure is

calculated in the first step by collecting items having a support equal to the number
of transactions in the extraction context.
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Procedure: Gen-Order1

Data: - FMGK.
Results: - The elements of FMGK partially ordered in the form of a

minimal generator lattice.
Begin2

Foreach (g ∈ FMGK) do3

Foreach (g1 ∈ g.direct-subsets) do4

R = Representative(g1);5

Foreach (g2 ∈ R.immediate-succs) do6

If (g.support = g2 .support = Supp(g ∪ g2)) then7

Manage-Equiv-Class(g,g2); /*g,g2 ∈ Cg and g2 is the8

representative of Cg*/

Else if (g.support < g2 .support and g.support =9

Supp(g ∪ g2)) then
g is compared with g2 .immediate-succs;10

/*For the remainder of the element of11

R.immediate-succs, g is compared only with each g3 |
g3 .support > g.support;*/

If (∀ g2 ∈ R.immediate-succs, Cg and Cg2
are incomparable)12

then
R.immediate-succs = R.immediate-succs ∪ {g};13

End14

Algorithm 1: Gen-Order

same manner, Prince treats higher levels of the minimal generator lattice until
reaching the maximal equivalence class(es). Due to lack of space, the pseudo-code
of this step is omitted.

Example 1. Let us consider the extraction context K given by Figure 1 (Left)
for minsup=2 and minconf =0.5. The first step allows the determination of
the sorted set FMGK and the negative border of minimal generators GBd−.
FMGK = {(∅,5),(B,4),(C,4), (E,4), (A,3), (BC,3),(CE,3), (AB,2), (AE,2)} and
GBd−={(D,1)}. During the second step, Prince processes the element of
FMGK by comparing each frequent minimal generator g, of size k (k ≥ 1),
with the lists of the immediate successors of its subsets of size (k-1). Since
the list of immediate successors of the empty set is empty, B is added to ∅.
immediate-succs. Then, C is compared to B. BC is a minimal generator, CB and
CC are thus incomparable and C is added to ∅.immediate-succs. E is then com-
pared to this list. By comparing E to B, E.support = B.support = Supp(BE)
and E ∈ CB whose B is the representative one. The Manage-Equiv-Class
function is then applied by replacing the occurrences of E, in the immediate
successor lists, by B (in this case, there is no occurrence) and by continuing
comparisons with B instead of E (in this case, there are no more comparisons
to make with E). At this moment of processing, we have ∅.immediate-succs =
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{B,C}. A is compared to B. As AB ∈ FMGK, CB and CA are incomparable. On
the other hand, by comparing A with C, A.support< C.support and A.support
= Supp(AC) and then CA is a successor of CC . A is added to C.immediate-succs
without any comparisons since it is still empty. BC is compared to the imme-
diate successor lists of B and of C. Since, the list associated to B is empty,
then BC is added. C has A as an immediate successor. A is then compared
to BC and as BC.support = A.support but BC.support = Supp(ABC), CBC

and CA are incomparable and BC is then added to C.immediate-succs. CE is
compared to the immediate successor lists of C and of E. The list associated
to C contains A and BC. CCE and CA are then incomparable since CE.support
= A.support but CE.support = Supp(ACE). By comparing CE to BC, since
CE.support=BC.support=Supp(BCE) then CE will be affected to the equiva-
lence class of BC. The Manage-Equiv-Class function is then applied. In par-
ticular, comparisons of CE to the immediate successors of CE will be made with
BC. As CE has B as a representative itemset, BC is compared to the elements of
B.immediate-succs. However, B.immediate-succs contains only BC and the
comparisons stop. It is the same for AB and AE. Having the minimal generator
lattice built, an ascending sweeping is carried out from the C∅. As (∅)′′ = ∅,
there is no informative exact rule related to C∅. ∅.immediate-succs={B,C}.
The frequent closed itemset associated to CB is then found and is equal to BE.
The informative approximative rule ∅ ⇒ BE, of a support equal to 4 and a
confidence equal to 0.8, will be extracted. It is the same for CC . Using the same
process and from CB and CC , the traversal of the minimal generator lattice is
performed in an ascending way until extracting all the valid informative asso-
ciation rules. The resulting informative generic rules are sketched by Figure 1
(Right).

5 Experimental Results

In this section, we shed light on Prince performances vs those of Close, A-
Close and Titanic algorithms. Prince was implemented in the C language
using gcc version 3.3.1. All experiments were carried out on a PC with a 2.4 GHz
Pentium IV and 512 MB of main memory (with 2 GB of Swap) and running SuSE
Linux 9.0.

In all our experiments, all times reported are real times, including system and
user times. Figure 2 shows execution times of Prince(8) algorithm compared to
those of Close, A-Close and Titanic algorithms(9).

- Connect: For this dense dataset, Prince performances are better than
those of Close, A-Close and Titanic for all minsup values. The Connect
dataset is characterized by a great number of highly sized transactions. These
characteristics complicate the task of Close and A-Close which have to carry

8 For Prince algorithm, the value of minconf is set to 0.
9 The authors are grateful to Yves Bastide who kindly provided source codes of Close,

A-Close and Titanic algorithms.
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Fig. 2. Prince performances vs those of Close, A-Close and Titanic

out expensive intersection computations. Prince and Titanic avoid these ex-
pensive computations with an advantage for Prince. Indeed, Prince is favoured
compared to Titanic by a reduced cost of carried out comparisons for a frequent
minimal generator compared with extension attempts carried out by Titanic.
Interestingly enough, for minsup = 50%, the execution Titanic could not come
to an end for lack of memory space.

- Retail: For this sparse dataset, execution times of our algorithm are much
more reduced than those of Close, A-Close, Titanic algorithms. These per-
formances can be explained by the enormous influence of the high number of
items in the Retail dataset. Indeed, Close is handicapped by a great number
of candidates for which it is obliged to calculate closures, even though a high
number of them is infrequent. The number of candidates affects also A-Close
performances because of the additional sweeping for each candidate as well as
the cost of the closure computation step. On its side, Titanic is considerably
penalized by a great number of frequent items to consider in closure computa-
tions (for minsup = 0.04%, 4643 items are frequent and the maximum size of
a frequent minimal generator is only equal to 6 items). The execution of Ti-
tanic stops, for support values lower than 0.004%, for lack of memory capacity.
Prince performs better since the treatment to do for each frequent minimal
generator is by far less expensive than that performed in the other algorithms.

6 Conclusion

In this paper, we proposed a new algorithm, called Prince, for an efficient
extraction of frequent closed itemsets and their respective minimal generators
as well as the generic rule bases. To this end, Prince builds the partial order
contrary to the existing algorithms. A main characteristic of Prince algorithm
is that it relies only on minimal generators to build the underlying partial or-
der. Carried out experiments outlined that Prince largely outperforms exist-
ing ”Test-and-generate” algorithms of the literature for both dense and sparse
contexts. In the near future, we plan to add other constraints [16] to Prince
algorithm so that the number of generic rules will be reduced while keeping the
most interesting rules for the user.
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gnriques de règles sans calcul de fermetures. In: Proceedings of the International
Conference INFORSID , Inforsid Editions, Grenoble, France. (2005) 353–368

16. Bonchi, F., Lucchese, C.: On closed constrained frequent pattern mining. In: Pro-
ceedings of the Fourth IEEE International Conference on Data Mining (ICDM’04),
Brighton, UK. (2004) 35–42



 

A Min Tjoa and J. Trujillo (Eds.):  DaWaK 2005, LNCS 3589, pp. 356 – 367, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Efficient Compression of Text Attributes of Data 
Warehouse Dimensions 

Jorge Vieira1, Jorge Bernardino2, and Henrique Madeira3 

1 Critical Software S.A. 
jvieira@criticalsoftware.com 

2 CISUC-ISEC, Instituto Politécnico de Coimbra  
jorge@isec.pt 

3 CISUC-DEI, Universidade de Coimbra 
henrique@dei.uc.pt 

Abstract. This paper proposes the compression of data in Relational Database 
Management Systems (RDBMS) using existing text compression algorithms. 
Although the technique proposed is general, we believe it is particularly 
advantageous for the compression of medium size and large dimension tables in 
data warehouses. In fact, dimensions usually have a high number of text 
attributes and a reduction in their size has a big impact in the execution time of 
queries that join dimensions with fact tables. In general, the high complexity 
and long execution time of most data warehouse queries make the compression 
of dimension text attributes (and possible text attributes that may exist in the 
fact table, such as false facts) an effective approach to speed up query response 
time. The proposed approach has been evaluated using the well-known TPC-H 
benchmark and the results show that speed improvements greater than 40% can 
be achieved for most of the queries. 

1   Introduction 

Over the last decades, the volume of data stored in databases has grown at a very high 
pace. Despite the fact that the evolution of storage capacity has followed this growth, 
a similar increase of disk access performance has not happened. On the other hand, 
improvements in speed of RAM memories and CPUs have outpaced improvements in 
physical storage devices by orders of magnitude. This technological trend led to the 
use of data compression, trading some execution overhead (to compress and 
decompress data) for the reduction of space occupied by data. 

In a compressed database data is stored in compressed format on disk and is either 
decompressed immediately when read from disk or during query processing. In 
databases, and particularly in data warehouses, the reduction in the size of the data 
obtained by compression represents normally a gain in speed, as the extra cost in 
execution time (to compress and decompress the data) is compensated by the 
reduction in size of the data that have to be read/stored in the disks.  

Data compression in data warehouses is particularly interesting for two main 
reasons: 1) the amount of data normally stored in the data warehouse is very large, 
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potentially allowing considerable gains in data size, and 2) the data warehouses are 
used for querying only (i.e., only read accesses, as the data warehouse updates are 
done offline), which means that compression overhead is not relevant. Furthermore, if 
data is compressed using techniques that allow searching over the compressed data, 
then the gains in performance could be quite significant, as the decompression 
operation are only done when is strictly necessary. 

In spite of the potential advantages of compression in databases, most of the 
commercial relational database management systems (DBMS) either do no have 
compression or just provide data compression at the physical layer (i.e., database 
blocks), which is not flexible enough to become a real advantage. Flexibility in 
database compression is essential, as the data that could be advantageously 
compressed is frequently mixed in the same table with data whose compression is not 
particularly helpful. Nonetheless, recent work on attribute-level compression methods 
has shown that compression can improve the performance of database systems in 
read-intensive environments such as data warehouses [1, 2]. 

Data compression and data coding techniques transform a given set of data into a 
new set of data containing the same information, but occupying less space than the 
original data (ideally, the minimum space possible). Data compression is heavily used 
in data transmission and data storage. In fact, reducing the amount of data to be 
transmitted (or stored) is equivalent to the increase of the bandwidth of the 
transmission channel (or the size of the storage device).  

The first data compression proposals appeared in the 40’s, namely proposed by D. 
Huffman, but these earlier proposals have evolved dramatically since then. In [3] is 
presented a survey of data compression covering all the period form the first 
proposals until the end of the 80’s.  More recent proposals can be found in [4]. 

The main emphasis of previous work has been on the compression of numerical 
attributes, where coding techniques have been employed to reduce the length of 
integers, floating point numbers, and dates [1, 5]. However, string attributes (i.e., 
attributes of type CHAR(n) or VARCHAR(n) in SQL) often comprise a large portion 
of database records and thus have significant impact on query performance. 

In this paper we propose a flexible compression approach that allows the 
compression of data in Relational Database Management Systems (RDBMS) using 
existing text compression algorithms. This solution is specially appropriated for the 
compression of large dimension tables in data warehouses, as these tables usually 
have a high number of text attributes. The high complexity and long execution time of 
most data warehouse queries make the compression of dimension text attributes an 
effective approach to speed up query response time as shown by the experimental 
results obtained using TPC-H benchmark, where speed improvements greater than 
40% have been observed. 

The structure of the paper is as follows. Section 2 briefly summarizes the state of 
the art of data compression and coding techniques. Section 3 describes the proposed 
technique and section 4 evaluates experimentally the gain in space and performance 
obtained with the proposed technique. Section 5 concludes the paper. 
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2   Related Work 

Data compression has been a very popular topic in the research literature and there is 
a large amount of work on this subject. The most obvious reason to consider 
compression in a database context is to reduce the space required in the disk. 
However, a maybe more important issue is whether the processing time of queries can 
be improved by reducing the amount of data that needs to be read from disk using a 
compression technique. There has been much work on compressing database indexes 
[6, 7] but less on compressing the data itself. With respect to compression of non-
index data, traditional techniques such as Huffman coding [8] and Lempel-Ziv [9] 
work well for compressing certain types of data, such as medical images [10] or text 
[11], but are not advantageous to compress string fields in a database due to high 
execution costs. There are other algorithms for compressing numeric data [2, 12]. 
However, despite the abundance of string-valued attributes in databases, most existing 
work has focused on compressing numerical attributes [2, 6, 7, 12]. 

Recently, there has been a revival of interest on employing compression techniques 
to improve performance in a database. The data compression currently exists in the 
main databases engines, being adopted different approaches in each one of them.  

Data compression in Oracle [13] is based on an algorithm specifically designed for 
relational databases that uses compression at data block level.  In each block is 
created a table of symbols with correspondence to a dictionary of the attributes that 
are the compression target. The attributes are replaced in the block by pointers (links) 
for the table of symbols.  The compression is only achieved in complete columns, 
however it can be used compression between columns (use the same value of the 
dictionary for different columns of the block) or of sequences of columns, when such 
could be advantageous. However, the use of this type of compression has a significant 
impact in data loading time and update time that increase significantly. To optimize 
these operations a table can be divided in temporal partitions and compressing only a 
partition when all estimate updates in this partition are done. 

Teradata [14] presents a compression algorithm at the attribute level where 
compression candidates are all the attributes of fixed size that are not part of the 
existing index on the primary key of the table, with special advantage for columns 
with low cardinality. The compressed values are stored in a dictionary in the table 
header. This dictionary is constructed when tables are created or columns are added to 
an existing table, being the values to compress indicated by the user. The main 
advantage of this type of compression is the reduction of occurrences of 
decompression of the values, as decompression is only done when the compressed 
attributes are necessary for the construction of the query result (lazily decompressed). 

IBM DB2 [15] is based on Lempel-Ziv compression algorithm, to make 
compression of lines. The compression algorithm is adapted accordingly to the data to 
compress, being the analysis of the data carried on samples. The compression can be 
made on all the tablespace or only on a partition. Each page has an anchor that 
indicates if that page is compressed or not.  In the same way, each line has a bit that 
indicates if it is compressed or not. All the lines that are necessary for the execution of 
a query must be decompressed. In order to optimize the compression and 
decompression of data, a processor of compression by hardware can be used. 

Sybase IQ [16] stores the data in a different form of the usual RDBMS.  The data 
of one table is stored by columns instead of the traditional storage per line.  The data 
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is indexed in arrays of bits for each column called Bit-Wise indexes.  The index can 
contain all the distinct values if the values are just a few (less than 1000), or slices of 
values for columns with many distinct values. The particular form of storage of data is 
in itself the technique of compression used in Sybase IQ.  This compression is 
obtained by two forms:  elimination of the repeated values and reduction of the space 
occupied by the indexes. With Sybase IQ we only access data columns needed for the 
query. The data loading operations become heavier due to different form to store the 
data, however do not exist performance loss due to compression of the data. 

The compression of data in databases offers two main advantages: less space 
occupied by data and potentially better query response time. If the benefit in terms 
storage is easily understandable, the gain in performance is not so obvious. This gain 
is due to the fact that less data had to be read of the storage, which is clearly the most 
time-consuming operation during the query processing. 

The most interesting use of data compression and codification techniques in 
databases is surely in data warehouses, given the huge amount of data normally 
involved and its clear orientation for the query processing. As in the data warehouses 
all the insertions and updates are done during the update window [17], when the data 
warehouse is not available for users, off-line compression algorithms are more 
adequate, as the gain in query response time usually compensates the extra costs to 
codify the data before being loaded into the data warehouse. In fact, off-line 
compression algorithms optimize the decompression time, which normally implies 
more costs in the compression process. The technique presented in this paper follow 
these ideas, as it takes advantage of the specific features of data warehouses to 
optimize the use of traditional text compression techniques. 

3   Attribute Compression 

As mentioned before, some of the major commercial databases already offer 
compression mechanisms. However this compression features are generic and, 
consequently, not optimized to any specific scenario. Our approach is especially 
designed for data warehouses, particularly to compress dimension tables, which are 
usually composed by a large number of textual attributes with low cardinality.  This 
approach also has the benefit of being independent from the RDBMS used. Therefore, 
using our approach we can implement data compression in databases that do not offer 
this option, such as Microsoft SQL Server or PostgreSQL. The use of this technique can 
also be combined with compression techniques already existing in some database 
engines, as the compression offered by Oracle 9iR2 and 10g. 

The main objective of this technique is to allow the reduction of the space occupied 
by dimension tables with high number of rows, reducing the total space occupied by the 
data warehouse and leading to a consequent gains on performance. In fact, by reducing 
the size of large dimensions the star model becomes closer to the ideal star model 
proposed by R. Kimbal [17], with a consequent speed improvement. 

The proposed approach aims to compress two different types of database attributes: 

• Text attributes with low cardinality (referred further on as categories). 
• Attributes of free text (comments or notes) that are mainly used for 

visualization (referred further on as descriptions).   



360 J. Vieira, J. Bernardino, and H. Madeira 

 

Categories are textual attributes with low cardinality.  Examples of category 
attributes are:  city, country, type of product, etc.  The codification of categories is made 
using 1 or 2 bytes, depending on the category cardinality.  For categories with less than 
256 distinct values the use of 1 byte is enough, the use of 2 bytes allows to codify 
categories with a maximum of 65791 (65535+256) distinct values, where the 256 most 
used are represented by an one byte code and the remaining less used values are 
represented by a two bytes code. 

A description is a text attribute that is mainly used for visualization. In other 
words, it is not usually used to restrict, to group, or to order a query.  An example of a 
description attribute is the comment attribute, which is frequently found in dimension 
tables.  This type of attributes has the particularity of having a low access frequency 
and it is only necessary to decode it when the final result is being constructed.  As this 
is a free text attribute its cardinality tends to be very high (attribute values are 
normally different one from each other), therefore using a codification similar to the 
one used for categories would result in an increase of the space occupied by the data. 
Therefore, for this type of attributes we propose the use of searchable text 
compression algorithms, which allow reducing the size of this type of attributes 
maintaining the ability of querying using this attributes to restrict the results. It is 
worth nothing that the codification of attributes does not imply any modifications at 
the physical structure of the database. The only change that may have to be made is 
the transformation of the CHAR attributes into VARCHAR attributes.  

In order to guarantee that the data analysis applications (On-Line Analytical 
Processing  - OLAP tools) continue to work transparently we propose the 
implementation a middleware to handle the compression and decompression of the 
attributes (using an approach similar to the one we have used in [18, 19]). That is, this 
middleware will perform query rewriting based on the metadata about the compressed 
attributes. The query originally received from the OLAP tool is intersected by the 
middleware and the values corresponding to compressed attributes are compressed 
before submitted the (modified) query to the DBMS. The query is executed normally 
and the result is decompressed only in the cases where compressed dimension attributes 
appear in the Select statement in the query (this will be detailed further on). This means 
that from the database point of view no changes are required as the data warehouse store 
searchable compressed attributes and the DBMS receives queries from the middleware 
with the values of attributed that are stored in a compressed form also compressed, 
which assure that the query is executed correctly. 

3.1   Categories Coding 

Categories coding is done through the following steps: 

1. The data in the attribute is analyzed and a frequency histogram is build. 
2. The table of codes is build based on the frequency histogram: the most 

frequent values are encoded with a one byte code; the least frequent values 
are coded using a two bytes code. In principle, two bytes are enough, but a 
third byte could be used if needed. 

3. The codes table and necessary metadata is written to the database. 
4. The attribute is updated, replacing the original values by the corresponding 

codes (the compressed values). 
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Table 1 presents an example of typical attributes of a client dimension in a data 
warehouse, which may be a large dimension in many businesses (e.g., e-business). 
For example, we can find several attributes that are candidates to coding, such as: 
CUST_FIRST_NAME, CUST_LAST_NAME, CUST_MARITAL_STATUS, 
CUST_POSTAL_CODE and CUST_CITY. 

Assuming that we want to code the CUST_CITY attribute, an example of possible 
resulting codes table is shown in Table 2. The codes are represented in binary to 
better understand the idea. As the attribute has more than 256 distinct values, we will 
have codes of one byte to represent the 256 most frequent values (e.g. Berlin and 
Copenhagen) and codes of two bytes to represent the least frequent values (e.g. 
Dublin and Oporto). The values shown in Table 2 (represented in binary) would be 
the ones stored in the database, instead of the larger values. For example, instead of 
storing “Copenhagen”, which corresponds to 10 ASCII chars, we just stores one byte 
with the binary cone “00000111”. 

Table 1. Example of typical customer attributes and cardinality 

Attribute Type Cardinality 
CUST_ID NUMBER 100000 
CUST_FIRST_NAME VARCHAR2(20) 800 
CUST_LAST_NAME                 VARCHAR2(40) 640 
CUST_GENDER CHAR(1) 2 
CUST_YEAR_OF_BIRTH        NUMBER(4) 74 
CUST_MARITAL_STATUS     VARCHAR2(20) 5 
CUST_STREET_ADDRESS      VARCHAR2(40) 99435 
CUST_POSTAL_CODE            VARCHAR2(10) 623 
CUST_CITY                               VARCHAR2(30) 620 
CUST_COMMENT  VARCHAR2(200) 95444 

Table 2. Codes Table example 

Values Code (in binary) 
Berlin 00000101 
Copenhagen 00000111 
Dublin 00000001 00000010 
Lisbon 00001001 
London 00001011 
Oporto 00000001 00000011 
. . . . . . 

3.2   Descriptions Coding 

Descriptions coding is very similar to the categories coding with the major difference 
that in this case the value in the attribute is not regarded as a single value, but as a set 
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of values (an ASCII string).  Any text compression algorithm can be used to perform 
this type of compression, provided that it allows approximated (i.e., using text wild 
card) and exact search without decompression. Some text compression formats, like 
the ones presented in [20] and [21], allow this type of compression. 

The key point to understand the coding approach used is that the compression 
algorithm includes the construction of a codes table similar to the one used in 
categories coding. Table 3 presents an example of the comment attribute of a typical 
customer table. In order to compress this attribute we first have to merge the values of 
all rows into a single text value, and then apply the compression algorithm in order to 
obtain a codes table, similar to the one presented in Table 4. Putting all the values in 
the comment attribute in a virtual same text file is needed to facilitate the 
determination of the frequency of each word. Again, as in category coding, we 
represent the most frequent word by one byte and the less frequent words by two 
bytes. If needed, we use a third byte for the even less frequent words. 

After obtaining the codes table we must apply it, compressing the values in the 
table. The final result will depend on the compression algorithm used. 

Table 3. Description attribute example 

CUST_ID CUST_COMMENT 
1 The amount of time is not enough for processing 
2 A  quiz should be sent to this client 
3 The client address is not complete 
4 This client usually buys items in more than one store 
5 This client should be deleted 
6 There is something wrong whit the name 
. . . . . . 

Table 4. Description codes table example 

Values Code 
The 00000101 
On 00000111 
client 00001001 
Name 00001011 
This 00000001 
. . . . . . 

As this type of attributes, when they exist, tend to occupy a large part of the table 
total space, their compression allows in general an impressive reduction in the size of 
the target table,  while keeping the ability to search in the compressed values. 
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3.3   Query Execution 

As mentioned, when using this compression approach the queries must be executed 
through a middleware that performs query rewriting and data decompression when 
necessary. In order to optimize the tasks of query rewriting and decompression the 
middleware has the codes metadata tables loaded in memory. In fact, this work as a 
small dictionary to allow translation form uncompressed values to compressed values 
and vice-versa.  

Query rewriting is necessary in queries where the coded attributes are used in the 
WHERE clause for filtering. In these queries the values used for filter the result must 
be replaced by the correspondent coded values. Following are some simple examples 
of the type of query rewriting needed. 

Example 1. The value ‘LONDON’ is replaced by the corresponded code, fetched 
from the codes table, shown in Table 2. 

Original Query Modified Query 
SELECT CUST_NAME  
FROM CUSTOMERS 
WHERE CUST_CITY = ‘LONDON’ 

SELECT CUST_NAME  
FROM CUSTOMERS 
WHERE CUST_CITY = 00001011 

Note that the code is represented in binary (1 byte). 

Example 2. The value ‘L%’ is replaced by the set of codes that exist in the codes 
table of Table 2 and that verify the condition. 

Original Query Modified Query 
SELECT CUST_NAME  
FROM CUSTOMERS 
WHERE CUST_CITY like ‘L%’ 

SELECT CUST_NAME  
FROM CUSTOMERS 
WHERE CUST_CITY in 
(00001001,00001011) 

Example 3. The values ‘the’ and ‘client’ are replaced by the correspondent 
compressed values, fetched from the codes table, shown in Table 4. 

Original Query Modified Query 
SELECT CUST_NAME  
FROM CUSTOMERS 
WHERE CUST_COMMENT like 
 ‘%the%client%’ 

SELECT CUST_NAME  
FROM CUSTOMERS 
WHERE CUST_COMMENT like 
 ‘%00000101%00001001%’ 

In queries where the coded attributes are not used for filtering, it’s not necessary to 
perform query rewriting. 

3.4   Decompression 

The decompression of the attributes is only made when the coded attributes are in the 
query select list. In these cases the query is executed and after that the result set is 
processed in order to decompress the attributes that contain compressed values. As the 
typical data warehousing queries return small result sets the decompression time will 
represent a very small amount of the total query execution time. 
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4   Experimental Results 

The goal of the experiments performed is to measure experimentally the gains in storage 
and performance obtained using the proposed technique. We have implemented a 
simplified version of the middleware needed to compress and decompress the data and 
we used the TPC-H [22] performance benchmark as experimental setup. The size of the 
database was 1 GB (scale factor 1 in the TPCH scaling rules). After analyzing the TPC-
H schema we compressed the biggest dimensions (Orders, Part and Customer) and the 
fact tables (Lineitem and Partsupp). 

The experiments where divided in two phases. In the first phase only categories 
compression was used. In the second phase we used categories compression in 
conjunction with descriptions compression. 

4.1   Categories Coding Results 

The three biggest dimensions (Orders, Part and Customer) and the Lineitem fact table 
were compressed using categories compression. Lineitem table was compressed, 
although it is a fact table, because this table has two degenerated dimensions that are 
text attributes with very low cardinality.  

Table 5 presents the storage gains obtained after compressing the tables using 
categories compression. An average compression gain of 24.5% was obtained. 

Table 5. Categories compression gains 

Categories Compression 
Table 

Initial Size 
(MB) Size (MB) Gain (%) 

Lineitem 856 640 25.2% 
Orders 192 152 20.8% 
Part 31 17 45.1% 
Customer 28 26 7.1% 
Total 1107 835 24.5% 

4.2   Descriptions Coding Results 

In TPC-H schema all the tables have a textual field used for store comments. As we 
saw before this kind of data can be compressed using searchable text compression 
algorithms. As these fields are substantially large, they represent a huge percentage in 
the total size of the tables. 

Table 7 presents the gains obtained in storage after applying the descriptions 
compression in the biggest tables. This compression was applied after the categories 
compression and has resulted in an average compression ratio of 39.9%. 

The text compression was made using a simple algorithm where the 127 most 
frequent words are coded with a character in the range of 0 (00000000) to 127 
(01111111) and the less frequent words are coded with two characters, the first one in 
the range of 128 (10000000) to 192 (11000000) and the second one in the range of 
193 (11000001) to 255 (11111111).  This algorithm is limited for the compression of 
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4223 different words (127 + 64*64) and enables the search of words within the 
compressed text. Obviously, it is easily extended to the compression of more than 
4223 different words by using a third coding character. 

Table 6. Categories and descriptions compression gains 

Attributes Compression Descriptions Compression 
Table Initial 

Size (MB) Size (MB) Gain (%) Size (MB) Gain (%) 
Lineitem 856 640 25.2% 536 37.3% 
Partsupp 136 136 0% 72 47% 
Orders 192 152 20.8% 104 45.8% 
Part 31 17 45.1% 15 51.6% 
Customer 28 26 7.1% 19 32.1% 
Total 1243 971 21.8% 746 39.9% 

This simple algorithm was chosen for it easiness of implementation and it does not 
offer the best compression ratio possible. As it is not optimal, the speedup that may be 
obtained will be a conservative value. Other existing compression algorithms, like the 
ones presented in [20] and [21] can be used to optimize the compression ratio. 

4.3   Performance Results 

In order to evaluate the performance speedup obtained with the compression 
performed a subset of the TPC-H queries were executed with the following 
configurations: 

1. No compression 
2. Categories compression 
3. Categories compression and descriptions compression 

Table 7. Queries execution times in seconds 

Query No compression Categories  Categories+Descriptions 
Q1 47 38 30 

Q2 46 34 25 

Q3 50 38 28 

Q4 39 28 20 

Q5 52 40 31 

Q6 49 35 28 

Q7 52 43 28 

Q8 40 31 24 

Q9 80 60 46 

Q10 52 34 33 

Total time 507 382 295 

Speedup(%) - 24,6% 41,8% 
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Table 7 presents the execution time in seconds of each query in the three 
configurations. We do not show the SQL of the TPC-H queries used for space reasons 
(some queries are quite long) but all the queries can be found in [22]. The use of 
categories compression resulted in an average speedup of 24,6%. The use of 
categories compression and descriptions compression resulted in an average speedup 
of 41,8%. 

As can be observed in the results shown in Figure 1, all the queries suffered a 
reduction in execution time when we use categories compression and the query 
execution time is considerable reduced when we use categories in conjunction with 
description compression.  

5   Conclusions 

This paper proposes and evaluates a general approach that allows the compression of 
data in RDBMS, which is particularly advantageous for the compression of medium 
size and large dimension tables in data warehouses. In fact, large dimensions usually 
have a high number of text attributes and a reduction in the size of middle or large 
dimension have a big impact in the execution time of queries that join that dimension 
with the fact tables. In general, the high complexity and long execution time of most 
data warehouse queries make the compression of dimension text attributes and 
possible text attributes that may exist in the fact table an effective approach to speed 
up query response time.  

The proposed technique includes coding of two types of dimension attributes: 
categories and descriptions. The former are attributes with low cardinality (typically, 
text attributes) while the latter are attributes such as comments and descriptions (free 
text attributes). This approach also has the benefit of being independent from the 
RDBMS used. Therefore, using our approach we can implement data compression in 
databases that do not offer this option, or combined with compression techniques 
already existing in some database engines.  

The proposed approach has been evaluated using the well-known TPC-H 
benchmark and the results have shown that it is possible to obtain a significant 
reduction of approximately 40% in the space occupied by TPC-H tables. The results 
also show a speedup improvement better than 40% for most of the queries. 
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Abstract. Conventionally, document classification researches focus on
improving the learning capabilities of classifiers. Nevertheless, accord-
ing to our observation, the effectiveness of classification is limited by
the suitability of document representation. Intuitively, the more features
that are used in representation, the more comprehensive that documents
are represented. However, if a representation contains too many irrele-
vant features, the classifier would suffer from not only the curse of high
dimensionality, but also overfitting. To address this problem of suitable-
ness of document representations, we present a classifier-independent
approach to measure the effectiveness of document representations. Our
approach utilises a labelled document corpus to estimate the distribution
of documents in the feature space. By looking through documents in this
way, we can clearly identify the contributions made by different features
toward the document classification. Some experiments have been per-
formed to show how the effectiveness is evaluated. Our approach can be
used as a tool to assist feature selection, dimensionality reduction and
document classification.

1 Introduction

Instead of documents themselves, automatic classifiers learn from modelled docu-
ments, that is, the representation of original documents. However, the capability
of a representation may limit the effectiveness of document classification. Con-
flict instances are the cases in training such that they have identical represen-
tations but are associated with different labels. This is also a case of incomplete
document representation.

To address the representation of incompleteness, one might suggest to ap-
ply more sophisticated document representation. Nevertheless, several researches
[1,2,3] found that the sophisticated representations do not significantly improve
the effectiveness because of the overfitting problem. As Sebastinani defined in
his work [4], overfitting is a problem that classifier wrongly puts too much weight
on unimportant features.

Incomplete representation is caused by lacking of related features, while over-
fitting is derived from superfluous features. Either of them degrades classification
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performance. Conventional methods to evaluate the suitability of document rep-
resentations are averaging multiple effectiveness scores of various classifiers. In-
deed, these scores do reflect the actual effectiveness of classifiers with particular
document representations. However, in terms of representation evaluation, the
scores derived form classifiers are limited by the learning capacity of a classifier.

We provide a classifier-independent document representation evaluation
method, which utilises a labelled corpus as a sample of document distribution
in the feature space. If there were no conflict instances in the feature space,
the representation would be said as complete. The work [5] show the similar
idea However, the method in the work [5] needs to calculate every points in the
feature space, which is infeasible for high dimensionality such as document clas-
sification, not to mention the lack of statistical significance in high dimensional
space. In order to reduce the high dimensionality, we map the whole feature set
into an essential feature subset, whose size is relatively small. Then we utilise the
effectiveness evaluation techniques to estimate the effectiveness of representation
on the labelled corpus, which is a collection of sample documents collection in a
specified domain.

The benefits of our approach are: 1) it reduces the dimensionality of the
problem space, which simplify the computation as well as diminish the possibility
of overfitting; and 2) it provides a measurement for representations that have
different sizes.

The paper is organised as follows: Section 2 lists influential related work. Sec-
tion 3 explains our proposed approach to address the problem of incompleteness
and overfitting of document model. Section 4 illustrates our experiment result.
Section 5 provides our conclusion.

2 Influential Previous Studies

A classifier does not work on documents directly, instead, it works on the repre-
sentation (i.e, features) of documents. The representation can be a set of words
(binary independence retrieval (BIR), a.k.a. bag of words [6]), a vector with
weighted words (vector space model (VSM) [7]), or the result of latent semantic
analysis [8].

How do we compare these document representations? Lewis [3] uses the Max-
Cat text categorization package [9] which is based on the probabilistic classifier
to compare the word-based model with the phrase indexing model. Apte et al
[1] applies the SWAP-1 [10] rule induction method to compare the effectiveness
among subset of features. Dumais [2] uses Rocchio[11] decision trees [12], naive
Bayes [13], Bayes net [14], and support vector machine [15] to test the result of
feature selection. These methods rely on the learning capabilities of classifiers,
which might suffer from under-fitting and overfitting.

The overfitting problem is usually referred as a generalisation problem in
classification research [16]. The generalisation error of a classifier can be esti-
mated by structural risk minimisation [17], Akaike Information Criterion [18],
and Bayesian Information Criterion [19]. However, these methods examine the
classifier model instead of document representation. For example, VC-dimension
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analysis is not suitable for fitness of document representation, because the rep-
resentation does not need to be shattered.

A conventional document representation usually has thousands of features,
and many of which might be uninformative. Thus, we apply the feature selection
techniques to choose the essential feature subset. There are two main approaches,
wrappers and filters. The wrappers utilise classifiers such as the sub-optimal al-
gorithms [20] or decision trees [21] to weight the importance of features; while
filters compute the importance of features by feature significance measurements
such as document frequency, information gain, χ2 independence, mutual infor-
mation, term strength [22], and term contribution [23]. In this paper, the filter
approach is chosen for its classifier-independence and simplicity.

3 Problem Statement and Proposed Approach

Suppose a document representation uses the feature set F to represent docu-
ments, and the labelled document corpus Φ : D × C is a Cartesian product of
the document set D and the category labels set C. The research problem ad-
dressed in this paper can be formulated as follow: Given an essential feature
subset F̂ ⊆ F , a labelled corpus Φ; find the effectiveness ρ(F,Φ) of the document
representation.

The term ‘effectiveness ’ means the correctness of classification decisions. Sim-
ilarly, representation effectiveness indicates the effectiveness of representation,
which can estimates the correctness of classification decisions. Effectiveness is
usually expressed as precision-recall break-even, Fβ function, accuracy, or Pear-
son correlation. In this paper, we choose Pearson correlation as our measurement
instrument. The detailed calculation is shown at formula 3.

An essential feature subset (EFS) serves as a snapshot of corresponding doc-
ument representation The EFS is selected by feature signification measurement,
whose detail is shown in section 3.3. The more significant the feature is, the
higher priority it is selected to the EFS. In this paper, we assume the size of
EFS is fixed, which reflects the circumstance in limited computation environ-
ments with a relatively small number of features. The details of effectiveness
evaluation on a given feature set or subset is discussed in following subsections.

3.1 Representing Documents in a Dimensional Space

Respecting the feature set F , a document d is decomposed as:

d
F�−→ [f1, f2, ..., f|F |], (1)

where |F | is the size of F . With formula 1, a document can be considered as a
point in |F |-dimensional space. We call the space representation space.

Due to the high dimensionality of the representation space, we map the points
in the representation space to the space constructed by essential feature subset
F̂ , namely, model space. A point in model space is called bucket, for it may hold
multiple documents.
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3.2 Measuring the Representation Effectiveness

The effectiveness of document representation indicates whether the feature set
F can fully express a document. If not, no matter how good the classifier is,
misclassification is not avoidable. We use the correctness of classification deci-
sions, which is negatively related to the number of discovered conflict instances,
to measure the representation effectiveness. There are four types of classification
decisions:

1. True Positive (TP): Classifier correctly makes positive decisions.
2. True Negative (TN): Classifier correctly makes negative decisions.
3. False Positive (FP): Classifier mistakenly makes positive decisions.
4. False Negative (FN): Classifier mistakenly makes negative decisions.

Table 1 further shows the agreement between correct label and classifier deci-
sion [4].

Table 1. The contingency table of correct label and classifier decisions.

Should document d Correct Label
be filed to c Positive Negative

Classifier Positive True Positive (TP) False Positive (FP)
Decision Negative False Negative (FN) True Negative (TN)

In some cases, the costs of FP and FN are not equal. For example, in email
filtering, FP is severer than FN. Here, we utilise threshold τ to reflect the costs
of misclassification. According to [24], maximum effectiveness can be achieved if
we set the threshold τ as:

τ =
λFP − λTN

(λFN − λTP ) + (λFP − λTN )
, (2)

where λTP ,λFP ,λTN ,λFN are the penalty for TP,FP,TN and FP.
Finally the representation effectiveness ρ can be computed as:

ρ =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(FP + TN)(FN + TN)
, (3)

where TP , TN , FP , FN are numbers of TP, TN, FP, and FN decisions. In this
paper we use the Pearson Correlation as our effectiveness measurement, however,
other effectiveness measurement such as Fβ function (Formula 4) or accuracy
(Formula 5) can also be used to measure to representation effectiveness.

Fβ :
(β2 + 1)TP

β2(TP + FN) + (TP + FP )
, (4)

Accuracy :
TP + TN

TP + TN + FP + FN
, (5)
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where β is a parameter which reflects relative degree of importance attributed to
precision and recall. Usually parameter β = 0, which attributes equal importance
of precision and recall. If it is not the case, set β < 1 if precision is more
important, otherwise set β > 1 to emphasise recall [25].

3.3 Generating Essential Feature Subset

The EFS possess the most significant features for classification. Usually, the
significance of feature is generated by feature significance function, such as χ2

independence, information gain and mutual information. Yang et al. [22] found
that document frequency, χ2 independence score information gain provide similar
good performance on feature selection. In this paper, we use χ2 independence as
feature signification measurement provided by Yang et al. [22], which is shown
as Formula 6:

χ2(f, c) =
N × (AD − BC)2

(A + B)(A + C)(B + D)(C + D)
(6)

where N is the total number of documents, A is the number of times f and c
co-occur (act like TP if consider f is the only feature) ; B is the number of times
the f occurs without c (FP); C is the number of times the c occurs without f
(FN); D is the number of times neither f nor c occurs (TN). The larger the
number, the more significant the feature is.

Given the size of EFS |F̂ |, the EFS can be obtained by selecting the most
significant |F̂ | features. Since a feature may have different significance scores
with each category, the overall significance of a feature ξ(f) is defined as the
maximum significance score of the feature, that is:

ξ(f) =
C

max
c∈C

{χ2(f, c)} (7)

3.4 Estimating the Probability of Positive

The number of TP, TN, FP, and FN, can be estimated by the probability of
positive (POP) of each bucket. For a given category c, POP of a bucket b can
be calculated by:

POPc(b) =
∑

d∈b Φc(d)
|b| (8)

where |b| is the number of instances in b, and Φc(d) is the value of classification
decision (1 for positive, 0 for negative) on the pair (d, c), d ∈ D, c ∈ C.

In terms of decision making, if POP ≥ τ , then a positive decision is made.
However, if POP is less than 1, then there will be 1 − POP chance that the
decision is FP. Similarly, if 0 < POP < τ , then the chance that the decision is
FN is POP . We use the following formulae to obtain the probability of TP, TN,
FP, and FN for category c:
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TPc =
∑

b∈B(POPc(b)|POPc(b) ≥ τ)
TNc =

∑
b∈B(1 − POPc(b)|POPc(b) < τ)

FPc =
∑

b∈B(1 − POPc(b)|POPc(b) ≥ τ)
FNc =

∑
b∈B(POPc(b)|POPc(b) < τ)

(9)

where B is the set of non-empty buckets.
Finally, the numbers of TP, TN, FP and FN can be calculated as:

TP =
∑

c∈C TPc , TN =
∑

c∈C TNc

FP =
∑

c∈C FPc , FN =
∑

c∈C FNc
(10)

With the numbers of TP, TN, FP and FN, the effectiveness of a document
representation can be obtained by Formula 3, which is listed in section 3.2. The
detail algorithm is shown in Figure 1.

Algorithm: ρF̂ ,Φ ←effectiveness(Φ, F̂, τ)

Input: labelled corpus Φ, essential feature set F̂, threshold τ.
Output: effectiveness estimation

1. Map documents into buckets.
2. For c ∈ C

(a) For b ∈ B

POPc(b) ←
∑

d∈b Φc(d)
|b|

(b) TPc ← ∑
b∈B(POPc(b)|POPc(b) ≥ τ )

(c) TNc ← ∑
b∈B(1 − POPc(b)|POPc(b) < τ )

(d) FPc ← ∑
b∈B(1 − POPc(b)|POPc(b) ≥ τ )

(e) FNc ← ∑
b∈B(POPc(b)|POPc(b) < τ )

3. TP ← ∑
c∈C TPc

4. TN ← ∑
c∈C TNc

5. FP ← ∑
c∈C FPc

6. FN ← ∑
c∈C FNc

7. ρ ← TP × TN − FP × FN√
(TP + FP )(TP + FN)(FP + TN)(FN + TN)

Fig. 1. The representation effectiveness computing algorithm

The effectiveness of representation respecting different EFS is examined by
the experiments in section 4.

4 Experiments and Results

This section compares the fitness of different document models upon the corpus
Reuters-21578 [26]. The Reuters-21578 contains 21,450 valid documents and 135
categories. Each document may have zero to multiple category labels.
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In this work, two document modelling methods: binary independence re-
trieval (BIR) and vector space model (VSM), combined with two stemmers:
KStem [27] and Porter [28] have been examined with our method. Thus totally
effectiveness of four representations: BIR-KStem, BIR-Porter, VSM-KStem, and
VSM-Porter were put into investigations.

4.1 Experiment Design

Before each experiments, the words in Moby most frequent 1,000 words list [29]
and numbers were considered as non-informative words and removed.

For each representation, we selected 10 essential feature subsets which contain
the most significant 50, 100, 150,. . . , 500 features, which were selected by the χ2

statistic measure. In each trail, one essential feature subset was selected, together
with the Apte training set of Reuters corpus and the threshold τ = 0.5, were fed
into the representation effectiveness computing algorithm shown in Figure 1).

The output of representation effectiveness computing algorithm in each trail
was an estimation of effectiveness of corresponding representation.

4.2 Experiment Results

The experiment results show the relationship between the size of essential feature
subset and estimated effectiveness.

Table 2 and Figure 2 contain the result of representation effectiveness anal-
ysis. The table tells the effectiveness for each relationship between the size of
essential feature subset and estimated effectiveness. and the figure shows the
relationship between the size of essential feature subset and estimated effective-
ness. According to the Table 2 and Figure 2, we can found that: firstly, the
larger size of essential feature subset, the better the effectiveness of document
representation be measured; secondly, with around 500 significant features, the
effectiveness is able to reach 90%; and finally, the VSM is sightly better than
BIR, and the Porter stemmer is also sightly better then KStem, which support
the results of [1,2,3].

Table 2. Effectiveness comparisons between four document representations.

Essential Feature Document Representation
Subset (EFS) Size BIR-KStem BIR-Porter VSM-KStem VSM-Porter

50 0.608 0.610 0.615 0.611
100 0.635 0.645 0.649 0.652
150 0.662 0.681 0.683 0.692
200 0.689 0.717 0.728 0.746
250 0.724 0.753 0.786 0.802
300 0.768 0.790 0.816 0.821
350 0.808 0.818 0.836 0.841
400 0.832 0.842 0.857 0.860
450 0.856 0.868 0.877 0.880
500 0.880 0.893 0.898 0.900
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Fig. 2. Relative Effectiveness comparisons

5 Conclusions

Due to the immense cost of computing high dimensionality such as that in doc-
ument classification, it is important to be able to measure the effectiveness
of document representation. In this paper, we designed a heuristic, classifier-
independent method to measure the effectiveness of document representation for
classification. In our experiments, our method not only can provide a solution
for comparing and contrasting the effectiveness of different document represen-
tations, but also find that only a small percentage of features (e.g., 2.74%, 500
out of 18234) can reach the 90% effectiveness.

Our perception of features in terms of their ability in classifying documents
has shown a new way of feature selection. The proposed approach can further
benefit the design of document representations.
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Abstract. Recent studies reveal that associative classification can achieve higher 
accuracy than traditional approaches. The main drawback of this approach is that 
it generates a huge number of rules, which makes it difficult to select a subset of 
rules for accurate classification. In this study, we propose a novel 
association-based approach especially suitable for text classification. The 
approach first builds a classifier through a 2-PS (Two-Phase) method. The first 
phase aims for pruning rules locally, i.e., rules mined within every category are 
pruned by a sentence-level constraint, and this makes the rules more semantically 
correlated and less redundant. In the second phase, all the remaining rules are 
compared and selected with a global view, i.e., training examples from different 
categories are merged together to evaluate these rules. Moreover, when labeling a 
new document, the multiple sentence-level appearances of a rule are taken into 
account. Experimental results on the well-known text corpora show that our 
method can achieve higher accuracy than many well-known methods. In addition, 
the performance study shows that our method is quite efficient in comparison with 
other classification methods.  

1   Introduction  

The application of association rules in solving the classification problem was first 
introduced in [1]. Since then, associative classification has received a lot of attentions. 
Researchers in automatic text categorization also borrow this idea for its high accuracy. 

Through the exhaustive search in data, all rules meeting user-specified minimum 
support and confidence will be found. This is the main strength of associative 
classification because more accurate classifier can be derived from the rules that 
provide a general description of the data. Along with the strength, a main drawback in 
association classification is that it’s quite difficult to select useful rules from such a 
huge number of rules for accurate classification. Extensive research has been carried 
out to solve this problem. However, all these methods select rules only by machine 
learning or statistic means [2], [3], even the associative text categorization methods [4], 
[5] don’t make use of the characteristics of a text document to prune rules. 

In this paper, we first mine the frequent rules (frequent itemset with the class label as 
consequent) in each category at the document level. Then we present a novel 2-PS 
(Two-Phase) method that is designed especially for text categorization. In its local 
phase, what we emphasize on is to greatly reduce the number of rules using a 
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sentence-level support threshold. This pruning strategy is especially suitable for text 
classification because the basic semantic unit in a document is just a sentence. Through 
this local pruning step, most redundant and semantic unrelated rules are removed. In its 
global phase, all the remaining rules are compared and selected with a global view, i.e., 
training examples from different classes are merged together to evaluate rules. The 
evaluation process is performed based on a minimum confidence as well as a covering 
method. The rules whose confidences are lower than minimum confidence are removed. 
The covering method checks several rules with similar entropy simultaneously and 
chooses the rule having highest support, and hence avoids overfitting problem of small 
disjunction and speeds up the sequence covering procedure.  

Moreover, the multiple occurrences of one rule are taken into account in prediction. 
We do this for two reasons: first, sentence-level rules should match sentences in a test 
document; second, several appearances of a rule means that it maybe the center of topic 
of this document. 

The outline of this paper is arranged as follows: Section 2 reviews related work in 
associative classification and associative text categorization. In section 3, we introduce 
our 2-phase rule pruning and selection method. Section 4 discusses how to predict an 
unseen example using the rules found. The experimental results on real data sets are 
reported in Section 5 as well as the performance study. We conclude our study in 
section 6. 

2   Related Works 

Associative classification was first developed in [1], and from then on, it is gaining 
popularity for its high accuracy. Until now, research has been mainly focused on how to 
prune rules and then build an accurate classifier. As in traditional rule generation 
practice, the popularity and significance of a rule were firstly studied. Besides the 
pessimistic error rate in [1], other methods such as chi-square test were also used in [2], 
[6]. In order to construct an accurate classifier, [1], [2] modified the sequential covering 
method to determine when to stop adding more rules into the classifier. [7] employed 
the intensity of implication rather than the confidence to sort CARs and made use of 
ROC curve to judge the proper size of classifier. 

Associative classification also has many applications in text classification. In [4], the 
data sets were stored in a transactional database with words as items and each document 
as a transaction. The algorithm in [5] represented data sets in the same manner. The 
main difference between these two papers is that the former constructs classifier 
directly from association rules while the latter constructs a Bayesian classifier using 
subsets of frequent itemsets to produce a probability estimate. A similar method was 
adopted to mine generalized association rules in [8] though two special ranking criteria 
were proposed for the hierarchical classification task. [9] mined the frequent itemsets of 
substructures within XML documents. 

All the current associative text classification technologies have a common 
characteristic that they all exploit groups of co-occurring words in the same document. 
[9] is an exception, but it was developed for XML data. In our previous work [10], we 
viewed each word as an item and each sentence as a transaction, and then directly 
selected the most significant itemsets for constructing a category classifier. However, 
the rule pruning and evaluation method in that paper were different from those in this 
paper, and the classification approach was different either.  
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3   Two-Phase Based Classifier Building 

Given a set of training documents, we construct the classifier through several steps as 
follows. In the first step, we use an apriori-based algorithm to mine all document-level 
frequent rules in each category. In next step, document-level frequent rules are pruned 
by sentence so that only sentence-level frequent rules are kept for further selection. In 
third step, training examples from all categories are merged together to calculate the 
confidence and the negative entropy value of a rule. More accurate rules are then 
selected according to minimum confidence threshold and database coverage. More 
details are presented in the subsections below. 

3.1   Local Pruning Phase 

The itemsets contained in a document-level frequent rule are actually a set of words that 
often co-occur in the same document, and they always span several sentences. Since 
two words occurring in the same sentence seem more correlated than two  
words  occurring  far  apart in a document [11], it’s worthwhile to prune document-level  

Algorithm: Local pruning  

Input: document-level frequent rule set of category C, 
DFRc; a set of training documents of category C, Tc; a 
user-specified sentence-level minimum support, minSentSup  

Output: sentence-level frequent rule set of category C, 
SFRc 

Method: 

(1) SFRc=  

(2) foreach document d in Tc 

(3)    R=  

(4)    foreach sentence s in d 

(5)       foreach rule r in DFRc 

(6)          if (r⊆s)  

(7)             R=R {r}, SFRc=SFRc {r} 

(8)    foreach rule r in SFRc  

(9)       if (r∈R) r.count ++ 

(10)foreach rule r in SFRc 

(11)   if (r.count < minSupNum) SFRc = SFRc –{r} 

(12)return SFRc 

Fig. 1. The local pruning algorithm 
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frequent rule by the sentence-level constraint without or only little loss of useful 
information for categorization. 

Before presenting our methods, let us introduce the following definitions: 

Definition 1: Given a document-level frequent rule r with an antecedent (i1, i2…im) 
and a document d, if (i1, i2…im) occurs in at least one same sentence of d (the order can 
be neglected), we say r satisfies sentence-level constraint and call it a valid appearance 
of r.  

Definition 2: If the valid appearances of r in different documents of a separate training 
text collection meet a user-specified sentence-level minimum support, then the rule r is 
a sentence-level frequent rule (SFR). 

This pruning procedure is also performed category by category. Valid appearances 
of document-level frequent rules of category C are counted using training examples of 
their own category, and rules whose valid appearances are lower than the 
sentence-level minimum support are pruned. The details of this local pruning algorithm 
are described in Figure 1. 

After the pruning phase, the number of rules is greatly reduced while the remaining 
rules become more meaningful from semantic perspective. This is clear because: 
firstly, the length of a document is often much larger than that of a sentence, and thus 
it’s more likely for a rule to become document frequent than to become sentence 
frequent; secondly, the words included in the same sentence are semantically closer 
than those in same document. 

3.2   Global Selection Phase 

Though we introduce sentence-level constraint into pruning procedure in last section, 
we only evaluate rules by their valid appearance frequency. The accuracy of a rule has 
not been examined. To follow the convention in most association rule algorithms, we 
use the name confidence as a replacement of accuracy.  

Given a set of training set D and a category C, let r be a sentence-level frequent rule 
of C, the confidence for r is defined as follows: 

Definition 3: let Dr={d| r ⊆ s, s ⊆ d ,d D} and Drc={ d | r ⊆ s, s ⊆ d, d D and d is 
labeled as C }, then the confidence of r, r.conf, is defined as: r.conf = |Drc|/| Dr | 

To calculate the confidence, we must merge all training examples from all categories 
together. In our implementation, we employ a global prefix tree to save valid 
appearance information of rules in different classes. Please note that the global tree is 
only used for efficient calculation in this step. Rules of each category are actually 
stored in a local prefix tree. Rules having a confidence lower than the sentence-level 
minimum confidence are removed since they often make wrong decisions.  

The confidence measure represents the proportion of examples on which the rule is 
correct. It does not concern how the matching examples distribute in different classes. 
Entropy is a commonly used metric in information theory. It can measure homogeneity 
of examples the rule covers. 

Suppose S is a collection of examples covering rule r. Negative Entropy is defined as 
follows: 
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Definition 4:   Negative Entropy (S) =
c

i
ii PP 2log  .                                          (1) 

In (1), Pi is the proportion of S belonging to category i.  
Since each Pi has been collected in the global prefix tree, the calculation of negative 

entropy has little extra overhead.  

Algorithm: Global rule selection  

Input: a set of sentence-level frequent rules of category 
c, SFRC; a set of training documents, D; a user-specified 
sentence-level minimum confidence, minSentConf; a tuning 
factor,  ; a coverage threshold,  

Output: the classifier of category c, Cc 

Method: 

(1) Calculate confidence and negative entropy of each rule 
r in SFRC 

(2) foreach rule r in SFRC 

(3)    if(r.conf <= minSentConf) SFRC = SFRC–{r} 

(4) Cc = , TrainSize = |D| 

(5) sort SFRC according to their negative entropy in 
descending order 

(6) while(SFRC ≠  and |D|>= * TrainSize) 

(7)    set topEntropy and bottEntropy as the negative entropy 
of the first and last rule of SFRC  

(8)    tunevalue=  * ( topEntropy - bottEntropy) 

(9)    R =  

(10)   foreach rule r in SFRC 

(11)      if(r.negentropy >= topEntropy – tunevalue) 

(12)         R = R  {r} 

(13)      else break  

(14)   set rm as the rule having maximum coverage in R 

(15)   Cc = Cc  {rm}, SFRC = SFRC–{rm}, D = D –rm.coverdoc 

(16)   foreach rule r in SFRC 

(17)      r.coverdoc = r.coverdoc - rm.coverdoc 

(18)      if(r.coverdoc = ) SFRC = SFRC– {r} 

(19)return Cc       

Fig. 2. The global rule selection algorithm 
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We adopt sequential covering technology to select rules. The following principle 
governs the global selection phase: whenever there are choices, the rule having the 
highest negative entropy is of the first preference. Every time the “best” rule is selected, 
the examples covered by this rule are removed from current instances space. The 
process iterates until no more rules selected or a small number of examples uncovered.  

A serious consideration is that when selecting the “best” rule, we check several rules 
with similar entropy simultaneously and chooses the rule having the highest coverage. 
Such a heuristic makes the search space shrink rapidly and avoids the overfitting 
problem caused by small disjunctions. We control the selection scope of rules with a 
parameter called tuning factor. On the other hand, since the rules with small database 
coverage are always noisy rules, we stop the covering procedure when the uncovered 
database space shrinks to a particular small range. A parameter called coverage 
threshold is introduced for this purpose. The details of this global selection procedure 
are shown in Figure 2.  

In the algorithm, line 1 calculates the confidence and negative entropy of each rule r 
in original rule set. Line 2~3 remove the rules not satisfying the minimum confidence 
threshold. Line 4 initializes a container for selected rules. Line 5 sorts the rules by their 
negative entropy value. Line 6~18 describe the process of selecting rules. Line 7~13 
chooses several rules which will compete for being selected. Line 14 finds the rule 
having the maximum coverage among the chosen rule set. Line 15 pushes the selected 
rule into the container and updates some variables. Line 16~18 update the covering 
document list of each rule and remove the rules which cover no document.  

4   Predicting a New Document 

The first issue that should be considered in prediction is whether to use multiple rules or 
not. We believe that a decision made by multiple rules is more reliable. So multiple 
rules work together to predict a test document in our method. 

When predicting a new data, all current methods such as CBA, CMAR, ARC-BC 
did not involve how many times a rule matching the new data. We note that such an 
approach is no longer appropriate in text categorization since the multiple occurrences 
of words often imply that these words are actually the center of discussion. Just try to 
find the number of phrases “association rule” and “text classification” in this paper! So 
we think the number of a rule satisfying the test data should contribute to the 
classification procedure. Furthermore, because the rules have been filtered by a 
sentence-level constraint in our pruning phase, each sentence in test document should 
be treated as a matching unit.  

To conform to the ideas introduced previously, we first split an unlabeled document 
into several sentences just as we do in the training phase. Each sentence is viewed as a 
transaction. Given a test document d={S1, S2, … , Sk} and the classifier of category m, 
Cm ={R1, R2, …, Rn}, for each sentence Si of d, if there exists a rule Rj (Rj Cm) which 
satisfies Rj ⊆ Si, we say that Si matches rule Rj. The matching score increases by the 
confidence of Rj when Si matching rule Rj. If the total matching score of the category m 
is higher than a classification minimum support, d will be labeled with category m. 
Figure 3 illustrates the classification algorithm. 
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Algorithm: justifying whether a document should be labeled 
with a category 

Input: a document, d; a category, c, and its classifier Cc; 
a user-specified classification minimum support, clsminsup 

Output: Yes/No 

Method: 

(1) supScore = 0, SenNum = |d| 

(2) foreach transaction s in d 

(3)    foreach rule r in Cc 

(4)       if(r⊆s) 

(5)          supScore = supScore + r.conf 

(6) if(supScore/SenNum < clsminsup) 

(7)    return No 

(8) else 

(9)    return Yes 

Fig. 3. Labeling a new data algorithm 

In the algorithm, line 1 initiates some variables, line 2~5 count the number of 
sentences which match the rules in C and increase the supScore. Line 6~9 make 
decision.  

5   Experimental Results and Performance Study 

Our experiment evaluations were done on the well-known Retuers-21578 dataset[12]. 
The ten most popular categories are selected for our evaluation. We also followed the 
ModApte split in which about 75% of the articles were used to build classifiers and the 
rest to test the accuracy of the classifiers. A stopword removal and term filtering 
procedure according to a given list of stopwords and the TF/IDF value of a term was 
done when generating document-level frequent rules.  

The measures used in our experiment are BEP, micro-BEP and macro-BEP. The 
BEP (breakeven point) is the point at which precision equals recall. All these measures 
are obtained as reported in [5]. 

5.1   Parameter Settings  

All the important parameters used in our classification method are summarized as 
follows: 

• minSentSup: sentence-level minimum support (see section 3.2), which is used for 
mining sentence-level frequent rule. Typical values of minSentSup are around 10% ~ 
15%. 
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• minSentConf: sentence-level minimum confidence (see section 3.3).Typical values 
of minSentSup are around 75% ~ 85%.  

• σ : tuning factor (see section 3.3). Typical values of tuning factor are around 
20%~30%.  

• λ : coverage threshold (see section 3.3). Typical values of coverage threshold are 
around 5%~10%. 

• clsminsup: classification minimum support (see section 4). Typical values of 
clsminsup are around 10%~15%. 

Among these parameters, minSentSup seems to be the most crucial one and 
clsminsup the second and the others the third. This is because minSentSup limits the 
number of sentence-level frequent rules, which lay the foundation of the subsequent 
selection phase, and clsminsup directly decides whether a document belongs to a 
category or not.  

5.2   Experimental Results 

We first show the impacts of minSentSup. Figure 4 shows how the number of SFRs 
reduces with the increase of minSentSup. Number 3547 and number 50937 of DFRs in 
Fig.4 are gotten by setting document-level minimum supports 5% and 10% 
respectively. 
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Fig. 4. Effect of minSentSup on | SFRs|         Fig. 5. Effect of minSentSup on BEPs 

It is clear from Fig.4 that sentence-level constraint greatly prunes DFRs, and when 
minSentSup is set above a certain point (about 10%), the numbers of SFRs tend to be 
identical. Figure 5 shows how minSentSup impacts classification result. If we set 
minSentSup too low, we will find many useless rules; if we set it too high, we may miss 
important rules. Both these two settings have bad effects on the quality of the end 
classifier, as is illustrated in Fig 5. Other parameter settings in Fig.5 are: 
minSentConf=76%, σ =25%, λ =7%, clsminsup =13%. 

In Table 1, we use the current best result of our 2-PS method to compare with other 
well-known methods. The results for the other classification systems are obtained from 
[5]. The parameter settings (minSentSup=14%, minSentConf=76%, σ =25%, λ =7%, 
clsminsup=13%) result in the best classification presented in Table 1. The comparison 
shows that our system outperforms all the other algorithms except SVM. While 
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compared to SVM and most of the other classifiers, our system can achieve much higher 
efficiency and higher scalability to deal with a large amount of documents. Our 
algorithm is a little slower than ARC-BC because we set a lower support threshold when 
mining DFRs (document-level minimum support 5% compared with 10% in ARC-BC), 
it also because our method need scan each sentence of each document while ARC-BC 
only need scan the bag of words. 

In our experiments, our method is coded in a few thousand lines of C++, and it is run 
on a PentiumIV 1.7 GHz processor PC running Windows2000. Table 2 reports time and 
memory needed for training and testing all the ten categories. The time includes I/O 
time. 

Table 1. BEPs on 10 largest Reuters categories 

Category 2-PS ARC- 
BC 

Bayes Rocchio C4.5 k-NN Bigrams SVM 
(poly) 

SVM 
(rbf) 

acq 85.2 89.9 91.5 92.1 85.3 92.0 73.2 94.5 95.2 
corn 89.9 82.3 47.3 62.2 87.7 77.9 60.1 85.4 85.2 
crude 79.4 77.0 81.0 81.5 75.5 85.7 79.6 87.7 88.7 
earn 96.4 89.2 95.9 96.1 96.1 97.3 83.7 98.3 98.4 
grain 92.1 72.1 72.5 79.5 89.1 82.2 78.2 91.6 91.8 

interest 62.6 70.1 58.0 72.5 49.1 74.0 69.6 70.0 75.4 
money-fx 77.1 72.4 62.9 67.6 69.4 78.2 64.2 73.1 75.4 

ship 79.9 73.2 78.7 83.1 80.9 79.2 69.2 85.1 86.6 
trade 78.1 69.7 50.0 77.4 59.2 77.4 51.9 75.1 77.3 
wheat 87.3 86.5 60.6 79.4 85.5 76.6 69.9 84.5 85.7 

micro-avg 86.6 81.8 72.0 79.9 79.4 82.3 73.3 85.4 86.3 
macro-avg 82.27 78.24 65.21 79.14 77.78 82.05 67.07 84.58 86.01 

Table 2. Performance of 2-PS 

Training Testing minSentSup 
time memory time memory 

5% 38s 41.4M 11s 1.3M 
8% 37s 41.2M 11s 1.3M 

10% 36s 39.9M 11s 1.3M 
15% 35s 39.0M 10s 1.3M 
20% 35s 38.4M 10s 1.3M 
22% 35s 38.2M 10s 1.3M 

6   Conclusions 

This paper proposes a novel 2-phase based method for associative text classification. 
The local pruning phase greatly reduces the number of association rules while keep the 
rules more semantically related and less redundant, and it also makes the following 
phase more efficient. The global selection phase selects the rules having largest 
differentiating ability by merging all examples from different categories. When 
classifying a new document, the times that a single rule matches the sentences in the 
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new document are under consideration in our method. The experimental results 
demonstrate that our approach can get better accuracy and performance than many 
other methods. 
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Intrusion Detection via Analysis and
Modelling of User Commands

Matthew Gebski and Raymond K. Wong

National ICT Australia and School of Computer Science & Engineering,
University of New South Wales, Sydney, NSW 2052, Australia

Abstract. Since computers have become a mainstay of everyday life,
techniques and methods for detecting intrusions as well as protecting
systems and data from unwanted parties have received significant atten-
tion recently. We focus on detecting improper use of computer systems
through the analysis of user command data. Our approach looks at the
structure of the commands used and generates a model which can be
used to test new commands. This is accompanied by an analysis of the
performance of the proposed approach. Although we focus on commands,
the techniques presented in this paper can be extended to allow analysis
of other data, such as system calls.

1 Introduction

There has been a flurry of activity recently in the area of intrusion detection.
Viruses, hackers, malware and resource misappropriation are major issues that
corporations of all sizes and end users face on a daily basis. Historically, in order
to detect problems of this nature, system administrators and network analysts
have been required to spend many hours poring over system logs and reports.
In the last decade, there has been a considerable amount of attention placed on
matching signatures of intrusion attempts. Following this, researchers have been
examining more general ways to detect intrusions of a type not previously seen
by the IDS.

In this paper, we concentrate on the problem of identifying inappropriate
use of a user’s account. The inappropriate usage may be a result of a number of
causes included, but not limited to a malicious person:

– Using that user’s terminal/workstation without permission
– Having gained access to a user’s password
– Gaining access through security vulnerability and masquerading as a trusted

user

Our aim is to mitigate risks that may be posed by such a malicious user.
We are interested in analyzing the commands that user’s execute to determine
the likelihood of a given new command being issued by the ’true’ user or by an
intruder. This is done by examining both the content and ordering of the issued
commands. In a similar fashion to other approaches, we attempt to create a

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2005, LNCS 3589, pp. 388–397, 2005.
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model of each user’s actions, however, we use a tree based model over a clustering
or IBL technique to better use sequence information.

The remainder of this paper is outlined as follows, we begin by providing an
overview of the approaches that have been used for intrusion detection in general
with particular emphasis on approaches that analyze user command data as well
as a summary of our contributions. This is followed by our proposed approach.
In Section 5, we examine our approach experimentally in addition to providing a
complexity analysis and discussion. Finally, we conclude with a look at possible
future work.

2 Related Work

Several influential approaches are relevant to our observation of intrusion de-
tection systems. Many approaches emphasize detecting signatures indicative of
impending or former intrusions, while more recent approaches are based on data
mining techniques. We first consider some of the standard IDS techniques for
dealing with network traffic. This is followed by an overview of user log based
approaches.

General IDS. Existing IDS have been aimed at detecting aberrent network
traffic with a combination of ’raw’ metrics such as amount of data transferred
and ’application’ metrics such as number of failed login attempts. Typically,
these systems have been based on pattern matching, [6], [1], [2] . Lately, other
approaches have arisen such as using artificial neural networks (ANNs) [11].
Other approaches include using association rule techniques, [9], episode rules [5]
and root cause analysis [4].

User Log IDS. In comparison to dealing with network data, detecting intru-
sions via user logs is particularly interesting due to the difficulty in obtaining
real world examples of attacks. Moreover, it is difficult to create signature based
approaches due to the practically limitless number of command combinations
that may arise. There have been two main projects that have examined user
based intrusion detection. Firstly, Lane and Brodley’s instance based learning
(IBL) approach, [8] [7], creates profiles for users based on the similarity between
the user’s history. Due to the number of possible commands that could be en-
tered and the lack of labeled data, other IBL techniques such as nearest neighbor
which have previously been shown to perform well (some of the best performing
approaches in the intrusion detection KDD Cup from 1998 were based on the
1 nearest neighbor approach) were unsuitable for this task. The similarity be-
tween two sequences is defined as the number of slots that match between two
sequences. Comparisons are then made between the previous sequence structure
from the user and a sequence to be tested. If the difference between the two
is greater than a pre-determined threshold, the test sequence is classified as a
potential intrusion.

The ADMIT system by Sequeira and Zaki [12] manages a profile for each
user of the system, with each profile being comprised of a set of clusters that are
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designed to characterize a user’s habits. The distance between two sequences of
commands is based on a sub-sequence matching function such as Longest Com-
mon Subsequence (LCS) or Match Count Polynomial Bound (counts the number
of slots in which the two sequences are identical). Clusters are then refined based
on a threshold value. Unfortunately, there is no clear way to determine this value
with experimentation being the suggested method.

Tests for intrusion are performed by locating the closest cluster for a given
test sequence and a comparison is made between previous sequences and the
test sequence. If the rating for the audit sequence is below a threshold (separate
from the cluster refinement threshold), the test sequence is marked as possible
intrusion.

Other application level approaches include monitoring various system metrics
[13] and re-authentication techniques [10]. In addition to intrusion detection from
user commands, there has also been some preliminary work into systems for
generating attacks given that the algorithm for the IDS is known - intuitively, if
an intruder mimics typical user behavior, it will be difficult to detect [15].

3 Data Model

For the remainder of the paper, we assume the commands being considered have
been entered into a Unix terminal. However, there is no reason that our model can
not be generalized to other systems. A user has multiple command sessions, each
containing a number of commands entered into a computer system. We model the
user as a list of sessions, each session containing a list of commands. Currently, we
only scrutinize the commands that are directly entered and do not consider com-
mands that may be run as a secondary component of another process. If a program
ρ requires a directory listing as part of its execution, reads from a file in that di-
rectory and finally writes to the file, we only consider the initial execution of ρ.
As part of our preprocessing measures, we clean the logs, this ensures consistency
with other approaches and helps ensure the privacy of users. The first file name
to be mentioned in a session is replaced by <1>, the second with <2> and so on.
This means that there is no way to compare the usage of a file between sessions,
file <1> in one session may be <6> in the subsequent session.

The database of logs being considered, D, is composed of a number of users,
U0, U1 · · ·Un. Each user is composed of a sequence of sessions US1 , US2 , US3 · · ·
USj . In turn, each session, Sj contains a sequence of commands SjCk

. Unless
otherwise noted, we will only be considering one session at a time. Additionally,
when appropriate, we will simply refer to C1, C2 · · ·Ck when there is no ambi-
guity as to which session the commands belong to. We will use Ck < Ck+1 to
represent Ck occurring before Ck+1. We define the distance between two com-
mands, Cx and Cy as δ(Cx, Cy) = 1 + |{Cj |Cx < Cj < Cy}| - conceptually,
this is the number of commands that have between entered between Cx and Cy .
Finally, for two commands SiCj and SxCy from sequences Si and Sx are equal
if their values are the same and is denoted as SiCj = SxCy . An example of this
would be if both had the value g++.
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After processing, we build a profile ρU that allows us to test if a specific
sequence of test commands, Q, have been created by the same user modelled by
ρU , or some (presumably hostile) third party.

4 Our Approach

We have the following desiderata: First and foremost, we would like to be able to
compare two different sessions, SX and SY against the profile model for a user,
ρUi , and determine which of these is most likely to have been drawn from the
same distribution as the one used to create ρUi . Secondly, our approach must be
robust in terms of its ability to handle unseen commands - in general, we do not
wish for the system to raise an alarm every time a user decides to run a program
that they have never previously run. Finally, it would be ideal for our system to
handle online queries, and as such we wish for the scalability and faithfulness of
the model to facilitate such operations.

Let us consider the following hypothetical sequence of events recorded for
hypothetical user U :

1. C1 - U examines the contents of the current directory : ls -la .
2. C2 - U opens a file f : vi f
3. C3 - U then compiles f : g++ f

Intuitively, we would be surprised if any of these actions were independent of
each other, in fact for the remainder of this paper, our work will be based on
the assumption that they are dependent.

This motivates us to look for a way to model how each command is affected
by prior commands. Returning to our example, we wish to typify that C1 affects
both C2 and C3 and that C2 affects C3. We choose to represent the commands
as a tree; representing the commands as a tree allows us to say that commands
further down the tree are dependent on those further up the tree (with limita-
tions which we will discuss later). Each node of the tree represents a command,
while the weights of the edges between nodes represent probabilities between
these commands. Figure 1 shows the tree, without weights (for clarity), for the
aforementioned example, ls -la .; vi f ; g++ f . The input to the tree building
algorithm is a user U and the output is a profile ρU in the form of a tree Tu.

We can choose the suffix tree data structure as to represent the commands.
Instead of treating each word of a document as a collection of tokens (characters),
we treat each session as a collection of command tokens. This allows our tree to
be constructed in O(n) time using Ukkonen’s construction algorithm [14].

4.1 Scoring Unseen Command Sequences from Profiles

Given that we have a tree, T , representing the history of commands, we now
consider how a unseen command sequence, Q, could be matched against T in
order to determine if the same user was responsible for the commands that lead
to both T and Q. Unlike the construction procedure for T , we do not build a
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(a) A sample user command tree (b) The dotted region represents a
query

Fig. 1. A sample user command tree and query being executed

tree for Q and Q is simply the list of commands. The following cases may arise
when matching Q to T :

1. Q exactly matches a path from the root to a leaf in T . This will happen when
we have seen the sequence of commands in Q as a sequence or subsequence
at one stage in one of the sessions processed when constructing T . This is
the most straightfoward case to handle as we can directly compute the score
of Q from the path in T .

2. Given a command QCi and QCi+1 that directly follows QCi in Q, there is no
corresponding sequence in T , but there a Tx such that Tx = QCi and a Ty

such that Ty = QCi+1 and Tx < Ty. An example of this would be T being
formed by vi; ls; g++ and Q being vi; g++.

3. The opposite of the previous case in which we have a QCi and QCj such that
Ci < Cj and QCi = TCx and QCj = TCx+1.

4. None of the entire sequence Q0 to Qn matching T . While in many real world
scenarios, we would not expect this case to occur frequently, we should not
be surprised to see this case arise when a user begins a new project or starts
using a new program.

Given a query Q and profile ρ based on the command tree T , we first calculate
the paths in T that are relevant to Q. A path, Tp, is considered relevant if any
of the first three cases are satisfied. The query is then divided into pairs, which
are matched against the tree. The score for an individual path in Tp against a
pair Qx, Qy from Q is:

Score(Tp, Qx, Qy) = λ ∗ |δ(Tp[1], Tp[last]) − δ(Qx, Qy)|
The total score for the unseen sequence Q with the set of paths P = {Tp|Tp

is relevant to Q } is calculated as:

RQ =
1(
n
2

) n∑
x=1

n∑
y=x+1

|P |∑
i=1

Score(P [i], Qx, Qy) ∗ αP [i]

|P |
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Algorithm 1 Matches query Q against history tree T

Match sequence (T , Q)
1: pairs = gen pairs(Q)
2: scores = List()
3: tc = 0
4: for (Qx, Qy) ∈ pairs do
5: if T.contains path(Qx, Qy) then
6: P = T.get paths(Qx, Qy)
7: res = CalcPathScore(Qx, Qy, P )
8: tc = tc + res.pc
9: scores.append(res)

10: else
11: scores.append(Tnew, 1)
12: tc = tc + 1
13: return AggregateScores(scores, tc)

Algorithm 2 Calculates the score and count for a path
CalcPathScore (Qx, Qy, P ) pc = 0
1: for p ∈ P do
2: val = Score(p,Qx, Qy)
3: pc = pc + p.count
4: return (val, pc)

λ is a damping function that is used to control the rate at which older com-
mands influence the probability of newer commands. There are a number of
functions that are potentially suitable as damping functions for the weights of
the edges. 1

x2 in many cases is too harsh, with command Ci being effectively un-
affected by Cj after approximately j − i > 3 which often leads to inconsistencies
with our model. Conversely, 1

x provides a reasonable drop off, allowing com-
mands as late as Ci+10 to contribute, but ’encouraging’ the earlier commands
Ci+1, Ci+2, Ci+3, to dominate.

In situations where no paths are considered relevant, we use a default constant
Tnew which is the probability of seeing a command that has not been previously
seen - in practice, we simply divide the number of different command tokens that
exist by the total number of commands seen. It is essential to have this value to
ensure that new commands are not automatically flagged as intrusion attempts.

When calculating the final score during the sequence matching process, we
moderate each of the weights by the number of times that the path has observed
as a percentage of the total number of paths that are relevant to the given query.
That is, for the set of matching paths S, and a given set of paths p we refer to
αp = pcount∑ {pcount:p∈S} as the contribution of p.

Given a score for a query, we are then able to decide if the query is likely to
be an intrusion. Similar to both Sequeira and Zaki [12] and Lane and Brodley
[8], we use a threshold value to decide if a query should be flagged. The threshold
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Algorithm 3 Aggregates the calculated scores
AggregateScores (scores, totalcount)
1: sum = 0
2: for s ∈ scores do
3: sum = sum + (s.val ∗ s.pc)
4: res = sum/totalcount
5: return res

can be initially determined by examining a number of valid sessions and setting
the threshold such that these sessions would not trigger an alarm. This can
be performed using the same training data used for construction of the tree,
or alternately, witholding a portion of the training data solely for threshold
determinination.

4.2 Allowing Decay

Let us consider a user writing a research paper on IDS. Many of the commands
during a session may be related to development such as vi; g++; gdb, or to writ-
ing the paper, vi, latex, bibtex. Following this period, the user may begin using
other commands unrelated to either development or paper writing. Accounting
for such concept drift is important for the IDS to perform correctly. Given the
current ’time’ t and an age of a path p, we define the age of p, Age(p) = (p.t− t).
We redefine the contribution of a set of commands as: α′

p = αp∗Age(p)−d Where
d is the age damping function. Alternately, we could use the decay system pro-
posed by Sequeira and Zaki: βj = βj−1

βj−1+1−log( z
y+j ) , 1 − log( z

y+j ) > 0

5 Experimental Evaluation and Analysis

Experimental Set Up. For our experiments, we use the Purdue Unix User
Data (available from [3] set previously used by Lange and Brodley as well as
Sequeria and Zaki. This contains nine usage session histories from eight users
with one user providing two sets (this user was using two different platforms
for separate work on two projects). We set out to measure the ability of our
approach to take sessions and classify them as intrusions or normal cases.

For testing intrusions, we draw sessions from all users and compare them
against all users except the one from which the test sequence was selected. That
is, we test a command sequence from USER1 against all users except USER1.
Additionally, we test the ability of a user’s classifier to determine if sessions from
that user are intrusions.

Accuracy Results. We begin by looking at an example in which we have
constructed each user’s profile from one hundred sessions from that user. Each
user is then tested against the hundred sessions from USER6. The results of
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(a) USER6 data classified by all models (b) Histogram for USER3 for classification
of USER6 data

Fig. 2. Classification against USER6 sessions

(a) Effect of varying training size (b) Effect of choosing different values of λ

Fig. 3. Effect of modifying training size and λ

this test can be seen in Figure 2a - black dots indicate the score a user received
against a test from USER6, while white dots indicate the score that USER6
received for the tests against itself. We can see that there is a clear difference
in the scores for USER6 compared to the other seven users. The histogram in
Figure 2b, shows distribution of USER3, as we can see for a large number of
cases (approximately 80%), USER3 scored very close to 0 and almost all cases
had a score lower than 0.1.

Effect of Varying Training Size. The amount of audit data used for training
is an important factor in assessing the efficacy of our approach. Models were
constructed from samples of one hundred sessions and upwards. No decay func-
tion was used for these experiments. Self Accept refers to the model accepting a
session that was used as part of the construction process, Self Reject refers to the
model accepting a session that it shouldn’t. Conversely, Other Reject refers to
a model correctly classifying an intrusion, while Other Accept refers to a model
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incorrectly classifying an intrusion as benign. Figure 3a, shows that as training
size increases, there is a minimal change in quality in terms of Self results, overall
we receive under 10% false positives. However, it is interesting to note that the
performance in terms of intrusions classifications begins to decline as the number
of sessions increases. This is a result of the increase in the number of tokens that
occur - we can alleviate this problem by being decaying older sessions. We still
classify slightly 85-88% of sessions correctly.

Effect of Damping Function. Experiments were performed with various
damping functions, 1/x and 1/x2 . As seen in Figure 3b, 1/x provides much
better performance for Self Accepts and Self Rejects, while 1/x2 increases the
quality of the Other test cases.

Analysis of Misclassified Points. It is important for us to examine which
types of queries are typically misclassified by our technique. In terms of cases
being wrongfully labelled as not being intrusions, this occurs from similar usage
habits. For example, the right most point in Figure 2 for USER7 represents a
sequence similar to a sequence that we would expect from USER6.

6 Discussion

Compared to Sequeira and Zaki who reported approximately 80% intrusion de-
tection and 15% false positives, and Lane and Brodley who reported approxi-
mately 74% and 28% respectively, our results are very promising. Our approach
provided better coverage for existing intrusions, approximately 85% while at the
same time, providing under 10% false positives. For the most part, the intrusion
queries we missed were due to sessions that were due to sessions using only very
common tokons such as cd, ls, etc.

Naturally, we would expect a tool of this sort to be implemented at the
kernel level in practice. This avoids problems with users using other programs or
scripts with malign intentions. Additionally, this provides a mechanism to lock
out or provide a secondary challenge, such as another password, to an intruder
in real time allowing mitigation to be performed preemptively before any serious
damage actually occurs.

7 Conclusions and Future Work

In this paper, we have presented a new approach for construction of a tree based
model for intrusion detection analysis of user command histories. This model is
intuitive and based on the probabilities of a command being affected by prior
commands. The tree based model presented here makes use of the sequential
structure of the data to better facilitate analysis. Our preliminary experimental
evaluation has demonstrated that our technique is competitive with cluster based
approaches, but without the need for the number of clusters to be known a priori.

Our future work concentrates on better understanding the relationships be-
tween the relative age of commands and their relevance to each other. We hope
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this will allow us to construct more accurate models that can more faithfully
represent the implicit structure of command histories. Additionally, we aim to
make our approach more robust in terms of masqueraders with access to earlier
portions of the command logs to reduce masking of inappropriate use.
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Abstract. This paper introduces a framework for relational schema
navigation via a Web-based browser application that uses Formal Con-
cept Analysis as the metaphor for analysis and interaction. Formal Con-
cept Analysis is a rich framework for data analysis based on applied lat-
tice and order theory. The application we develop, D-SIFT, is intended
to provide users untrained in Formal Concept Analysis with practical
and intuitive access to the core functionality of Formal Concept Anal-
ysis for the purpose of exploring relational database schema. D-SIFT
is a Web-based information systems architecture that supports natural
search processes over a preexisting database schema and its content.

1 Introduction

This paper presents a new application framework for relational schema nav-
igation using Formal Concept Analysis (FCA). The idea behind the frame-
work is the simplification of existing application development frameworks for
FCA, in particular the way humans process standard searches in FCA. The
software prototype – called D-SIFT (Dynamic Simple Intuitive FCA Tool)
– consolidates various features that have been introduced by other applica-
tions [6,1] but is a more general framework. D-SIFT allows users to define
query elements based on database schema and contents, using one of two query
modalities, to visualise structures in the data as a concept lattice. The inter-
face allows dynamic creation of lattice diagrams and allows the user to add
and remove attributes from the displayed concept lattice according to pref-
erence. D-SIFT implements the classical features of FCA software with so-
called mandatory attributes. The user is able to restrict the displayed object
set by the selection of mandatory attributes. The resulting concept lattice is
limited to objects which share these attributes. This process closely resem-
bles iterative search in information retrieval, where the user starts from one
or two keywords and progressively refines the result set by the addition of fur-
ther (or different) keywords. Further, D-SIFT is more easily accessible as a
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platform than existing FCA frameworks. The required plug-ins used are pro-
vided in standard configurations of most Web browsers, and the underlying
database complies with the CSV file format (text files with comma-separated
entries).

2 Formal Concept Analysis Background

Formal Concept Analysis [5] has a long history as a technique of data analysis
that when applied conforms to the idea of Conceptual Knowledge Processing.
Data is organized as a table and is modeled mathematically as a many-valued
context, (G, M, W, Iw) where G is a set of objects, M is a set of attributes, W is
a set of attribute values and Iw is a relation between G, M , and W such that if
(g, m, w1) ∈ Iw and (g, m, w2) ∈ Iw then w1 = w2. In the table there is one row
for each object, one column for each attribute, and each cell is either empty or
asserts an attribute value.

Organization over the data is achieved via conceptual scales. A conceptual
scale maps attribute values to new attributes and is represented by a mathemat-
ical entity called a formal context. A formal context is a triple (G, M, I) where
G is a set of objects, M is a set of attributes, and I is a binary relation between
the objects and the attributes, i.e. I ⊆ G × M . A conceptual scale is defined
for a particular attribute of the many-valued context: if Sm = (Gm, Mm, Im) is
a conceptual scale of m ∈ M then we define Wm = {w ∈ W |∃(g, m, w) ∈ Iw}
and require that Wm ⊆ Gm. The conceptual scale can be used to produce a
summary of data in the many-valued context as a derived context. The context
derived by Sm = (Gm, Mm, Im) w.r.t. to plain scaling from data stored in the
many-valued context (G, M, W, Iw) is the context (G, Mm, Jm) where for g ∈ G
and n ∈ Mm

gJmn ⇔: ∃w ∈ W : (g, m, w) ∈ Iw and (w, n) ∈ Im

Scales for two or more attributes can be combined in a derived context. Consider
a set of scales, Sm, where each m ∈ M gives rise to a different scale. The new
attributes supplied by each scale can be combined:

N :=
⋃

m∈M

Mm × {m}

Then the formal context derived from combining these scales is:

gJ(m, n) ⇔: ∃w ∈ W : (g, m, w) ∈ Iw and (w, n) ∈ Im

Several general purpose scales exist such as ordinal and nominal scales. A
nominal scale defines one formal attribute for each value that a many valued
attribute can take. An ordinal scale can be used on a many-valued attribute
for which there is a natural ordering, for example, size<=20, size<=40 and so
on. The derived context is then displayed to the user as a lattice of concepts.
A concept of a formal context (G, M, I) is a pair (A, B) where A ⊆ G, B ⊆



400 J. Ducrou, B. Wormuth, and P. Eklund

M , A = {g ∈ G | ∀m ∈ B : (g, m) ∈ I} and B = {m ∈ M | ∀g ∈
A : (g, m) ∈ I}. For a concept (A, B), A is called the extent and is the set
of all objects that have all of the attributes in B, similarly, B is called the
intent and is the set of all attributes possessed in common by all the objects
in A. As the number of attributes in B increases, the concept becomes more
specific, i.e. a specialization ordering is defined over the concepts of a formal
context by: (A1, B1) ≤ (A2, B2) :⇔ B2 ⊆ B1 In this representation more specific
concepts have larger intents and are considered “less than” (<) concepts with
smaller intents. The analog is achieved by considering extents, in which case,
more specific concepts have smaller extents. The partial ordering over concepts
is always a complete lattice [5]. For a given concept C = (A, B) and its set of
lower covers (A1, B1)...(An, Bn) with respect to the above < ordering the object
contingent of C is defined as A−⋃n

i=1 Ai. We shall refer to the object contingent
simply as the contingent in this paper.

3 Conceptual Information Systems from Databases

D-SIFT takes a user-supplied comma separated values database (CSV) and
provides an interface to the database as a conceptual information system. For
this reason the input format of D-SIFT closely aligns with a typical export
format from a relational database management system (RDBMS) and common
applications like Excel and OpenOffice.

The CSV format is simple, easy to read and edit. It is a common optional
output format for most modern and legacy applications and database systems.
CSV files are forced to contain only data that can be expressed as text; this
caters to the input requirements of D-SIFT. To translate the CSV database
into a Conceptual Information System, the user indicates how D-SIFT should
treat each field. This requires the user to indicate a field which is each entry’s
identifier (entity in RDBMS terms) and then group the remaining fields into
nominal or numerical scale models.

In order to extract objects with meaningful names, the user identifies the
field which provides an identifier for the database (e.g. a candidate key such as
name in a database of people). Nominal data, in FCA terms, is usually text (e.g.
names or locations in the people database), and sometimes represents boolean
values (e.g. attributes such as gender or attributes with values such as yes/no).
Numerical data is represented by numbers which, over the scope of the entire
field, have some form of ordering (e.g. a schema attribute such length in metres
with some entries longer than others).

There are instances where database attributes with numeric data should not
be scaled ordinally; for example identifiers such as social security numbers, which
may or may not be indicative of an order. D-SIFT also gives the option to drop
fields that are not of interest to the user, by tagging those fields (e.g. comment
or ID fields). Interaction with the CSV file described to this point in the text
allows D-SIFT to collect enough information to construct the context and scale
information for the Conceptual Information System.
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4 Using D-SIFT

D-SIFT intends to offer the user a flexible tool for viewing the various structures
and relationships that are present in a database. The user only needs some
understanding of the data they are viewing; enough to understand the objects
being dealt with and the meaning of attributes, and some level of ability reading
lattice diagrams. The owner of a database should know its content and user
testing has shown that users can quickly become competent at reading lattice
diagrams with little or no formal training [4].

The user constructs queries by selecting query elements of interest and as-
signing them to one of two lists; Zoom or Filter. Query elements are made up of
one or more nominally-scaled or numerically-scaled attributes. Nominally-scaled
attributes comprise attribute groups and an attribute value. Numerically-scaled
attributes comprise an attribute group, a size and an order. The size of a nu-
merically scaled attribute can be thought of as the number of intervals which
will be produced, while the order specifies the way in which the values should
be compared. The orders are of three types, Ordinal Up, Ordinal Down and In-
terordinal. Ordinal Up and Down correspond to comparisons based on ≥ and ≤
respectively. Interordinal generates both Ordinal Up and Down (see Fig. 1).

The Zoom list should be populated with query elements that are ‘required’.
The elements of the Zoom list are used to restrict the object set of the context
to only objects with elements in the list. This is a conjunctive query so if di-
chotomous elements are in the Zoom list, the object set will be empty. Query
elements in the Zoom list will always appear as attributes of the topmost concept
of the diagram. Ordinal element groups cannot be added, nor can two element
values from the same element group. The Filter list should be populated with
query elements that are ‘of interest’. The elements in the Filter list are used
to restrict the attribute set of the context. This means that only elements in
the Filter list (and any from the Zoom list) will feature in the resulting lattice.
These attributes are used to show structural relations in the database.

Using this query building paradigm of ‘required’ and ‘of interest’, the user
can perform exploratory tasks against the database. The simplest example of
which is the idea of a ‘search’ for an object that meets several criteria, or aids
in the discovery of the ‘next best’ when the exact result is unavailable. In our

Fig. 1. Concept lattices showing the different types of numeric scaling available via the
D-SIFT interface are (from left to right) Ordinal Up, Ordinal Down and Interordinal.
All are shown with a size of 3.
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Fig. 2. Diagram generated from the Phones database with mp3player:yes, games:yes
and chat:yes as Filter elements.

examples, a database concerning cellphones, we imagine a potential customer
of a new phone. The user may have a rough idea of the technical features but
no understanding which of these he really needs or wants. The case scenario
follows the user’s looking at all the features – or specifying known features.
After obtaining an overview of the data, the user can sort the features into
those that are essential and the remaining features as softer constraints on the
search. The user may have already encountered dichotomous features, but not
knowing which to eliminate may continue to use both. Step-by-step the user will
make decisions and compromises before selecting the phone with the features
that satisfy the search criteria. The last part of the search process will require
many comparisons and iterations when exploring the information landscape with
multiple dichotomous attributes.

As more Filter elements are added the complexity of the resulting lattice will
most likely increase exponentially. To counter this complexity increase, which can
make the diagram difficult to understand, elements of Filter can be promoted to
Zoom. This will decrease the object set and decrease the number of attributes
used to show structure of the data, which in turn reduces the complexity of the
lattice diagram. The advantage of having the structure as a lattice is that the user
can visualize relationships. Of these relationships it is easiest to see relations such
as mutual exclusivity and implication. Figure 2 shows a simple lattice diagram.
The user can see that mp3player:yes and chat:yes are mutually exclusive
(there are no phones with both an MP3 player and a chat function) because the
point where the concepts join (reading the diagram downwards) has an extent
size of 0. Also, it can be seen that chat:yes implies games:yes (every phone
with a chat function also has games). In a search context, where the desired
result has all query elements in the Filter list, it can be seen that there are 0
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total matches (bottom-most concept extent size is 0), but there are 7 phones
that meet 2 of the query elements (the concepts directly above the bottom-most
concept).

4.1 Case Scenario One: The Exploration Method

We now demonstrate the ideas described in the previous section with respect
to a more concrete interaction scenario. In this scenario, the user knows every
feature considered important (and desirable) in a new cellphone. In this case
scenario the user wants:

Infrared capabilities Built-in MP3 player Built-in organiser Vibration alert
Voice-dial WAP support GPRS support

The user adds all the corresponding attributes as ‘filter’ attributes. The resulting
line diagram from these filter attributes is too large for the user to make an
instant decision, but the line diagram gives an overview of the search space and
it is possible to conclude the following from it:

1. The top-most concept has a contingent of 60, therefore there are 60 phones
with none of the desired features.

2. The bottom-most concept has an empty extent, therefore there is no phone
with all desired features.

3. The attributes vibe:yes, voicedial:yes and wap:yes are most common
in this diagram1.

1 Recognizable by the fact they are darker in colour - indicating a large extent com-
pared to other concepts. This is the coloring style used in ToscanaJ [2].
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This knowledge leads the user to zoom on the three common attributes,
which would seem a good way to reduce the complexity of the data while still
maintaining the majority of the phones.

The result above shows that at least one desired feature can not be kept, and
that the selection is from 7 phones in 3 groups – each group has one of the
desired features missing.

– The Siemens SL 42, Siemens SL 45 and Siemens SL 45i do not have GPRS
Support.

– The Ericsson T65 does not have infrared capabilities.
– The Motorola Accompli 008, Nokia 6310 and Nokia 8310 do not have a

built-in MP3 player.

At this point the user could decide that infrared capability is the least desired
feature and opt for the Ericsson T65 as the phone to purchase.

4.2 Case Scenario Two: Attribute Addition Method

The user knows that two things he definitely wants in a cellphone are predictive
text and infrared capabilities. He starts the search and adds t9dict:yes and
infrared:yes as filter attributes.
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This produces the simple lattice above showing 27 phones on the bottom
concept. This means there are 27 phones with both predictive text and infrared
capabilities. The list of 27 phones is too large for the user to reach a decision
straight away so he promotes t9dict:yes and infrared:yes to zoom attributes.
The user decides that an organiser and a long stand-by time are also important
features which would influence his purchase decision, so adds the corresponding
attributes as filters on the data. When adding stand-by time – the aim being
to emphasis phones with a greater stand-by time – he configures the stand-by
attribute to be ‘Ordinal Up’ resulting in the following diagram.
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After looking at the generated lattice above, the user decides enough phones
come with an organiser to warrant adding organiser:yes as a ‘zoom’ attribute.
He realizes that a long stand-by time might come at the cost of increased phone
weight. To ensure that the phone he gets is not too heavy for his needs, he adds
weight with the order ‘Ordinal Down’ so that lighter phones are emphasized
resulting the in following diagram.

The diagram above allows the user to quickly choose an optimum weight/
stand-by time combination. It is easy to see in the above diagram that the phone
most suitable to the requirements specified is the Nokia 8310.

5 Conclusion

At this point D-SIFT can perform the basic FCA operations against data
quickly and dynamically. The final version of the user interface for the selection
of mandatory attributes (zooming) is planned to be similar to ToscanaJ where
clicking a concept selects the concept’s intent as a restriction on the objects.
This represents a minor implementation extension to the existing D-SIFT.

Furthermore, we are investigating the possibility of using the human input
coded in conceptual scales from already existing FCA-based systems to support
user search and data exploration. After parsing the standard storage documents
from legacy FCA-based systems, D-SIFT could “offer” groups of attributes.
Then the interaction starts from a given diagram, extending and changing it
using the existing dynamic creation features of D-SIFT.

D-SIFT has recently been released to the Formal Concept Analysis commu-
nity [3] where it is presented as a novel application of Formal Concept Analysis
and a new workflow for FCA-based systems. However, in this presentation, and



Dynamic Schema Navigation Using Formal Concept Analysis 407

to a data-warehousing audience, this paper emphases the combination of schema
browsing for knowledge discovery using Formal Concept Analysis.

This paper has presented the architecture of the D-SIFT browser and illus-
trates the resulting D-SIFT-systems on two case scenarios against a database
of cellular phones. The two examples demonstrate the generality of system in-
tegration outcomes from D-SIFT. The Conceptual Information Systems which
result from applying the D-SIFT architecture present a new workflow for build-
ing and interacting with Formal Concept Analysis-based information systems.
The workflow more closely aligns with dynamic schema interaction used in con-
ceptual modeling.
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Abstract. To preserve private information while providing thorough analysis is 
one of the significant issues in OLAP systems. One of the challenges in it is to 
prevent inferring the sensitive value through the more aggregated non-sensitive 
data. This paper presents a novel algorithm FMC to eliminate the inference 
problem by hiding additional data besides the sensitive information itself, and 
proves that this additional information is both necessary and sufficient. Thus, this 
approach could provide as much information as possible for users, as well as 
preserve the security. The strategy does not impact on the online performance of 
the OLAP system. Systematic analysis and experimental comparison are pro-
vided to show the effectiveness and feasibility of FMC. 

1   Introduction 

Online analytic processing (OLAP) is an important infrastructure for advanced data 
analysis and knowledge discovery. While most of the previous studies on OLAP focus 
on OLAP models, data cube and data warehouse construction, maintenance and com-
pression, as well as efficient query answering methods, it is critical to investigate the 
problem of privacy preserving in OLAP query answering. 

Example 1 (Motivation). Consider a table about the patient cases in some hospitals as 
shown in Table 1. 

Table 1. A table about the patient cases 

Hospital Disease Number of cases 

Forest Lung cancer 16 

Forest Diabetes 63 

Memorial Diabetes 87 

Memorial Heart attack 32  

 

Fig. 1. The data cubes based on Table 1 

Suppose the hospitals do not want to make the population of individual diseases 
public, but agree to share the total number of all cases in a hospital or the total number 
of a certain disease in all hospitals. That is, in the data cube based on Table 1, the value 
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of cells <f,l>, <f,d>, <m,d> and <m,h> should be hidden from users (as shown in 
Figure 1. <f, l> stands for the cell <forest, lung cancer> and so do other cells). 

A simple and direct security policy is to decline all the access to the sensitive cells. 
However, such a declining-direct-access policy is insufficient to preserve the privacy. 
Since just parts of the measure are hidden, the structure of the cube could be found out 
from the rest columns of the fact table, so the sensitive values could be revealed through 
other unprotected cells. For example, the value of <f,l> is exactly the same as that of 
<*,l>, since <*,l> only aggregates this record. Moreover, subtracting the value of <f,l> 
from that of <f,*> discloses the value of <f,d>. 

Now, the problem becomes, “Can we make up a better security policy so that the 
privacy is strictly preserved?” Moreover, we want such a policy to hide as few infor-
mation as possible. We call it the privacy preserving OLAP problem. 

In this paper, we tackle the problem by hiding a minimal set of unprotected cells 
involved in determining the value of confidential cells, so that the precondition of 
information leakage will no longer hold. For example, if we hide the cells <*,l> and 
<*,h> in Figure 1, the value of the sensitive cells <f,l>, <f,d>, <m,l> and <m,d> will 
never be obtained by only accessing the remainder unprotected cells. 

Compared to the privacy control problems in statistical database and data mining, 
there are several new challenges for the privacy preserving OLAP problem, and we 
make the following contributions. 

1) Sensitive data items can be distributed at different granularity level in OLAP. We 
propose a general model and solution that can handle this case. 

2) It is crucial for OLAP systems to provide users with as much information as 
possible while protecting the sensitive data. We prove that our algorithm only hides the 
necessary data. 

3) OLAP applications usually require short response time. We eliminate the infer-
ence before users interacting with the system, so that the algorithm would not affect the 
online performance of the OLAP system. 

The rest of the paper is organized as follows. In Section 2, we formulate the problem 
of privacy preserving OLAP. Then Section 3 provides the overview of the solution. The 
key techniques are discussed in section 4 and section 5. Extensive experimental results 
are reported in Section 6. Finally, we draw the conclusion in Section 7. 

1.1   Related Work 

Inference control methods in statistical databases are classified into two categories [1]. 
Restriction based techniques include auditing all queries [2], suppressing sensitive data 
[3] and so on. Perturbation based techniques include adding noise to source or outputs 
to affect the precision of detail data [4].  

Inference control for OLAP systems received less attention. However, Lingyu Wang 
et al. have systematically studied this problem: [1] derives sufficient conditions for 
non-compromisability in sum-only data cubes; [5] discusses the inference problem 
caused by the multi-dimensional range queries; [6] proposes a method to eliminate both 
unauthorized accesses and malicious inferences. 
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2   Problem Definition 

A data cube consists of a set of dimensions and measures with aggregate functions 
defined on it. In this paper, we mainly focus on the SUM function. Each node of the 
data cube is called a cuboid, and a tuple in the cuboid is called a cell. Two cuboids C1 
and C2 follow the partial order (i.e., C1 ≤ C2), iff on each dimension, either they share 
the same attribute, or C2 has a higher-level of attribute in the dimension hierarchy. In 
this case, we say C2 is an ancestor of C1, and C1 is a descendant of C2. C2 is a father of 
C1, and correspondingly, C1 is a son of C2, if C1≤C2, and there isn’t any cuboid C such 
that C1≤C and C≤C2.  These definitions apply to cells as well. In Example 1, cuboids 
<Hospital, Disease> ≤ <Hospital, *>, and the cells <f,l> ≤ <f,*>. 

Decided by the multi-dimensional data model, the access control in OLAP systems 
lies in cuboids and cells. We define the confidential information as a forbidden set in 
the form of {c1, …, cm}, where ci is a cell of the data cube. We assume that the for-
bidden set includes all the confidential cells and their descendants, since a confidential 
cell could also be computed by simply aggregating all its descendants. 

All the cells not included in the forbidden set compose the available set, which is 
accessible for users. For example, the available set in Example 1 includes all the cells 
except <f,l>, <f,d>, <m,d> and <m,h>. However, we have shown in Example 1 that 
some confidential information (such as <f,l> and <f,d>) could be obtained by com-
bining the cells in the available set. We define the available set as well as all the in-
formation derived from it as the available set closure.  

Definition 1 [Available Set Closure]. Given an available set A, the Available Set 
Closure C(A) is defined as: 

1. If cell c∈A, c∈C(A); 
2. If cell c∈C(A), k× c∈C(A), k is a real number; 
3. If cells c1,c2∈C(A), c1+c2∈C(A); 

When the available set closure and the forbidden set have intersections, inference 
occurs. In this case, we also say that the forbidden set is compromised. The cells in the 
available set that cause the inference are called the source of the inference.  

Definition 2 [Compromisability]. Given a data cube L and a forbidden set F in L, F is 
compromised when C(L- F)∩F≠∅. 

To prevent the compromisability, we hide some cells in the source, so that all the 
sensitive cells couldn’t be computed through the incomplete source. However, the 
hidden cells may also be inferred by higher granular cells, therefore, more cells should 
be hidden to protect them. Finally we could find a set of cells in addition to the for-
bidden set, and any cell outside them would not cause inference to the cells inside. 

Definition 3 [Minimal Cover (MC)]. Given a data cube L and a Forbidden Set F in L, 
a set S is defined as the Minimal Cover of F (represented as MC(F)) if:  

1. S⊆L-F; 
2. C(L-F-S)∩(F+S)=∅.  
3. ∀S’⊂S, C(L-F-S’)∩(F+S’)≠∅ 
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The minimal cover is a subset of the available set, and the second condition requires 
that after hiding the minimal cover, the remainder cells would not cause inference to 
both the minimal cover and the forbidden set. The third condition claims that any subset 
of the minimal cover couldn’t satisfy the second one, which guarantees that all the cells 
in the minimal cover are indispensable to eliminate the inference. 

Problem Statement. Given a data cube L and a forbidden set F, the privacy pre-
serving OLAP problem is to find a minimal cover MC(F) of F, which prevents F from 
being compromised while prohibiting as few information as possible. 

3   Overview of Privacy Preserving OLAP Procedure 

From the definitions, it is clear that the minimal cover should be free of inference to 
both the forbidden set and itself; otherwise, one can disclose sensitive information by 
first inferring the values of minimal cover, and then getting to the forbidden set. A 
subset of the minimal cover that is only free of inference to the forbidden set is called 
the minimal partial cover.  

We take the following two steps to firstly find the minimal partial cover of the for-
bidden set, and then extend it to the minimal cover to preserve absolute security. 

Step 1 Finding the minimal partial cover for the forbidden set. We find the minimal 
partial cover MPC of the forbidden set by linear system theory, such that hiding 
MPC would eliminate all the inference direct to the forbidden set, but just hiding 
any subset of MPC would not work. 

Step 2 Extending the minimal partial cover to the minimal cover. We then take 
MPC found in step 1 as the new forbidden set, and repeat finding the minimal 
partial cover for the newly hidden cells until no more cells need to be hidden. 

4   Finding Minimal Partial Cover 

In this section, we will discuss how to find the minimal partial cover for a forbidden set. 
First, we define the vector code to represent each cell in the cuboid as follows. 

Definition 5 [Vector Code]. Given a cuboid C, the vector code c  for cell c in C or C’s 
father cuboids is defined as (a1, …, an), where n is the number of cells in C, and 

ai=
0

1

otherwise

Cin  cell i  theis c if th (c∈C) or ai=
0

1

otherwise

Cin  cell i  theaggregates c if th (c∈Father(C)). 

For example, in the cuboid <Hospital, Disease> in Figure 1, the vector code of cell 
<f,*> is (1,1,0,0), and the vector for <f, l> is (1,0,0,0). The cell corresponding to c  
could be inferred by c1, …, cn, if vector codes 1c , …, nc  can be linearly combined into 
the vector code c . To determine whether it would happen, we discuss the following 
three cases of the solution of equation (1): (x1, …, xn are real numbers). 

x1× 1c +…+ xn× nc =[ 1c , …, nc ]×[x1, …, xn]
T= c  (1) 
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Input: The forbidden set F, and the cuboid C 

Output: A minimal partial cover MPC of F 

Method: 

1:  construct the coefficient matrix A=[ 1c … nc ] 

2:  for each cell c in F 

3:     if Ax= c  has solutions 

4:       find the solutions X of Ax= c  

5:       find the set of components Mc at least one of which is non-zero in each X 

7:  return MPC=
c F

Mc
∈

 

• Equation (1) has no solutions. Cell c corresponding to c  couldn’t be computed 
with any other cells, so no additional information needs to be hidden. 

• Equation (1) has only one non-zero solution. c  could be computed with a certain 
combination of 1c , …, nc . If xi, …, xj are the non-zero components of the solution, 
then the corresponding cells ic , …, jc  are indispensable to inferring c . Therefore, 
just hiding one of ic , …, jc  could prevent the inference. 

• Equation (1) has more than one non-zero solutions. To eliminate all the infer-
ence, we need to hide one cell whose corresponding component of solution X is 
always non-zero. If there isn’t such kind of cells, we need to find a set of cells at least 
one of which is used in each solution. 

4.1   An Example 

Based on linear system theory [7], we develop a method to eliminate the inference to 
certain cells. The method is illustrated in the following example. 

Example 2. We try to find the minimal partial cover for cell <f,d> in Example 1, and 
the security requirements are the same. Suppose c1=<f,*>, c2=<m,*>, c3=<*,l>, 
c4=<*,d>, and c5=<*,h>. The corresponding vectors are 1c , …, 5c . 

1. We construct the equation by making A=[ 1c ,…, 5c ], b= c ( vector code of <f,d>). 

2. The solution of equation (2) is X=X0+k×X1, where X0=[1,0,-1,0,0]T, X1=[-1,-1, 
1,1,1]T, and k is a real number. If the ith component of X is non-zero, then ic is used 
to compute <f,d>. For example, if we take k=0, then X=[1,0,-1,0,0]T, 
(i.e., c = 1c - 3c ), which is exactly the case depicted in Example 1. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Algorithm 1 FMPC: finding a minimal partial cover  

AX=

10010

01010

01001

00101 ×X=

0

0

1

0  
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3. We try to find a component of X that is always non-zero, or find a set of components 
at least one of which is non-zero in each X.  

• If k=0: X=X0, the first and third components are non-zero. 
• If k≠0: by carefully choosing a value for k, the first or the third component can be 

zero, but the other components will never be zero. Hence, a cell in {c1, c3} and an-
other one in {c2, c4, c5} form the minimal partial cover of <f,d>. For example, if we 
hide {c1, c5}, <f,d> wouldn’t be compromised. 

4.2   Algorithm 

Now, let us generalize the algorithm of finding the minimal partial cover (Figure 2). 
Given a forbidden set F in cuboid C, first construct the coefficient matrix A using the 
unprotected cells in C or C’s fathers. Then for each cell c in F, if Ax=c has solutions, 
find the set of components in the solutions at least one of which is non-zero in each X. 

Here we use linear system theory [7] to find such cells. The solutions of Ax=c can be 
represented as x=x0+[x1, …, xr]×[k1, …, kr], where x1, …, xr is the basic solutions of 
Ax=0, and X0 is a certain solution of Ax=c. There are r “independent” components in 
X, taking zero in x0 and taking “1” respectively in each xi (i=1, …, r). For example, in 
figure 3, the last three components are independent. Suppose X0[i] and X2[i] are 
non-zero in all the ith components of X0 to X3, and X2[j] is the independent component 
taking “1” in X2, then either X[i] or X[j] is used in X, and the corresponding cells are 
the minimal partial cover. 
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Fig. 3. An example of minimal partial cover 

Lemma 1. Given X=X0+[X1, …, Xn-r]×[k1, …, kn-r]
T, the (r+1)th to nth component of X 

are the independent components. If X0[i]≠0, and only Xd1[i], …, Xdj[i] of X1[i], …, 
Xn-r[i] are non-zero (d1, …, dj∈{1, …, n-r} and i<r+1), then: 

1. At least one of the components X[i], X[r+d1], …, X[r+dj] in X would be non-zero. 
2. Any subset of components X[i], X[r+d1], …, X[r+dj] could all be zero in X. 

Lemma 2. Algorithm 1 returns a minimal partial cover of the forbidden set FS. 
(The proof of Lemma 1 and Lemma 2 are not provided here due to the limit of space.) 

5   Extending the Minimal Partial Cover to Minimal Cover 

In this section, we employ a level-wise framework to extend the minimal partial cover 
to the minimal cover to each cuboid of the cube with some optimizing strategies. 

Independent  

Components 

X      X0                                      X1  X2  X3 
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5.1   Two Optimizing Strategies 

Eliminating Single-son Inference. A cell is called a single-son cell if it has only one 
child in its son cuboid. All the single-son fathers of the forbidden set are definitely 
sensitive. In Example 1, if we hide the two single-son cell <*,l> and <*,h>, all infer-
ences will be eliminated. Thus, in our algorithm we first add all the single-son fathers of 
the sensitive cells to the minimal cover. It may both eliminate a large part of inference 
and reduce the number of cells we must check for inference. 

Finding Candidate Range. In algorithm 1, we check all the fathers and unprotected 
siblings of the forbidden cells for inference. However, not all of them are dangerous. 

Example 3. A two-dimensional cube is shown in Figure 4(a). The cell <a2,b1> marked 
with “*” in the cuboid <A,B> is sensitive.  

We construct the coefficient matrix A for cuboid <A,B> (as shown in Figure 4(b)). 
The column vectors of A are related with 8 father cells and 5 unprotected cells in cuboid 
<A,B>. However, only the column vector A[1], A[2], A[5], A[6], A[9] and A[10] are 
probable to infer the value of <a2,b1>, because others have all zeros in the 
corresponding components. We call the sub matrix formed by A[1], A[2], A[5], A[6], 
A[9], A[10] and the non-zero components of them the candidate range of the forbidden 
set (surrounded with dashed in Figure 4(b)). The candidate range could be found by 
first setting it to the father cells of the forbidden set, and then iteratively add in the cells 
which intersect with the candidate range. 

      (a) A two-dimensional data cube                        (b) The coefficient matrix for cuboid <A,B> 

Fig. 4. A two-dimensional data cube 

5.2   Algorithm 

We use a level-wise framework to extend the minimal partial cover to minimal cover. 
As shown in the Algorithm 2 in Figure 5, we first rank the cuboids in the cube ac-
cording to the ascend order of the granularity level. Then, for each cuboid, we apply the 
two optimizing strategies, and invoke Algorithm 1 to find the minimal partial cover of 
the forbidden set in this cuboid. The returned minimal partial cover should be further 
checked for inference. This process should be repeated until there isn’t any new 
minimal partial cover in the current cuboid.  
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Input: The forbidden set FS 
Output: A minimal cover MC of FS 
Method: 
1: for each cuboid C* in the cube 
2:  while FS∩C*≠∅ 
3:   Add single son father to MC 
4:   find the candidate range CR for FS 
5:   m=FMPC(FS, CR)  

//m is the minimal partial cover of FS returned by FMPC 
6:   FS=FS-FS∩C*  //inference to FS∩C* has been eliminated 
7:   MC=MC∪m 
8:   FS=FS∪m //the minimal partial cover should be protected 
9:  return MC 

Fig. 5. Algorithm 2 (FMC: a level wise algorithm to find a minimal cover) 

Theorem 1. Algorithm 2 returns a minimal cover of the forbidden set FS. 
(The proof of Theorem 1 is based on Lemma 1 and Lemma 2, and is not provided here 
due to the limit of space.) 

6   Experimental Results 

Implementation. All experiments are conducted on a Pentium4 2.80 GHz PC with 
512MB main memory, running Microsoft Windows XP Professional. The algorithm is 
implemented using Borland C++ Builder 6 with Microsoft SQL Server 2000.  

Data Set. We used the synthetic data sets and real data set TPC-H benchmark for our 
experiments. In synthetic data sets, we generated data from a Zipfian distribution1, 
skew of the data (z) was varied over 0, 1, 2 and 3. The sizes of the data sets vary from 
20000 to 80000 cells, with 3 dimensions and 4 granularity levels in one dimension. 

Comparison on Different Zipf Parameter. We apply FMC to TPC-H benchmark and 
the synthetic datasets whose parameter z=0, 1, 2, and 3. We randomly select 1% of the 
cells in two cuboids as the forbidden set, and compared the additional cells hidden by 
FMC and SeCube (L. Wang et al. 2004). Figure 6(a) shows the results. When z=0, the 
data is uniformly distributed, fewer additional cells need to be hidden than that in the 
skewed case. Because some values of the dimension appear less often in the skewed 
dataset, these “sparse” data are the main cause of inference. 

We also evaluate the effectiveness of the two optimizing strategies. Figure 7(a) with 
the size of candidate range shows that at most 50% of the cube needs to be check for 
inference. Figure 7(b) shows the number of single-son inference cases. Since it takes a 
significant part in all inference cases, to eliminate the single-son inference first will 
contribute to the approach greatly.  
                                                           
1 The generator is obtained via ftp.research.microsoft.com/users/viveknar/tpcdskew 
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(a) Compare on different zipf factors              (b) Compare on different forbidden set size 

Fig. 6. Size of additional protected cells / size of cube 
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(a) Size of candidate range/size of cube       (b) single-son inference/all inference cases 

Fig. 7. Experimental result of two optimizing strategies 
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Fig. 8. Size of candidate range / size of cube                        Fig. 9. Runtime of FMC 

Comparison on Varied Forbidden Set. We set the zipf parameter to z=1, and change 
the size of forbidden set. Figure 6(b) shows the size of additional cells hidden by 
SeCube [6] and FMC, where FMC hide fewer cells than SeCube in all cases.  
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Figure 8 demonstrates the candidate range on different forbidden set size. The size of 
candidate range stays below 40% in all cases, which means that we only need to check 
40% of the whole cube for inference. We also tested the runtime of FMC for different 
size of forbidden set (Figure 9). 

7   Conclusions 

In this paper, we present an effective and efficient algorithm to address the privacy 
preserving OLAP problem. The main idea is to hide part of the data causing the in-
ference, so that the sensitive information could no longer be computed. We could 
guarantee that all the information we hide is necessary, and thus as much information as 
possible can be provided for users while protecting the sensitive data. All work will be 
done before users interacting with the system, and thus, it would not affect the online 
performance of the OLAP system. Our algorithm is partially based on the linear system 
theory, so the correctness could be strictly proved. Experimental results also demon-
strate the effectiveness of the algorithm. Future work includes applying the method to 
other aggregation functions and improving the efficiency of the algorithm. We also 
plan to extend the work to solve the inference problem caused by involving two ag-
gregation functions in one cube. 
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Abstract. Privacy is one of the most important properties an infor-
mation system must satisfy. A relatively new trend shows that clas-
sical access control techniques are not sufficient to guarantee privacy
when datamining techniques are used. Privacy Preserving Data Mining
(PPDM) algorithms have been recently introduced with the aim of mod-
ifying the database in such a way to prevent the discovery of sensible
information. Due to the large amount of possible techniques that can be
used to achieve this goal, it is necessary to provide some standard evalu-
ation metrics to determine the best algorithms for a specific application
or context. Currently, however, there is no common set of parameters
that can be used for this purpose. This paper explores the problem of
PPDM algorithm evaluation, starting from the key goal of preserving of
data quality. To achieve such goal, we propose a formal definition of data
quality specifically tailored for use in the context of PPDM algorithms, a
set of evaluation parameters and an evaluation algorithm. The resulting
evaluation core process is then presented as a part of a more general three
step evaluation framework, taking also into account other aspects of the
algorithm evaluation such as efficiency, scalability and level of privacy.

1 Introduction

Intense work in the area of data mining technology and in its applications to
several domains has resulted in the development of a large variety of techniques
and tools able to automatically and intelligently transform large amounts of data
in knowledge relevant to users. The use of these tools is today the only effec-
tive way to extract useful knowledge from the increasing number of very large
databases, that, because of their sizes, cannot be manually analyzed. However,
as with other kinds of useful technologies, the knowledge discovery process can
be misused. It can be used for example by malicious subjects to reconstruct
sensitive information for which they do not have access authorization. Because
of the nature of datamining techniques that use non sensitive data in order to
infer hidden information, the usual security techniques are actually not able to
prevent illegal accesses carried out through the use of data mining techniques.
For this reason, many research efforts have been recently devoted to addressing
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the problem of privacy preserving in data mining. As a result, different saniti-
zation techniques have been proposed for hiding sensitive items or patterns by
removing some of the data to be released or inserting noise into data. Because,
however, the sets of parameters adopted for assessing the various algorithms are
very heterogeneous, it is difficult to compare these algorithms in order to deter-
mine which is the most suitable one for a given context or application. Moreover
all parameters adopted by the various metrics do not take into account an im-
portant issue of the privacy-preserving data mining (PPDM) process, that is, the
quality of the data obtained as result from the sanitization process. In this pa-
per, we explore the DQ properties that are relevant for the evaluation of PPDM
algorithms. We propose a model to describe aggregated information, their con-
straints and their relevance in order to evaluate the various DQ parameters and
we provide a three-step framework to evaluate PPDM algorithms using DQ as
final discriminant.

2 Related Work

The first approach dealing with the problem of DQ for perturbed data has been
developed by Agrawal and Srikant [6]. More in detail, they propose an approach
to estimate the privacy level introduced by their PPDM algorithm. Such an
approach evaluates the accuracy with which the original values of a modified
attribute can be determined. A similar approach has been developed by Rivzi
and Haritsa [8]. They propose a distortion method to pre-process the data before
executing the mining process. The privacy measure they propose deals with the
probability with which the distorted entries can be reconstructed.

These initial approaches have then been extended by taking into account
other evaluation parameters and by considering specific data mining techniques.
In particular, Agrawal and Aggarwal [5] analyze the proposed PPDM algorithm
with respect to two parameters, that is, privacy and information loss. In the
context of clustering techniques, Oliveira and Zaiane in [3][2] define some inter-
esting parameters to evaluate the proposed PPDM algorithms, each concerning
different aspects of these algorithms. In particular, in the context of Data qual-
ity, interesting parameters they introduced are the misclassification error, used
to estimate how many legitimate data points are incorrectly classified in the
distorted database and the Artifactual Pattern estimating the artifactual pat-
terns introduced by the sanitization process that are not present in the original
database. A more comprehensive evaluation framework for PPDM algorithms
has been recently developed by Bertino et al. [16]. Such an evaluation frame-
work consists of five parameters: the Efficiency, the Scalability, the Data quality,
the Hiding failure and the Level of privacy As it can noticed from the above
overview, only the approaches by Bertino et al. [16] and Olivera and Zaiane [2,3]
have addressed the problem of DQ in the context of the PPDM process. How-
ever, these approaches have some major differences with respect to the work
presented in this paper. As we discussed before, in the evaluation framework
developed by Bertino et al., DQ is directly measured by the dissimilarity pa-
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rameter. By contrast, Olivera and Zaiane only measure DQ through the estima-
tion of the artifactual patterns and the misclassification error. However, none
of these approaches completely captures the concept of DQ. In particular, there
are some aspects related to DQ evaluation that are heavily related not only with
the PPDM algorithm, but also with the structure of the database, and with the
meaning and relevance of the information stored in the database with respect to
a well defined context. Parameters such as dissimilarity, artifactual information
and misclassification error are not able to capture these aspects. The goal of
this paper is to explore the role and relevance of DQ in the PPDM process by
developing a more appropriate set of instruments to assess the quality of the
data obtained by the sanitization process.

3 Data Quality in the Context of PPDM

Traditionally DQ is a measure of the consistency between the data views pre-
sented by an information system and the same data in the real-world [10]. This
definition is strongly related with the classical definition of information system
as a “model of a finite subset of the real world” [12]. More in detail Levitin and
Redman [13] claim that DQ is the instrument by which it is possible to evaluate
if data models are well defined and data values accurate. The main problem with
DQ is that its evaluation is relative [9], in that it usually depends from the con-
text in which data are used. In the scientific literature DQ is considered a multi-
dimensional concept that in some environments involves both objective and sub-
jective parameters [11,14]. In the context of PPDM, we are interested in assess-
ing whether, given a target database, the sanitization phase will compromise the
quality of the mining results that can be obtained from the sanitized database.
The parameters we consider relevant in the context of PPPDM are the follow-
ing: the Accuracy, measuring the proximity of a sanitized value aI to the original
value a; the Completeness, evaluating the percentage of data from the original
database that are missing from the sanitized database and finally the Consistency
that is related to the semantic constraints holding on the data and it measures
how many of these constraints are still satisfied after the sanitization. We now
present the formal definitions of those parameters for use in the remainder of the
discussion. Let OD be the original database and SD be the sanitized database re-
sulting from the application of the PPDM algorithm. Without loosing generality
and in order to make simpler the following definitions, we assume that OD (and
consequently SD) be composed by a single relation. We also adopt the positional
notation to denote attributes in relations. Thus, let odi (sdi) be the i-th tuple
in OD (SD), then odik (sdik) denotes the kth attribute of odi (sdi). Moreover,
let n be the total number of the attributes of interest, we assume that attributes
of positions 1, . . . , m (m ≤ n) are the primary key attributes of the relation.

Definition 1: Let sdj be a tuple of SD. We say that sdj is Accurate
if ¬∃odi ∈ OD such that ((odik = sdjk)∀k = 1..m ∧ ∃(odif = sdjf ), (sdjf =
NULL), f = m + 1, .., n). �
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Definition 2: A sdj is Complete if (∃odi ∈ OD such that (odik = sdjk)∀k =
1..m) ∧ (¬∃(sdjf = NULL), f = m + 1, .., n). �

Let C the set of the constraints defined on database OD, in what follows we
denote with cij the jth constraint on attribute i. We assume here constraints on
a single attribute, but, as we show in Section 4 it is easily possible to extend the
measure to complex constraints.

Definition 3: An instance sdk is Consistent if ¬∃cij ∈ C such that cij(sdki) =
false, i = 1..n �

4 Information Driven Data Quality Schema

Current approaches to PPDM algorithms do not take into account two important
aspects:

– Relevance of data: not all the information stored in the database has the
same level of relevance and not all the information can be dealt at the same
way.

– Structure of the database: information stored in a database is strongly
influenced by the relationships between the different data items. These rela-
tionships are not always explicit.

We believe that in a context in which a database administrator needs to choose
which is the most suitable PPDM algorithm for a target real database, it is
necessary to also take into account the above aspects. To achieve this goal we
propose to use Data Quality in order to assess how and if these aspects are
preserved after a data hiding sanitization.

4.1 The Information Quality Model

In order evaluate DQ it is necessary to provide a formal description that allow
us to magnify the aggregate information of interest for a target database and
the relevance of DQ properties for each aggregate information (AI) and for each
attribute involved in the AI. The Information Quality Model (IQM) proposed
here addresses this requirement. In the following, we give a formal definition
for an Attribute Class (AC), a Data Model Graph (DMG) (used to represent
the attributes involved in an aggregate information and their constraints) and
an Aggregation Information Schema (AIS).Before giving the definition of DMG,
AIS and ASSET we introduce some preliminary concepts.

Definition 4: An Attribute Class is defined as the tuple
ATC =< name, AW, AV, CW, CV, CSV, Slink > where:

– Name is the attribute id
– AW is the accuracy weigh for the target attribute
– AV is the accuracy value
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– CW is the completeness weigh for the target attribute
– CV is the completeness value
– CSV is the consistency value
– Slink is list of simple constraints. �

Definition 5: A Simple Constraint Class is defined as the tuple
SCC =< name, Constr, CW, Clink, CSV > where:

– Name is the constraint id
– Constraint describes the constraint using some logic expression
– CW is the weigh of the constraint. It represents the relevance of this constraint in

the AIS
– CSV is the number of violations to the constraint
– Clink it is the list of complex constraints defined on SCC . �

Definition 6: A Complex Constraint Class is defined as the tuple
CCC =< name, Operator,CW, CSV, SCC link > where:

– Name is the Complex Constraint id
– Operator is the “Merging” operator by which the simple constraints are used to

build the complex one.
– CW is the weigh of the complex constraint
– CSV is the number of violations
– SCC link is the list of all the SCC that are related to the CCC . �

Let D a database, we are able now to define the DMG, AIS and ASSET on D.

Definition 7: A DMG (Data Model Graph) is an oriented graph with the
following features:

– A set of nodes NA where each node is an Attribute Class
– A set of nodes SCC where each node describes a Simple Constraint Class
– A set of nodes CCC where each node describes a Complex Constraint Class
– A set of direct edges LNj,Nk : LNj,Nk ∈ ((NAXSCC)∪(SCCXCCC)∪(SCCXNA)∪

(CCCXNA)). �

Definition 8: An AIS φ is defined as a tuple < γ, ξ, λ, ϑ, �, WAIS > where:
γ is a name, ξ is a DMG, λ is the accuracy of AIS, ϑ is the completeness of
AIS, � is the consistency of AIS and WAIS represent the relevance of AIS in
the database. �

We are now able to identify as ASSET (Aggregate information Schema Set)
as the collection of all the relevant AIS of the database.

The DMG completely describes the relations between the different data items
of a given AIS and the relevance of each of these data respect to the data
quality parameter. It is the “road map” that is used to evaluate the quality of a
sanitized AIS.

4.2 Data Quality Evaluation of AIS

By adopting the IQM scheme, now we are able to evaluate the data quality at
the attribute level. By recalling Definition (1,2), we define the Accuracy lack of
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an attribute k for an AIS A as the proportion of non accurate items in a database
SD. Ate the same way, the Completeness lack of an attribute k is defined as the
proportion of non complete items in SD. The accuracy lack index for an AIS
can the be evaluated as follows:

ACL =
i=n∑
i=0

DMG.Ni.AV ∗ DMG.Ni.AW (1)

where DMG.Ni.AW is the accuracy weight associated with the attribute identi-
fied by the node Ni. Similarly the completeness lack of an AIS can be measured
as follows:

CML =
i=n∑
i=0

DMG.Ni.CV ∗ DMG.Ni.CW (2)

Finally the consistency lack index associated with an AIS is given by number of
constraint violations occurred in all the sanitized transaction multiplied by the
weight associated with every constraints (simple or complex).

CSL =
i=n∑
i=0

DMG.SCi.csv ∗ DMG.SCi.cw +
j=m∑
j=0

DMG.CCj .csv ∗ DMG.CCj .cw (3)

4.3 The Evaluation Algorithm

In this section we present the methodology we have developed to evaluate the
data quality of the AIS. This methodology is organized in two main phases:

– Search: in this phase all the tuples modified in the sanitized database are
identified. The primary keys of all these transaction (we assume that the
sanitization process does not change the primary key), are stored in a set
named evalset. This set is the input of the Evaluation phase.

– Evaluation: in this phase the accuracy, the consistency and the complete-
ness associated with the DMG and the AIS are evaluated using information
on the accuracy and completeness weight associated with the DMG and
related to the transactions in Evalset.

The algorithms for these phases are reported in Figures 1 and 2. Once the
evaluation process is completed, a set of values is associated with each AIS that
gives the balanced level of accuracy, completeness and consistency. However, this
set may not be enough. A simple average of the different AIS’s values could not
be significant, because even in this case not all the AIS’s in the ASSET have
the same relevance. For this reason, a weight is associated with each AIS that
represents the importance of the high level information represented by the AIS
in the target context. The accuracy, the completeness and the consistency of the
ASSET for each PPDM algorithm candidate are then evaluated as follows:

AccuracyAsset =
∑i=|Asset|

i=0 AISi.accuracy ∗ AISi.W

|Asset| (4)
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INPUT: Original database OD, Sanitized database SD
OUTPUT: a set Evalset of primary keys
Begin

Foreach ti ∈ OD do
{j=0;

While (sjk �= tik)and(j < |SD|)do j + +;
l=0;
While (sjl = til)and(l < n) do l++;
If(l < n)Then Evalset = Evalset ∪ tik}

End

Fig. 1. Search algorithm

INPUT: the original database OD, the sanitized database SD,Evalset, IQM.
OUTPUT: the IQM containing a data quality evaluation
Begin

Foreach IES in IQM do
{DMG = IQM.IES.link;

avet = 0;cvet = 0;
Foreach (tik ∈ Evalset)do

For(j = 0; j < n; j + +) do
If (tij �= sij) Then

{
If sij = NULL Then cvet[j] + +;
Else avet[j] + +;
validate constr(IES,DMG,j)

}
For(m = 0; m < n; m + +)do

{ DMG.Nm.AV = avet[m]
|SD| ; DMG.Nm.CV = cvet[m]

|SD| ;}
IQM.IES.AV =

∑
i=n
i=0 (DMG.Ni.AV ∗ DMG.Ni.AW );

IQM.IES.CV =
∑

i=n
i=0 (DMG.Ni.CV ∗ DMG.Ni.CW );

IQM.IES.CSV =
∑ i=n

i=0 DMG.SCi.CSV ∗ DMG.SCi.CW+∑ j=m
j=0 DMG.CCj .CSV ∗ DMG.CCj .CW ;}

End
Procedure validate constr(IES,DMg,j) Begin

NA=AIS.DMG.j
For k=1; k < |NA.slink|; k++
{ NC = NA.Slink[k]

ifNC.Clink == NULL then{if !(NC .constr(sij )) then NC.CSV + +;}
else{ NO=NC.Clink; globalconstr=composeconstr(NO , sij)

if !(globalconstr) then NO.CSV + +}}
End

Fig. 2. Evaluation Algorithm

CompletenessAsset =
∑i=|Asset|

i=0 AISi.completeness ∗ AISi.W

|Asset| (5)

ConsistencyAsset =
∑i=|Asset|

i=0 AISi.consistency ∗ AISi.W

|Asset| (6)

where AISi.W represents the weight (relevance) associated with the i-th AIS.

5 Evaluation Framework

As shown by the approaches reported in Section 2, and especially by the ap-
proach by Bertino et al. [16], in many real world applications, it is necessary to
take into account even other parameters that are not directly related to DQ. On
the other hand we believe that DQ should represent the invariant of a PPDM
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evaluation and should be used to identify the best algorithm within a set of previ-
ously selected “Best Algorithms”. To preselect this “best set”, we suggest to use
some parameters as discriminant to select the algorithms that have an acceptable
behavior under some aspects generally considered relevant especially in “produc-
tion environments” (efficiency, scalability, hiding failure and level of privacy). In
order to understand if these four parameters are sufficient to identify an accept-
able set of candidates, we performed an evaluation test. We identified a starting
set of PPDM algorithms for Association Rules Hiding (the algorithms presented
in [4] and a new set of three algorithms based on data fuzzification [16]). Then,
by using the IBM synthetic data generator3we generated a categoric database
representing an hypothetical Health Database storing the different therapies as-
sociated with the patients. We also built the associated DMG. On this database,
we applied the different algorithms and then we measured the previous param-
eters. Once we built the “Best Set” we discovered that some algorithms that
performed less changes to the database, which in some way indicates a better
quality, are not in this set. A reason is for example a low efficiency. For this
reason we believe that even in the preselection phase a “coarse” DQ parameter
must be introduced. In our opinion, the Coarse DQ Measure depends on the
specific class of PPDM algorithms. If the algorithms adopt a perturbation or a
blocking technique, the coarse DQ can be measured by the dissimilarity between
the original dataset D and the sanitized one D’ by measuring, for example, in
the case of transactional datasets, the difference between the item frequencies
of the two datasets before and after the sanitization. Such dissimilarity can be
estimated by the following expression:

Diss(D, D′) =
∑n

i=1 |fD(i) − fD′(i)|∑n
i=1 fD(i)

(7)

where i is a data item in the original database D, and fD(i) is its frequency
within the database, whereas i’ is the given data item after the application
of a privacy preservation technique and fD′(i) is its new frequency within the
transformed database D’. The same method can be used, extending the previous
formula, also in the case of blocking techniques. If the data modification consists
of aggregating some data values, the coarse DQ is given by the loss of detail in the
data. As in the case of the k−Anonymity algorithm [15], given a database DB
with NA attributes and N transactions, if we identify as generalization scheme
a domain generalization hierarchy GT with a depth h, it is possible to measure
the coarse quality of a sanitized database SDB as:

Quality(SDB) = 1 −
∑i=NA

i=1

∑i=N
j=1

h
|GTAi|

|DB| ∗ |NA| (8)

where h
|GTAi| represent the detail loss for each cell sanitized.

Once we have identified the Best Set we are able to apply our DQ-driven
evaluation.
3 http://www.almaden.ibm.com/software/quest/Resources/datasets/syndata.html
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We now present a three steps Evaluation Framework based on the previous
concepts.

1. A set of “Interesting” PPDM’s is selected. These algorithms are tested on a
generic database and evaluated according the general parameters (Efficiency,
Scalability, Hiding failure, Coarse Data Quality, Level of privacy). The result
of this step is a restricted set of Candidate algorithms

2. A test database with the same characteristics of the target database is gen-
erated. An IQM schema with the AIS and the related DMG is the result of
this step.

3. The Information Driven DQ Evaluation Algorithm is applied in order to
identify the algorithm that finally will be applied.

As it is probably obvious to the readers, the most “time consuming” step
in terms of required user interactions is step 2. The design a good IQM is the
core of our evaluation framework. We believe that a top down approach is, in
this cases, the most appropriate. More in detail, the first task should be the
identification of the high level information that is relevant and for which we are
interested in measuring the impact of PPDM algorithms. It could also can be
useful to involve in this task some authorized users (e.g. in case of Health DBA’s,
doctors, etc.) in order to understand all the possible uses of the database and
the relevance of the retrieved information. The use of datamining tools could be
useful to identify non-evident aggregate information.

A second task would then, given the high level information, determine the
different constraints (both simple and complex) and evaluate their relevance.
Also in this case, discussions with authorized users and DB designers, and the
use of DM tools (e.g. discover association rules) could help to build a good IQM.
Finally it is necessary, by taking into account all the previous information, to
rate the relevance of the attributes involved. This top down analysis is useful
not only for the specific case of PPDM evaluation, but, if well developed, is
a powerful tool to understand the real information contents, its value and the
relation between the information stored in a given database. In the context of
an “Information Society” this is a non negligible added value.

6 Conclusion

The Data Quality of Privacy Preserving Data Mining Algorithms is an open
problem. In this paper we have proposed an approach to represent three im-
portant aspects of the data quality, an algorithm to magnify the impact of a
PPDM algorithm on the data quality of a given database and a framework to
select the most suitable algorithm for such database. We have also carried out
extensive tests for the case of association rules PPDM algorithms. We plan to
extend our work with some tests on other types of PPDM algorithms. Another
direction that we plan to explore is the use and then the test of our framework
over non-homogeneous algorithms. Because our principal focus is to provide tools
supporting the database administrator in identifying the most suitable algorithm



Information Driven Evaluation of Data Hiding Algorithms 427

for their database, we also plan to develop a tool that will be integrated with
GADAET [16] in order to allow an intuitive Asset, AIS and DMG design and
an automated algorithms test.
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Case 901, 163 Avenue de Luminy, 13288 Marseille Cedex 9, France
lastname@lif.univ-mrs.fr

Abstract. The extraction of frequent patterns often yields extremely
voluminous results which are difficult to handle. Computing a concise
representation or cover of the frequent pattern set is thus an interesting
alternative investigated by various approaches. The work presented in
this article fits in such a trend. We introduce the concept of essential
pattern and propose a new cover based on this concept. Such a cover
makes it possible to decide whether a pattern is frequent or not, to
compute its frequency and, in contrast with related work, to infer its
disjunction and negation frequencies. A levelwise algorithm with a prun-
ing step which uses the maximal frequent patterns for computing the
essential patterns is proposed. Experiments show that when the number
of frequent patterns is very high (strongly correlated data), the defined
cover is significantly more reduced than the cover considered until now
as minimal: the frequent closed patterns.

1 Introduction and Motivations

It is well known that frequent patterns mined from transactional databases can
be extremely voluminous, and specially when data is strongly correlated. In
such a context, it is difficult for the end-user to handle the extracted knowl-
edge. Various approaches have addressed this problem and attempt to compute
a concise representation, also called cover, of the whole set of frequent patterns
[PBTL99, BR01, Pha02, CG02, BR03, KRG04]. Such a cover has a twofold in-
terest: determining, at lower cost, (i) if an unknown pattern is frequent or not,
and (ii) if it is the case, what is its frequency.

Unfortunately, among the covers proposed in the literature [KRG04], most
of them are not proved to be concise representations and, in some cases, they
can be more voluminous than the whole set of frequent patterns. In such cases,
the initial objectives are not met and the difficulty to manage patterns worsens.

We call “perfect couver” of a set of frequent patterns a cover which is always
smaller than this set. Only two have been proposed in the literature: the cover
using frequent closed patterns [PBTL99, PHM00, Pha02, ZH02] and the one
based on non derivable frequent patterns [CG02].
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In this paper, we propose a new perfect cover based on the inclusion-exclusion
identities [Nar82]. With this intention, we introduce the concept of essential
pattern. We show that our representation based on frequent essential patterns
is a perfect cover and has an interesting advantage when compared with the
two other approaches: it is possible, not only, to retrieve the frequency of an
unknown pattern but also to know the frequency of its disjunction and of its
negation. Moreover, we propose a levelwise algorithm for computing the set
of essential patterns. Through various experiments, we compare our approach
with the one known as minimal: the cover based on closed patterns. Results
are convincing since in the worse cases, when data is highly correlated, the size
of our representation is significantly more reduced than the size of the closed
pattern cover.

The remainder of the article is the following: in section 2 we recall the princi-
ple of the inclusion-exclusion identities. We use these identities in order to define
a novel concept in section 3: the essential patterns. In the section 4, we propose
the new cover based on the essential patterns. We propose a levelwise algorithm
with a pruning step which uses the maximal frequent patterns for computing the
frequent essential patterns in section 5. Experimental results are given in section
6. In conclusion, we resume the strengths of our contribution and the prospects
for research.

2 Frequency Measures and Inclusion-Exclusion Identities

Let D be a transactional databse over a set of items and X ∈ P(I)1 a pattern, we
define three weight measures, which are compatible with the weight functions
defined in [STB+02], for X : (i) its frequency (denoted by Freq(X)), (ii) its
disjunctive frequency (denoted by Freq(∨X)) and (iii) its negative frequency
(denoted by Freq(¬X)). The disjunctive frequency of a pattern X can be seen
as the probability to have at least one 1-pattern of X and the frequency of the
negation stands for the probability to have no 1-pattern of X .

Freq(X) =
|{X ′ ∈ D | X ⊆ X ′}|

|D| (1)

Freq(∨X) =
|{X ′ ∈ D | X ∩ X ′ = ∅}|

|D| (2)

Freq(¬X) =
|{X ′ ∈ D | X ∩ X ′ = ∅}|

|D| (3)

Example 1. - Let D be the following database:
We have: Freq(AC) = 2/4, F req(∨AC) = 1 and Freq(¬AC) = 0. Since

Freq(∨AC) = 1, each transaction in D contains either the 1-pattern A, or the
1-pattern C, or both of them.

1 P(X) is the powerset of X.
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Table 1. Database example D

T id Items

1 ABCD
2 ABD
3 CE
4 ACD

The inclusion-exclusion identities make it possible to state, for a pattern X ,
the relationship between the frequency, the frequency of the disjunction and the
frequency of the negation, as follows:

Freq(X) =
∑

X′⊆X
X′ 
=∅

(−1)(|X
′|−1)Freq(∨X ′). (4)

Freq(∨X) =
∑

X′⊆X
X′ 
=∅

(−1)(|X
′|−1)Freq(X ′). (5)

Freq(¬X) = 1 − Freq(∨X) (from De Morgan Law) (6)

Example 2. - In our database example, we have:

1. Freq(AC) = Freq(A) + Freq(C) − Freq(∨AC) = 3/4 + 3/4 − 1 = 2/4
2. Freq(∨AC) = Freq(A) + Freq(C) − Freq(AC) = 3/4 + 3/4 − 2/4 = 1
3. Freq(¬AC) = 1 − Freq(∨AC) = 0.

Computing the frequency of the disjunction for a pattern can be performed
along with computing its frequency and thus the execution time of levelwise
algorithms is not altered. Provided with the frequency of the disjunction for the
frequent patterns, a perfect cover of frequent patterns can be defined and the
computation of the negation frequency is straightforward (cf. De Morgan Law).

3 Essential Patterns

A pattern X is essential if and only if its disjunctive frequency is different from
the disjunctive frequency of all its direct subsets. Since the disjunctive frequency
function is an increasing monotone function, we do not need to examine the dis-
junctive frequency of each direct subset for a pattern X . Checking that the
disjunctive frequency of X is different to the greatest disjunctive frequency of
its direct subsets is a sufficient condition to be sure that X is an essential pat-
tern. A more formal definition of the concept of essential pattern is given below.
Then, we show that the constraint “X is an essential pattern” is an antimono-
tone constraint for the inclusion. Thus, this constraint is compatible with the
frequency constraint and makes it possible to use levelwise algorithms for mining
frequent essential patterns.
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Definition 1. (Essential patterns) - Let D be a transactional database over
a set of items I and let X ∈ P(I) be a pattern. We say that X = ∅ is an essential
pattern if and only if

Freq(∨X) = max
x∈X

(Freq(∨X\x)). (7)

Let us denote by E the set of essential patterns and E(F) the set of frequent
essential patterns2.

Example 3. - In our database example, the pattern AC is an essential pattern
because Freq(∨AC) = Freq(∨A) and Freq(∨AC) = Freq(∨C).

Lemma 1. - Let us consider the two following constraints: “X is frequent” (C1)
and “X is essential” (C2). The conjunction of the two constraints is antimono-
tone for the inclusion (i.e. if X is a frequent essential pattern, then all its subsets
are frequent and essential patterns).

4 Frequency Computation Using an Improvement of the
Inclusion-Exclusion Identities

The three following formulas show firstly how to compute the frequency of the
disjunction from the set of essential patterns and secondly how to optimize the
inclusion-exclusion identities for finding efficiently the frequency of a frequent
pattern. A naive method for computing the frequency of a pattern X requires
the knowledge of the disjunctive frequency of all its subsets. Formula 8 shows
how we can derive the disjunctive frequency of any patterns using only essential
patterns.

Lemma 2. Let X be a set of items, then we have:

Freq(∨X) = max
Y ∈E

({Freq(∨Y ) | Y ⊆ X}). (8)

The formula 9 is an optimization based on the concept of essential patterns
and the formula 10 is an original method for the derivation of the frequency
of X .

Lemma 3. - ∀X ∈ P(I), let be Y ∈ Argmax({Freq(∨X ′) | X ′ ⊆ X and X ′ ∈
E}), then we have:

Freq(X) =
∑

X′⊆X
X′ 
=∅

(−1)|X
′|−1

{
Freq(∨Y ) if Y ⊆ X ′

Freq(∨X ′) elsewhere (9)

Theorem 1. - ∀X ∈ F, X /∈ E(F), let be Y ∈ Argmax({Freq(∨X ′) | X ′ ⊆
X and X ′ ∈ E(F)}), then we have:

2 F is the set of frequent patterns.
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Freq(X) =
∑

X′⊆X
X′ 
=∅
X′�Y

(−1)|X
′|−1Freq(∨X ′)

(10)

The set of essential patterns is not sufficient to define a perfect cover for
the set of frequent patterns because we cannot decide if an unknown pattern
is frequent or not. That is why we add the positive border for the frequency
constraint to the set of frequent essential patterns for testing if an unknown
pattern is frequent or not. If it is frequent, then theorem 1 makes it possible to
to compute the frequency of its conjunction. Thus, the set of frequent essential
patterns (E(F)) increased with the positive border for the frequency constraint
(BD+(F)) is a perfect cover for the frequent patterns.

Definition 2. (Perfect cover) - Let D a transactional database over a set of
items I (each transaction is a subset of I) and F the set of frequent patterns.
We say that G is a cover for F if and only if the frequency of each element of F
can be retrieved by using only patterns of G (∀X ∈ F, G � Freq(X)). Moreover,
if G ⊆ F, the cover is called perfect.

Theorem 2. - Let BD+(F) be the positive border (i.e. the set of maximal fre-
quent patterns) and E(F) the set of essential frequent patterns, then BD+(F) ∪
E(F) is a perfect cover for the frequent patterns.

5 The MEP Algorithm

For finding the frequent essential patterns, we propose a levelwise algorithm
with a pruning step which uses the maximal frequent patterns (BD+(F)). The
algorithm MEP (Mining Essential Patterns) includes the function Max Set
Algorithm which discovers maximal frequent patterns (e.g. Max-Miner [Bay98],
Gen-Max [GZ01]).

Example 4. The perfect cover of our example for the threshold “Minfreq =
2/4” is the following: the set of frequent essential patterns is given in table 2
and the positive border BD+(F) is given in table 3.

We know that the pattern ABD is frequent because it belongs to the positive
border. Let us compute its frequency.

Table 2. Frequent essential pattern for “Freq(X) ≥ 2/4”

Essential pattern Disjunctive frequency

A 3/4
B 2/4
C 3/4
D 3/4

AC 1
CD 1
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Table 3. Positive border for “Freq(X) ≥ 2/4”

Positive border

ABD
ACD

Algorithm 1 MEP Algorithm
1: BD+(F) := Max Set Algorithm(D, Minfreq)
2: L1 = {frequent 1−pattern }
3: i := 1
4: while Li 	= ∅ do
5: Ci+1 := Gen Apriori(Li)
6: Ci+1 := {X ∈ Ci+1 | ∃Y ∈ BD+(F) : X ⊆ Y }
7: Scan the database for mining the disjunctive frequency ∀X ∈ Ci+1

8: Li+1 := {X ∈ Ci+1 | �x ∈ X : Freq(∨X) = Freq(∨X\x)}
9: i := i + 1

10: end while
11: return

⋃
j=1..i

Lj

– We use lemma 2 to find its disjunctive frequency: Freq(∨ABD) = max(Freq
(∨A), F req(∨B), F req(∨D)) = Freq(∨A) = Freq(∨D) = 3/4.

– We apply theorem 1 to compute its frequency:
The patterns A and D are two frequent essential patterns included in ABD
for which the disjunctive frequency is maximal. Thus we have: Argmax
({Freq
(∨ABD) | X ′ ⊆ X and X ′ ∈ E(F)}) = {A, D}. We need one of these two
patterns to apply theorem 1, we choose Y = A. We obtain the following
equality: Freq(ABD) = Freq(A) + Freq(B) + Freq(D) − Freq(∨AB) −
Freq(∨AD) − Freq(∨BD) + Freq(∨ABD) = Freq(B) + Freq(D) − Freq
(∨BD). Since the pattern BD is not an essential, we need to know its dis-
junctive frequency. By applying, once more, theorem 1, we obtain Freq(B)+
Freq(D) − Freq(∨BD) = Freq(B). Accordingly, Freq(ABD) = 2/4.

We have eliminated all the patterns included between A and ABD in the
inclusion-exclusion identities because the sum of their disjunctive frequencies,
weighted of the good coefficient, is null.

6 Experimental Results

By providing the disjunctive and the negative frequencies, the proposed approach
enriches the results obtained with the two other perfect covers proposed in the
literature. Our objective is now to show, through various experiments, that the
size of this new cover is often smaller than the size of the cover based on the
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Table 4. Datasets

Name Number of transactions Average size of each transaction Number of items

Chess 3 196 37 75
Connect 65 557 43 129
Pumsb 49 046 74 2 113
Pumsb* 49 046 50,5 2 088

frequent closed patterns and this in the most critical cases: strongly correlated
data. For meeting this objective, we evaluate the number of frequent essential
patterns and compare it with the number of frequent closed patterns by using
four datasets3. The characteristics of the datasets used for experiments are given
in table 4. They are:

– the dataset Chess,
– the dataset Connect,
– the datasets of census Pumsb and Pumsb*, extracted from � PUMS sample

file 	. Pumsb* is the same dataset than Pumsb from which are removed all
the patterns which have a threshold greater or equal to 80%,

For all the experiments, we choose relevant minimum thresholds. In these four
datasets, only encompassing strongly correlated data, the ratio between frequent
patterns and the total number of patterns is high. Thus we are in the most
difficult cases. For finding the positive border we use Gen-Max algorithm [GZ01].
In the dataset Pumsb*, using either the frequent closed patterns or the frequent
essential patterns as a cover is advantageous: the gain compared to the set of
frequent patterns for the dataset Pumsb* with the threshold Minfreq = 20% is
about 45. On the other hand, for this dataset, even if the approach by essential
patterns is better than the one with closed patterns, the obtained gain is near to
one. In the three remaining datasets, the approach by essential is very efficient.
With the dataset Chess, many of frequent patterns are closed patterns, but the
number of essential patterns is relatively small. This results in a benefit, for the
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3 http://fimi.cs.helsinki.fi/
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threshold Minfreq = 50%, of a factor 40 compared to the original approach and
of a factor 20 compared to the approach using closed patterns. With the dataset
Connect and a threshold Minfreq = 70%, the benefit compared to frequent
patterns is approximately of a factor 2500 and compared to closed frequent
pattern of a factor 20. We can see that with the dataset Pumsb, the benefit
compared to the approach by frequent closed patterns is of a factor 20 for a
threshold Minfreq = 60% and compared to the approach by frequent patterns
is approximately 40.
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For more readability in the figures, we have omitted “frequent patterns” in
the legends. Thus “simple” means frequent patterns, “closed” stands for frequent
closed pattern and “essential” symbolizes frequent essential pattern.

7 Conclusion

In this paper, we propose a novel perfect cover for the frequent patterns based on
the inclusion-exclusion identities. We introduce the concept of essential pattern.
The perfect cover is based (i), on one hand, on the positive border which can
be used to determine if an unknown pattern is frequent or not, and (ii), on
the other hand, on the frequent essential patterns which make it possible to
derive the frequency of a frequent pattern by applying an optimization of the
inclusion-exclusion identities. Compared with the existing perfect covers, our
method makes it possible to mine at lower cost, along with the frequency of a
frequent pattern, the frequency of its disjunction and negation. We have also
shown, from an experimental point of view, the efficiency of our approach in
the most critical cases: when the mined data is correlated, the set of frequent
patterns is extremely voluminous. Having a perfect cover is specially interesting
to quickly answer the ad hoc requests of decision makers.

Concerning future work, it would be interesting to define the disjunctive
closure operator to reduce the number of essential patterns because this concept
is similar to the concept of key. Thus, by applying this operator to each frequent
essential pattern, we would also obtain a set of disjunctive closed patterns which
could be a perfect cover for the frequent patterns. Since closure operators are
surjective functions, the number of frequent disjunctive closed patterns will be
thus lower than the number of frequent essential patterns.
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Abstract. Database integration of data mining has gained popularity
and its significance is well recognized. However, the performance of SQL
based data mining is known to fall behind specialized implementation
since the prohibitive nature of the cost associated with extracting knowl-
edge, as well as the lack of suitable declarative query language support.
Recent studies have found that for association rule mining and sequen-
tial pattern mining with carefully tuned SQL formulations it is possible
to achieve performance comparable to systems that cache the data in
files outside the DBMS. However most of the previous pattern mining
methods follow the method of Apriori which still encounters problems
when a sequential database is large and/or when sequential patterns to
be mined are numerous and long.

In this paper, we present a novel SQL based approach that we re-
cently proposed, called Prospad (PROjection Sequential PAttern Dis-
covery). Prospad fundamentally differs from an Apriori-like candidate
set generation-and-test approach. This approach is a pattern growth-
based approach without candidate generation. It grows longer patterns
from shorter ones by successively projecting the sequential table into
subsequential tables. Since a projected table for a sequential pattern i
contains all and only necessary information for mining the sequential
patterns that can grow from i, the size of the projected table usually
reduces quickly as mining proceeds to longer patterns. Moreover, avoid-
ing creating and dropping cost of some temporary tables, depth first
approach is used to facilitate the projecting process.

1 Introduction

An important data mining issue is the discovery of sequential patterns, which
involves finding frequent subsequences as patterns in a sequence database. Most
of the algorithms used today typically employ sophisticated in-memory data
structures, where the data is stored into and retrieved from flat files. While the
mined datasets are often stored in relational format, the integration of data min-
ing with relational database systems is an emergent trend in database research
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and development area [4]. There are several potential advantages of a SQL imple-
mentation. One can make use of the powerful mechanisms for accessing, filtering,
and indexing data, as well as SQL parallelization the database systems provided.
In addition, SQL-aware data mining systems have ability to support ad-hoc min-
ing, ie. allowing to mine arbitrary query results from multiple abstract layers of
database systems or Data Warehouses.

However, from the performance perspective, data mining algorithms that are
implemented with the help of SQL are usually considered inferior to algorithms
that process data outside the database systems. One of the important reasons is
that offline algorithms employ sophisticated in-memory data structures and try
to reduce the scan of data as few times as possible while SQL-based algorithms
either require several scans over the data or require many and complex joins
between the input tables. This fact motivated us to develop a new SQL-based
algorithm which avoids making multiple passes over the large original input table
and complex joins between the tables.

The remainder of this paper is organized as follows. In section 2, we briefly
discuss sequential pattern mining algorithms and implementations employing
SQL queries. Prospad algorithm is explained in section 3. Section 4 presents
several experiments that assess the performance of the algorithms based on syn-
thetic datasets. Related works is illustrated in section 5. We conclude the paper
in section 6 and give a brief outlook on future work.

2 Sequential Pattern Mining with SQL

2.1 Problem Statement

The sequential pattern mining problem can be formally defined as follows. Let
I = {i1, i2, ..., im} be a set of items. An itemset is a subset of items. A sequence
s = (s1, s2, ..., sn) is an ordered list of itemsets, where si ⊆ I, i ∈ {1, ..., m}. The
number of itemsets in a sequence is called the length of the sequence. The length
l of a sequence s = (s1, s2, ..., sn) is defined as follows.

l =
∑m

i=1 |si|

A sequence sa = (a1, a2, ..., an) is a subsequence of another sequence sb =
(b1, b2, ..., , bm) if there exist integers 1 ≤ i1 < i2 < ... < in ≤ m such that
a1 ⊆ bi1, a2 ⊆ bi2, ..., an ⊆ bin.

A sequence database D is a set of tuples (cid, tid, itemset), where cid is a
customer id, tid is a transaction id based on the transaction time. The support
of a sequence s in a sequence database D, denoted as supD(s), is the number
of tuples in the database containing s. Given a support threshold min supp, a
sequence s is called a frequent sequential pattern in D if supD(s) ≥ min supp.
Given a sequence database and the min supp, the problem of mining sequential
patterns is to discover all frequent sequential patterns in the database.
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2.2 Algorithms for Mining Sequential Patterns

There are several algorithms for mining sequential patterns. These algorithms
can be classified into two categories: Apriori-based [1,9,3] and Pattern-growth
[6,2] methods.

– Apriori-based approaches are based on an anti-monotone Apriori heuristic:
if any length k pattern is not frequent in the database, its super-pattern
of length (k + 1) can never be frequent. They begin with the discovery
of frequent 1-sequences, and then generate the set of potential frequent
(k + 1)-sequences from the set of frequent k-sequences. This kind of algo-
rithm, though reducing search space, may still suffer from the following three
nontrivial, inherent costs:

• It is costly to handle a huge number of candidate sets.
• It is tedious to repeatedly scan the database.
• It generates a combinatorially explosive number of candidates when min-

ing large sequential patterns.

– Pattern-growth methods are a more recent approach to deal with the prob-
lems of mining sequential patterns. The key idea is to avoid repeatedly
scanning the entire database and testing and generating large set of candi-
dates, and to focus the search on a restricted portion of the initial database.
Prefixspan [6] is the most promising of the Pattern-growth approaches.
It recursively projects a sequence database into a set of smaller projected
sequence databases and mines locally frequent patterns in each projected
database. Prefixspan achieves high efficiency, compared with Apriori-based
approaches.

2.3 Sequential Pattern Mining Based on SQL

Almost all previous sequential pattern mining algorithms with SQL are based on
Apriori, which consist of a sequence of steps proceeding in a bottom-up manner.
The result of the kth step is the set of frequent itemsets, denoted as Fk. The first
step computes frequent 1-itemsets F1. The candidate generation phase computes
a set of potential frequent k-itemsets Ck from Fk−1. The support counting phase
filters out those itemsets from Ck that appear more frequently in the given set
of transactions than the minimum support and stores them in Fk.

Before data can be mined with SQL, it has to be made available as relational
tables. Sequence data, as the input, is transformed into the first normal form
table T with three column attributes: sequence identifier (cid), transaction iden-
tifier (tid) and item identifier (item). For a given cid, typically there are multiple
rows in the sequence table corresponding to different items that belong to trans-
actions in the data sequence. The output is a collection of frequent sequences.
The schema of the frequent sequences table is (item1, eno1, ..., itemk, enok, len).
The len attribute gives the length of the sequence. The eno attributes stores the
element number of the corresponding items.
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insert into Ck select I1.item1, I1.eno1, . . . , I1.itemk−1, I1.enok−1, I2.itemk−1, I1.enok−1+
I2.enok−1 − I2.enok−2

from Fk−1I1, Fk−1I2

where I1.item2 = I2.item1 and . . . and
I1.itemk−1 = I2.itemk−2 and
I1.eno3 − I1.eno2 = I2.eno2 − I2.eno1 and . . . and
I1.enok−1 − I1.enok−2 = I2.enok−2 − I2.enok−3

Fig. 1. Candidate generation phase in SQL-92

In [10], Thomas et al. addressed the problem of mining sequential patterns
using SQL queries and developed SQL formulations. The statement for generat-
ing Ck from Fk−1 in SQL-92, is shown in Figure 1.

A well known approach for support counting using SQL-92 presented in [10],
is similar with K-Way joins for association rules [7]. However, [10] adds additional
constraints including window-size, max-gap, and min-gap besides the constraint
of min supp.

[10] points out that it is possible to express complex sequential pattern min-
ing computations in SQL. The approach, however, shares similar strengths and
weaknesses as the Apriori method. For frequent pattern mining, a SQL-based
frequent pattern growth method called Propad [8] has been developed for effi-
cient mining frequent pattern in relational database systems. The general idea
of Propad is to successively transform the original transaction table into a set of
frequent item-related projected tables, then to separately mine each one of the
tables as soon as they are built. In this paper, we explore the spirit of Propad
for mining sequence patterns.

3 Prospad: PROjection Sequential PAttern Discovery in
SQL

In this section, a novel SQL-based sequential pattern mining method, called
Prospad, which recursively generates a set of frequent sequence-related projected
tables, then mine locally frequent patterns in each projected table, is illustrated
using an example.

Let us give an example with four sequences in Figure 2(a). Sequence data,
as the input, is transformed into the first normal form table T with three col-
umn attributes: sequence identifier (cid), transaction identifier (tid) and item
identifier (item) as shown in Figure 2(b).

Before the new algorithm is given, let us give some definitions as follows.

Definition 1. Given a sequence pattern p and a frequent item i in the sequence
database D, a sequence-extended pattern can be formed by adding the item i to
its prefix sequence p, and an itemset-extended pattern can be formed by adding
the item i to the last element of the prefix sequence p.
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(a) A Sequence Database

CID TID Sequence

1 1 a

1 2 a, b, c

1 3 a, c

1 4 d

1 5 c, f

2 1 a, d

2 2 c

2 3 b, c

2 4 a, e

3 1 e, f

3 2 a, b

3 3 d, f

3 4 c

3 5 b

4 1 e

4 2 g

4 3 a, f

4 4 c

4 5 b

4 6 c

(b) T

CID TID Item

1 1 a

1 2 a

1 2 b

1 2 c

1 3 a

1 3 c

1 4 d

1 5 c

1 5 f

2 1 a

2 1 d

2 2 c

2 3 b

2 3 c

2 4 a

2 4 e

. . . . . . . . .
4 4 c

4 5 b

4 6 c

Fig. 2. A sequence database and its relational format

Table 1. An example projected table

CID TID Item

1 3 a

1 3 c

1 4 d

1 5 c

1 5 f

2 3 b

2 3 c

2 4 a

2 4 e

3 5 b

4 5 b

4 6 c

For example, if we have a sequence pattern {a, c}, and a frequent item b, then
{a, c, b} is a sequence-extended pattern and {a, (c, b)} is an itemset-extended
pattern.

Definition 2. Given a sequence table T , a frequent sequence s-related projected
table, denoted as PTs, has three column attributes: sequence identifier (cid),
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transaction identifier (tid), item identifier (item), which collects all sequences
containing s. Moreover, in the sequence containing s, only the subsequence pre-
fixed with the first occurrence of a should be considered.

For sequence c in T , its projected table PTc is shown in Table 1.
In order to avoid repetitiousness and to ensure each frequent item is projected

to at most one projected table, we suppose items in alphabetical order. The
mining process can be regarded as a process of frequent sequence growth, which
is facilitated by projecting sequence tables in a top-down fashion. The whole
process is as follows:

– At the first level we simply gather the count of each item and items that
satisfy the minimum support are inserted into the transformed transaction
table TF that has the same schema as transaction table T . It means that
only frequent-1 items are included in the table TF . The SQL statements
used to create the table TF are illustrated as follows. We use select dis-
tinct before the group by to ensure that only distinct data-sequence are
counted.

insert into F select s.item, count(*)
from (select distinct item, cid from T ) as s
group by item
having count(*) ≥ min supp

insert into TF select T.cid, T.tid, T.item
from T, F
where T.item = F.item

– At the second level, for each frequent-1 item i in the table TF we construct
its respective projected table PTi. This is done by two phases. The first step
finds all sequences in the TF containing i, in which only the subsequence
prefixed with the first occurrence of i should be collected. This can be ex-
pressed in SQL as follows. We use a temporary table TEMP id to collect
the first occurrence of i in each sequence containing i.

insert into TEMP id select cid, min(tid) as tid
from TF
where item = i
group by cid

insert into PTi (select t1.*
from TF t1, TEMP id t2
where t1.cid = t2.cid and

t1.tid > t2.tid
union
select * from TF
where (cid, tid) in (select cid, tid from TEMP id) and

item > i)
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The second step finds all items that could be an itemset-extended pattern in
the PTi. All the items that occur in the same transaction as i can itemset-
extend the current pattern. And then we update all these items by appending
′−′ to distinct an itemset-extended pattern from a sequence-extended pat-
tern. The SQL statements can be expressed as follow:

insert into TEMP item select cid, tid, min(item) as item
from PTi

where (cid, tid) in (select cid, tid from TEMP id)
group by cid, tid

update PTi

set item = item ‖ ′−′
where (cid, tid, item) in (select cid, tid, item from TEMP item)

Then find local frequent items. Frequent-1 items are regarded as the prefixes,
frequent-2 patterns are gained by simply combining the prefixes and their
local frequent itemsets. For instance, we get the frequent-1 items {a, b, c, d, e,
f}, their respective projected tables PTa, PTb, PTc, PTd, PTe, PTf . For the
table PTa, its local frequent item are {a, b, b−, c, d, f}, frequent-2 patterns
are {{a,a}, {a,b}, {(a,b)}, {a, c}, {a, d}, {a, f}.

– At the next level, for each frequent item j in the projected table PTi we re-
cursively construct its projected table PTi,j and gain its local frequent items.
A projected table is filtered if there is no frequencies can be derived. For in-
stance, no local frequent itmes in the PTa,a can be found, the processing for
mining frequent sequential patterns associated with aa terminates.

Basically, the projecting process can be facilitated either by breadth first ap-
proach or by depth first approach. In breadth first approach, each frequent item
has its corresponding projected table and local frequent itemsets table at level k.
That is, n projected tables need to be generated if we have n frequent itemsets
at level k. It is obviously unpracticable because too many temporary tables have
to be held especially for dense database and for low support threshold.

Avoiding creating and dropping cost of some temporary tables, we use depth
first approach. In fact, the temporary tables such as TEMP id, TEMP item
and frequent itemsets table F are only required in the constructing projection
tables PT . So they can be cleared for constructing the other PTs after one PT
is constructed. Moreover, in the whole mining procedure, the PT tables of each
frequent item are not constructed together. The mining process for each frequent
item is independent of that for others. In that case, we only need one PT table
at the each level. The number of PT tables is the same magnitude as the length
of maximum frequent pattern.

4 Performance Evaluation

To evaluate the efficiency of our algorithm Prospad, we have done extensive
experiments on various kinds of datasets with different features by comparing
with Apriori-based approach in SQL.
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4.1 Datasets

We use synthetic sequence data generation with program described in Apriori
algorithm paper [1] for experiments. The nomenclature of these data sets is
of the form CwwTxxSyyIzz, where ww denotes the total number of sequences
in K (1000’s). xx denotes the average number of items in a transaction and
yy denotes the average number of transactions in a sequence. On average, a
frequent sequential pattern consists of four transactions, and each transaction is
composed of zz items. We report experimental results on two data sets, they are
respectively C10T8S8I8 and C200T2.5S10I1.25.

4.2 Performance Comparison

In this subsection, we describe our algorithm performance compared with K-
Way joins. Our experiment were performed on DBMS IBM DB2 EEE V8. The
performance measure was the execution time of the algorithm on the datasets
with different support threshold.

(a) (b)

Fig. 3. Comparison of two approaches. In (a), for K-Way join approach with the sup-
port value of 1%, in (b), with the support value of 0.8%, the running times were so
large that we had to abort the runs in many cases.

Figure 3 (a) through (b) show the total time taken by the two approaches
on the two data sets respectively: K-way joins, Prospad. From the graph we
can make the following observations: as the support is high, the frequent se-
quences are short and the number of sequence is not large. The advantages of
Prospad over Apriori are not so impressive. Prospad is even slightly worse
than Apriori. For example, the maximal length of frequent patterns is 1 and
the number of frequent sequences is 89 when the datasets is C10T8S8I8 with
the support threshold 10%, Apriori can finish the computation shorter than
the time for Prospad. However, as the support threshold goes down, the gap
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is becoming wider: Prospad is much faster than Apriori. When the support is
low, the number as well as the length of frequent sequences increase dramati-
cally. Candidate sequences that Apriori must handle becomes extremely large,
joining the candidate sequences with sequence tables becomes very expensive. In
contrast, Prospad avoids candidates generation and test. That’s why Prospad
can get significant performance improvement.

5 Related Works

The sequential pattern mining problem was first introduced by Agrawal and
Srikant in [1]. Recently researchers have started to focus on issues to integrating
mining with databases. There have been language proposals to extend SQL to
support mining operators. The Data Mining Query Language DMQL [5] pro-
posed a collection of such operators for classification rules, characteristics rule,
association rules, etc. In [11], Wojciechowski proposed an SQL-like language
capable of expressing queries concerning all classes of patterns.

There are some SQL-based approaches proposed to mine sequential patterns
in [10], for example K-Way Joins, Subquery-based. These new algorithms are
on the base of Apriori-like approach. They use the same statement for gener-
ating candidate k-itemsets and differ only in the statements used for support
counting. [10] also use object-relational extensions in SQL like UDFs, BLOBs,
table function etc. to improve performance.

6 Summary and Conclusion

In this paper, we propose an efficient SQL based algorithm to mine sequential
patterns from relational database systems. Rather than Apriori-like method it
adopts the divide-and-conquer strategy and projects the sequence table into a
set of frequent item-related projected tables. Experimental study shows that
the Prospad algorithm can get higher performance than K-Way joins based on
Apriori-like especially on large and dense data sets.

There remain lots of further investigations. We plan to do more experimenta-
tion on different datasets, including real datasets, to consolidate the experiences
in mining all classes of patterns with SQL. We try to explore Prospad for mining
closed and maximal sequential patterns.
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Abstract. Discovery of frequent patterns is a very important data mining 
problem with numerous applications. Frequent pattern mining is often regarded 
as advanced querying where a user specifies the source dataset and pattern 
constraints using a given constraint model. A significant amount of research on 
efficient processing of frequent pattern queries has been done in recent years, 
focusing mainly on constraint handling and reusing results of previous queries. 
In this paper we tackle the problem of optimizing a sequence of frequent pattern 
queries, submitted to the system as a batch. Our solutions are based on 
previously proposed techniques of reusing results of previous queries, and 
exploit the fact that knowing a sequence of queries a priori gives the system a 
chance to schedule and/or adjust the queries so that they can use results of 
queries executed earlier. We begin with simple query scheduling and then 
consider other transformations of the original batch of queries. 

1   Introduction 

Discovery of frequent patterns is a very important data mining problem with 
numerous practical applications. The two most prominent classes of patterns are 
frequent itemsets [1] and sequential patterns [3]. Informally, frequent itemsets are 
subsets frequently occurring in a collection of sets of items, and sequential patterns 
are the most frequently occurring subsequences in sequences of sets of items.   

Frequent pattern mining is often regarded as advanced querying where a user 
specifies the source dataset, the minimum frequency threshold (called support), and 
optionally pattern constraints within a given constraint model [7]. A significant 
amount of research on efficient processing of frequent pattern queries has been done 
in recent years, focusing mainly on constraint handling and reusing results of previous 
queries in the context of frequent itemsets and sequential patterns.  

In this paper we tackle the problem of optimizing a sequence of frequent pattern 
queries, submitted to the system at the same time or within a short time window. Our 
approach is motivated by data mining environments working in batch mode, where 
users submit batches of queries to be scheduled for execution. However, the 
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techniques discussed in the paper can also be applied to systems following the on-line 
interactive mining paradigm if we allow the system to group the queries received 
within a given time window and process them as batches. Our solutions are based on 
previously proposed techniques of reusing results of previous frequent pattern queries, 
and exploit the fact that knowing a sequence of queries a priori gives the system a 
chance to schedule and/or adjust the queries so that they can use results of queries 
executed earlier. We begin with simple query scheduling and then discuss other 
possibilities of transforming the original batch of queries. 

The paper is organized as follows. In Section 2 we review related work. Section 3 
contains basic definitions regarding frequent pattern queries and relationships between 
them. In Section 4 we present our new technique of optimizing batches of frequent 
pattern queries. Section 5 contains conclusions and directions for future work.  

2   Related Work 

Multiple-query optimization has been extensively studied in the context of database 
systems (e.g., [13]). The idea was to identify common subexpressions and construct a 
global execution plan minimizing the overall processing time by executing the 
common subexpressions only once for the set of queries. Data mining queries could 
also benefit from this general strategy, however due to their different nature they 
require novel multiple-query processing methods. 

Within the data mining context, multiple-query optimization has not drawn much 
attention so far. As an introduction to multiple data mining query optimization, we 
can regard techniques of reusing intermediate or final results of previous queries to 
answer a new query. Methods falling into that category are: incremental mining, 
caching intermediate query results, and reusing materialized results of previous 
queries provided that syntactic differences between the queries satisfy certain 
conditions.  

Incremental mining was first studied in the context of frequent itemsets in [5], 
where the FUP algorithm was proposed. Incremental mining consist in efficiently 
discovering frequent patterns in an incremented dataset, exploiting previously 
discovered frequent patterns. After the pioneer FUP algorithm, several other 
incremental mining algorithms were proposed for itemsets and sequential patterns. 

An interesting solution based upon the idea of reusing intermediate results of 
previous queries was proposed in [10] by introducing the concept of a knowledge 
cache that would keep recently discovered frequent itemsets along with their support 
value, in order to facilitate interactive and iterative mining. In [8], the authors 
postulated to cache only non-redundant itemsets like closed itemsets [11].  

Syntactic differences between data mining queries, representing situations when 
one query can be efficiently answered using the results of another query, have been 
first analyzed in [4] for association rule queries. The authors identified three 
relationships between the queries: equivalence, inclusion, and dominance, and 
provided appropriate query processing algorithms exploiting the relationships.  
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In [9], we proposed to materialize results of frequent pattern queries rather than 
rule queries, motivated by the fact that generation of rules from patterns is a 
straightforward and relatively inexpensive task. The results of previous queries were 
stored in the form of materialized data mining views. Syntactic differences between 
frequent pattern queries considered in the paper included one leading to the possibility 
of incremental mining, and one analogous to the inclusion relationship from [4]. 
Those syntactic differences and the corresponding relationships between pattern 
queries were later more thoroughly analyzed by us in [16] within an example 
constraint model for frequent itemset discovery. 

To the best of our knowledge, the only two real multiple-query processing methods 
for frequent patterns are Apriori Common Counting (ACC) and MineMerge, proposed 
by us in [14] and [15] respectively. Unfortunately, both methods have significant 
drawbacks that limit their practical applications. ACC is bound to the Apriori 
algorithm [2], which is a serious limitation since Apriori has been outperformed by 
newer, pattern-growth algorithms (see [6] for an overview). Moreover, ACC requires 
more memory than its base algorithm – Apriori. On the other hand, MineMerge is not 
bound to a particular mining algorithm but has been proven non-deterministic, 
sometimes resulting in longer processing time than in case of sequential query 
processing. Therefore, our goal in this paper is introduction of a new method, not 
bound to any mining methodology, having memory requirements not greater that 
applied base mining algorithm, and guaranteeing performance gains, at least under 
certain assumptions.  

3   Frequent Pattern Queries 

In this section, we provide a universal definition of a frequent pattern query, and 
review the possibilities of reusing frequent pattern queries’ results. We generalize the 
definitions and methods introduced by us for frequent itemset mining [16], and 
reformulate them so that they can serve as a basis for modeling batches of frequent 
pattern queries and development of batch optimization (scheduling) techniques. 

3.1   Basic Definitions 

Definition 1 (Frequent pattern query and its predicates). A frequent pattern query 
is a tuple fpq = (R, a, Σ, Φ, β), where R is a relation, a is an attribute of R, Σ is a 
condition involving the attributes of R (called database predicate), Φ is a condition 
involving discovered patterns (called pattern predicate), β is the minimum support 
threshold. The result of the fpq is a set of patterns discovered in πaσΣR, satisfying Φ, 
and having support  β. 

Example 1. Given the database relation R1(a1, a2), where a2 is a set-valued attribute 
and a1 is of integer type. The frequent pattern query fpq1 = (R1, "a2", "a1>5", 
"|itemset|<4", 3%) describes the problem of discovering frequent itemsets in the  
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set-valued attribute a2 of the relation R1. The frequent itemsets with support of at least 
3% and length less than 4 are discovered in the collection of records having a1>5. 

3.2   Relationships Between Frequent Pattern Queries 

Definition 2 (Identical queries). Two frequent pattern queries fpq1 and fpq2 are 
identical if they both operate on the same attribute a of the same relation R and Σ1 = 
Σ2 and Φ1 = Φ2 and β1 = β2. 

We assume the existence of some canonical form for database predicates and 
pattern predicates, to which all query predicates will be transformed before any 
optimization takes place. Thus, we can assume that two queries will guarantee to 
return the same results for any database instance only if the queries are identical. 

Definition 3 (Data set inclusion). Given two frequent pattern queries fpq1=(R, a, Σ1, 
Φ1, β1) and fpq2=(R, a, Σ2, Φ2, β2). We say that fpq1 includes data set of fpq2 (denoted 
as fpq2 ⊆d fpq1) if for each possible instance of the relation R, σΣ2R ⊆ σΣ1R. 

Definition 4 (Pattern set inclusion). Given two frequent pattern queries fpq1=(R, a, 
Σ1, Φ1, β1) and fpq2=(R, a, Σ2, Φ2, β2). We say that fpq1 includes pattern set of fpq2 
(denoted as fpq2 ⊆p fpq1) if for each possible instance of the relation R, all the patterns 
returned by fpq2 will also be returned by fpq1, and for each pattern returned by both 
queries, its counted support value will be the same for both queries.  

In terms of query predicates, fpq1 includes pattern set of fpq2 if β1 ≤ β2 and Φ1 is a 
relaxation of Φ2 (denoted as Φ2 ⊆ Φ1). (Formal definition of such relaxation will 
depend on a particular pattern constraint model. The only requirement is that the 
relaxation relationship should be a partial order on pattern sets. See [16] for an 
example constraint model.) 

It should be noted that the above relationships between frequent pattern queries are 
defined in terms of query predicates, independently of the contents of the mined 
database. Therefore, we can assume that for a given particular constraint model and a 
given frequent pattern query language, the system will be able to discover the 
relationships between the queries within a batch, just by analyzing the syntactic 
differences between the queries. Although, for a flexible constraint model and/or 
query language, the task might not be trivial, it is considered an implementation issue 
and as such is beyond the scope of this paper. 

Example 2. Given the database relation R1(a1, a2) from Example 1 and two frequent 
pattern queries: fpq1 = (R1, "a2", "a1>5", "|itemset|<4", 4%) and fpq2 = (R1, "a2", 
"a1<3", "|itemset|<5", 2%), we have fpq1 ⊆p fpq2, and no data set inclusion 
relationship between the queries.  

3.3   Reusing Results of Previous Frequent Pattern Queries 

According to the analysis from [16] a frequent pattern query fpq2 can be efficiently 
answered using known (materialized) results of another query fpq1 provided that fpq1 
⊆d fpq2 (i.e., fpq2 operates on an incremented data set) and fpq2 ⊆p fpq1 (i.e., the 
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pattern selection condition and the minimum support threshold of fpq2 are not more 
restrictive than those of fpq1).  

The general algorithm for answering fpq2 using the results of fpq1, where fpq1 ⊆d   
fpq2 and fpq2 ⊆p fpq1, consists of two steps: 

1) Result Filtering (RF) by removing the patterns returned by fpq1 that do not 
satisfy the pattern selection condition and the minimum support threshold of fpq2. 
2) Incremental Mining (IM) using pattern selection condition and the minimum 
support threshold of fpq2, treating the data set of fpq2 as incremented data set of 
fpq1 for which the patterns of fpq2’s interest are known from the previous step. 

It should be noted that there are three particular cases, in which one of or even 
both the above steps can be omitted: 

• If β1=β2 and Φ1 =Φ2 then the filtering step is not needed; 
• If Σ1=Σ2 then the incremental mining step is not needed; 
• If Σ1=Σ2 and β1=β2 and Φ1 =Φ2 then the results of fpq2 are equal to the results 

of fpq1 and therefore neither filtering nor incremental mining is needed.  

Regarding the implementation details and costs of the two steps of the above query 
result reusing algorithm, we observe that the first step (RF) is a simple scan of the 
query results, inexpensive both in terms of computations (simple conditions on 
patterns) and I/O (query results are typically several orders of magnitude smaller 
than the queries’ source dataset). As for the second step (IM), it is obvious that 
different incremental mining techniques can be (or have already been) developed for 
various types of patterns, constraint models, and mining methodologies. However, as 
a reference incremental pattern mining method, we can regard the partition-based 
incremental mining technique described in [16], exploiting the well-known ideas of 
partition-based mining [12]. 

The partition-based incremental frequent pattern mining technique logically 
divides the database into two partitions: (1) the records covered by the query fpq1 
(σΣ1R) – for this partition the locally frequent patterns are known, (2) the records 
covered by the query fpq2, and not covered by fpq1 (σΣ2R - σΣ1R). The method begins 
with discovering patterns locally frequent in the second partition. Next, based on the 
property of partition-based mining, locally frequent patterns from both partitions are 
used as candidate patterns for the whole fpq2’s data set (σΣ2R), and counted in one 
scan of the data set.  

In typical scenarios, incremental mining is more efficient that running a complete 
mining algorithm, and result filtering is significantly more efficient than incremental 
mining. Therefore, if for a given query there are results of a previous query that can 
be reused, the system should reuse them rather than run a complete mining algorithm. 
If more than one query’s results are applicable, the system should first look for the 
possibility of Result Filtering (on the smallest available pattern set), and then, if RF is 
not possible, the system should opt for Incremental Mining or the combination of RF 
and IM involving the smallest increment of the dataset. 
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4   Optimizing Batches of Frequent Pattern Queries 

The problem of optimizing batches of frequent pattern queries can be informally 
defined as follows: Given a batch (a sequence) of frequent pattern queries, find the 
execution plan that minimizes the total execution time of the whole batch. In this 
paper, we consider optimization techniques based on the idea of reusing some query’s 
results to answer other queries. Within this framework, we develop a novel multiple-
query optimization method for batches of frequent pattern queries starting with simple 
query scheduling, and then considering other transformations of the original batch. 
We assume that the batches of queries to be optimized contain no duplicates. 
Elimination of duplicates should be one of the pre-processing steps, right after the 
transformation of queries’ predicates to the canonical form used by the system, which 
is required to determine the relationships between the queries. 

4.1   Query Scheduling 

For the purpose of modeling batches of frequent pattern queries, let us start with a 
formal definition of the relationship between queries capturing the possibility of 
reusing other queries’ results: 

Definition 5 (Result reusing). Given two frequent pattern queries: fpq1=(R, a, Σ1, Φ1, 
β1) and fpq2=(R, a, Σ2, Φ2, β2). We say that fpq2 can reuse results of fpq1 (denoted as 
fpq1 → fpq2) if σΣ1R ⊆ σΣ2R and Φ2 ⊆ Φ1 and β1 ≤ β2. 

Theorem 1. The relationship of result reusing is a partial order on a set (batch) of 
frequent pattern queries. 

Proof. The relationship of result reusing is defined upon three partial order 
relationships on query predicates. To prove that the relationship of result reusing is 
also a partial order, we have to prove that it is reflexive, anti-symmetric, and transitive 
(from the definition of partial order). The three properties of the relationship of result 
reusing can be derived from its definition and inherent properties of the partial orders 
upon which it is built in the following way: 

• σΣ1R ⊆ σΣ1R ∧ Φ1 ⊆ Φ1  ∧ β1 ≤ β1  fpq1 → fpq1 (proof of reflexivity); 
• (fpq1 → fpq2 ∧ fpq2 → fpq1)  (σΣ1R ⊆ σΣ2R ∧ Φ2 ⊆ Φ1 ∧ β1 ≤ β2 ∧ σΣ2R 

⊆ σΣ1R ∧ Φ1 ⊆ Φ2 ∧ β2 ≤ β1)  (σΣ1R = σΣ2R ∧ Φ2 = Φ1 ∧ β1 = β2)  (Σ1 = 
Σ2 ∧ Φ2 = Φ1  ∧ β1 = β2)  (fpq1 = fpq3) (proof of anti-symmetry); 

•  (fpq1 → fpq2 ∧ fpq2 → fpq3)  (σΣ1R ⊆ σΣ2R ∧ Φ2 ⊆ Φ1 ∧ β1 ≤ β2 ∧ 

σΣ2R ⊆ σΣ3R ∧ Φ3 ⊆ Φ2 ∧ β2 ≤ β3)  (σΣ1R ⊆ σΣ3R ∧ Φ3 ⊆ Φ1 ∧ β1 ≤ β3)  
(fpq1 → fpq3) (proof of transitivity). 

Based on the above result reusing relationship, we propose the initial multiple-query 
optimization method for pattern queries, consisting in scheduling the batch of queries 
according to the result reusing relationship. 
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Algorithm 1 (Multiple-Query Optimization Using Query Scheduling) 

Input: a set of pattern queries FPQ = { fpq1, fpq2 , …, fpqn} searching for frequent 
patterns in the a attribute of the database relation R 
Output: results of queries from FPQ 

1. sort FPQ according to the result reusing relationship to form a schedule  
SFPQ = (sfpq1,sfpq2 , …, sfpqn) where for each fpqi∈ FPQ there exist sfpqj∈ 
SFPQ such that fpqi = sfpqj and for each pair sfpqi, sfpqj of queries in SFPQ: 
sfpqi → sfpqj  i < j; 

2. for i := 1 to n do 
3.    MPQ = { sfpqk : sfpqk → sfpqi}; 
4.    if MPQ = ∅ then 
5.       execute sfpqi using a complete mining algorithm; 
6.    else 
7.       select mpq ∈ MPQ for which the estimated cost of reusing its results to   

     answer sfpqi is minimal; /* see Section 3.3 */ 
8.       execute sfpqi reusing the results of mpq; /* RF + IM, RF, or IM */ 
9.    end if; 
10. end for; 

Rationale: Sorting the queries according to the result reusing relationship guarantees 
that for each query sfpqi all the queries whose results sfpqi can reuse will be executed 
earlier. Thus, the algorithm maximizes the chances of efficiently answering the 
queries using available results of previous queries. (Note that since the result reusing 
relationship is a partial order, a topological sort algorithm has to be used, and in 
general more than one optimal schedule is possible.) 

4.2   Query Scheduling with Addition of Intermediate Queries 

Algorithm 1 can be regarded as an initial solution that optimizes processing of the 
batch of queries by introducing a query scheduling step. To identify further 
optimization possibilities, let us model a batch of pattern queries as a directed graph, 
in which the nodes represent queries and the edges represent the possibility on reusing 
the results of one query by another query. 

Definition 6 (Query Reusing Graph). A directed graph QRG = (V,E) is a query 
reusing graph for the set of frequent pattern queries FPQ if and only if V = FPQ, E = 
{(fpqi, fpqj) | fpqi, fpqj ∈ FPQ ∧ fpqi → fpqj ∧ (!∃ fpqk ∈ FPQ such that fpqi → fpqk ∧ 
fpqk → fpqj)}. 

Let us consider a database relation R1(a, b) and an example batch of frequent pattern 
queries FPQI = {fpq1, fpq2, fpq3, fpq4, fpq5, fpq6}, where fpq1=(R1, a, “10<b<20”, 
“true”, 1%), fpq2=(R1, a, “10<b<30”, “length(pattern)<3”, 2%), fpq3=(R1, a, 
“10<b<30”, “true”, 5%), fpq4=(R1, a, “10<b<30”, “length(pattern)<4”, 4%), 
fpq5=(R1, a, “10<b<30”, “true”, 3%), fpq6=(R1, a, “0<b<20”, “true”, 1%). Figure1 
shows the query reusing graph for the batch of frequent pattern queries FPQI. To 
support the analysis of possible optimizations, edges of the graph have been labeled 
with corresponding query reusing methods. 



 Optimizing a Sequence of Frequent Pattern Queries 455 

 

Let us look at the queries fpq2 and fpq5 which can be answered using the results of 
fpq1 in two steps: RF (using a different support threshold for each of the two queries) 
and IM (with exactly the same increment of the data set for the two queries). For a 
single query, if both RF and IM are required, it is more beneficial to start with RF 
and then run IM with the more restrictive pattern predicate and support threshold. 
However, if we know that more than one query will require the IM task on the same 
incremented data set as one of its execution steps, then typically it should be better to 
start with the IM step using the pattern predicate and support threshold that will 
allow all the involved queries to reuse the results of that IM step using RF 
procedures.  

Identified common IM tasks can be represented as appropriate intermediate queries 
added to the original batch. Obviously, in this case the system will have to answer 
more queries than requested by users but as long as the total number of IM steps for 
the batch is reduced, the overall execution time of the batch should be shortened. 
(Recall that RF is typically by several orders of magnitude more efficient than IM.) 

 

Fig. 1. Sample query reusing graph 

For the example batch FPQI whose query reusing graph is presented in Fig. 1, we 
can provide the opportunity for reducing the number of executed IM tasks by adding 
an extra query fpq7=(R1, a, “10<b<30”, “true”, 2%). Figure 2 presents the query 
reusing graph for the extended batch FPQI ’= FPQI  ∪ {fpq7}. 

 

Fig. 2. Query reusing graph after the addition of the intermediate query 

In general, such an intermediate query should have the same database constraint 
as the queries whose processing it going to improve, the support threshold equal to 
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the minimal support threshold among the queries, and pattern predicate being a 
logical alternative of the queries’ pattern predicates. Based on the above observation, 
below we present an improved batch processing algorithm as an extension of 
Algorithm 1: 

Algorithm 2 (Multiple-Query Optimization Using Query Scheduling with 
Intermediate Queries) 
Input: a set of pattern queries FPQ = { fpq1, fpq2 , …, fpqn} searching for frequent 
patterns in the a attribute of the database relation R 
Output: results of queries from FPQ 

1. for each fpqi ∈ FPQ do 
2.    IMQi = { fpqk : fpqi → fpqk ∧ Σk ≠ Σi ∧ for all fpqx, fpqy ∈ IMQi : Σx = Σy}; 
3.    if |IMQi| > 1 then 
4.       FPQ := FPQ ∪ {(R, a, ΣIMQ, ΦIMQ, βIMQ)}, where ΣIMQ is the database 

    predicate of queries from IMQi, ΦIMQ is the logical alternative of pattern 
    predicates of all queries from IMQi, βIMQ is the minimal support threshold  
    among the queries from IMQi; 

5.    end if; 
6. end for;  
7. execute Algorithm 1 for FPQ 

Rationale: An appropriate intermediate query is added for each set of queries that can 
reuse results of the same query using IM, provided that the set contains more than one 
query. As explained earlier, addition of each intermediate query to the batch reduces 
the number of IM tasks in the execution plan generated for the batch, which are 
typically much more costly than RF tasks.  

4.3   Memory Management for Batch Execution 

According to Algorithms 1 and 2, each of the pattern queries from a batch is executed 
using one of the three following methods: RF, IM, or complete mining. Taking into 
account that: (1) the most memory-consuming step of IM is execution of a base 
complete mining algorithm on the increment of the data set, and (2) RF can filter the 
patterns reading them from the disk one by one, we can say that memory requirements 
of our batch processing algorithms are not greater than in case of using a complete 
mining algorithm for all the queries in a batch, which is a desirable property.  

Nevertheless, if possible within the memory limits, it will be beneficial for our 
technique to keep in main memory the results of queries than can be reused by some 
of the next queries (according to the generated schedule). As frequent pattern query 
results are typically much smaller than main memory structures used by pattern 
mining algorithms, such result caching introduces a negligible memory overhead. 
Moreover, once the system determines that the results of any of the previously 
executed queries cannot be reused by any queries to be executed later, the query’s 
results can be removed from main memory, thus reducing the memory consumption. 
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5   Conclusions 

In this paper we considered the problem of optimizing batches of frequent pattern 
queries. We presented a novel optimization technique based on techniques of reusing 
results of previous queries, previously proposed in literature. Our method exploits the 
fact that knowing a sequence of queries a priori gives the system a chance to schedule 
and/or adjust the batch of queries maximizing for each query the possibilities of 
reusing results of queries executed earlier.  

The method proposed in this paper was motivated by data mining systems working 
in batch mode. In the future, we plan to focus on multiple-query optimization 
techniques oriented towards interactive systems, allowing dynamic addition of new 
queries to the set of currently optimized pattern queries.  
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Abstract. Sequential pattern mining has now become an important data mining 
problem. For many practical applications, the users may be only interested in 
those sequential patterns satisfying some constraints expressing their interest. 
The proposed constraints in general can be categorized into four classes, among 
which monotony and tough constraints are the most difficult ones to be proc-
essed. However, many of the available algorithms are proposed for some spe-
cial constraints based sequential pattern mining. It is thus difficult to be adapted 
to other classes of constraints. In this paper we propose a new general frame-
work called CBPSAlgm based on the projection-based pattern growth principal. 
Under this framework, ineffective item pruning strategies are designed and in-
tegrated to construct effective algorithms for monotony and tough constraint 
based sequential pattern mining. Experimental results show that our proposed 
methods outperform other algorithms. 

1   Introduction 

Recently, sequential pattern mining which discovers frequent subsequences as pat-
terns in a sequence database has become an important data mining problem. There has 
been extensive research reported in this field. The proposed sequence pattern mining 
algorithms can be categorized into 3 classes. The first is Apriori-based horizontal 
formatting method, a typical algorithm is GSP [1]. The second is Apriori-based verti-
cal formatting method, such as SPADE [2]. The third is projection-based pattern 
growth method, such as PrefixSpan [3]. 

For many practical applications, the users may be only interested in those sequen-
tial patterns satisfying some constraints expressing their interest. For example, in the 
analysis of telecom warning sequences, the users may just care about the warning 
sequential patterns at serious warning level and occurring in some special district. If 
all warning sequential patterns are mined first and filtered with these constraints then, 
the sequential pattern mining efficiency may be reduced greatly. 

Up till now, many different types of constraints have been proposed, such as item 
constraint, length constraint, super-pattern constraint, aggregate constraint, regular 
expression constraint, duration constraint and gap constraint, and so on. These con-
straints in general can be categorized into four classes: anti-monotony, monotony, 

,
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succinctness and tough constraint [4]. Among these four constraints, succinctness 
constraint can be easily processed. Anti-monotony constraint has Apriori trick prop-
erty. The pruning power of Apriori trick can be exploited completely. In fact all of the 
sequential pattern mining problems exist the anti-monotony constraint—frequency 
constraint. However, the other two classes of constraints, monotony constraint and the 
class of tough constraint, have been considered to be difficult to be processed. For 
either the Apriori-based method or the projection-based pattern growth method, long 
patterns are needed to be generated from short patterns. However these two classes of 
constraints can not be easily incorporated into this generation process. It means that 
the pruning power of these two constraints is difficult to be exploited.  

To deal with monotony constraint based sequential pattern mining, some ap-
proaches such as ExAnte[5] and PrefixGrowth[4] have been proposed. ExAnte ex-
ploits the pruning power of monotony constraint through a pre-processing step by 
iteratively pruning infrequent items first and pruning the sequences not satisfying 
monotony constraints then. PrefixGrowth is proposed on the basis of PrefixSpan. It 
pushes the monotony constraint into sequential pattern mining process by pruning all 
the sequences that can not satisfy the monotony constraint in the projected database of 
a prefix.  

Tough constraints are the most difficult ones to be processed and have many dif-
ferent concrete forms. The methods to deal with different forms of tough constraints 
may also be different. Here we discuss a typical class of tough constraint—MaxGap 
constraint as an example. A MaxGap constraint is defined only in a sequence database 
SDB where each itemset in every sequence has a timestamp. It requires that the pat-
tern appear frequently in the sequence database such that timestamp difference be-
tween every two adjacent itemsets must be shorter than a given gap. For such con-
straints, there have been proposed two typical algorithms, cSPADE [6] and CCSM [7]. 
Algorithm cSPADE is designed on the basis of SPADE and pushes the MaxGap con-
straint into the mining process. It uses (k-1)-patterns as the prefix and 2-patterns satis-
fying the MaxGap constraint to produce candidate k-sequences. In this way, cSPADE 
might generate a lot of candidates, and need to store all frequent 2-sequences satisfy-
ing the MaxGap constraint. Thus it might destroy the prefix-class equivalence self-
inclusion of SPADE, which ensures high locality and low memory requirement.  

To overcome the limitation of cSPADE for processing the MaxGap constraint, 
Salvatore Orlando et al. propose CCSM algorithm which generates a candidate k-
sequence by joining two frequent (k-1)-sequences satisfying MaxGap constraint. 
Comparing to the cSPADE algorithm, CCSM reduces the number of candidate se-
quences during the generation process. At the same time CCSM improves the effi-
ciency of composing k-sequences through Cache technique. 

However, each of the above algorithms is proposed for some special constraint 
based sequential pattern mining and is difficult to be adapted to process other classes 
of constraints. In this paper we provide a new general framework called CBPSAlgm 
based on the projection-based pattern growth principal. To deal with various con-
straints, different strategy can be designed and integrated into the framework to con-
struct effective algorithms. 

The rest of this paper is organized as follows: Section 2 will present the general 
framework for constraint based sequential pattern mining. A strategy for processing 
monotony constraint will be presented in Section 3. In section 4 a strategy for proc-
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essing a typical kind of tough constraint—MaxGap constraint is proposed. The ex-
perimental results and analysis are presented in section 5. Finally, we conclude our 
work in section 6. 

2   The Overview of Framework for Constraint Based Sequential 
Pattern Mining 

In this paper we present a framework CBPSAlgm for constraint based sequential 
pattern mining. The framework is constructed on the basis of the projection-based 
pattern growth method. In the framework the specific constraint based pruning strat-
egy can be proposed to be incorporated and the corresponding effective constraint 
based sequential pattern mining algorithms can be designed. Before presenting our 
framework CBPSAlgm, we first give some concepts about the sequence, prefix, pro-
jection, suffix and projected-database. 

A sequence s={s1, s2, …, sl} is an ordered list of itemsets, where sj is an itemset 
and is also called an element of the sequence. Element sj is denoted as <x1, x2, …, xm>, 
where xk is an item and all the items in an element are supposed to be sorted in alpha-
betical order. An item can occur at most once in an element of a sequence, but can 
occur multiple times in different elements of a sequence. A sequence  = {a1, a2, …, 
an} is called a subsequence of another sequence  = {b1, b2, …, bm} and  a super 
sequence of , denoted as ⊆ , if there exist integers 1  j1 < j2 < … < jn m such 
that a1 ⊆ bj1, a2 ⊆ bj2, …, an ⊆ bjn.  

Let  be a sequence {a1, a2, …, an},  be a sequence {b1, b2, …, bm}, where m  n. 
Sequence  is called a prefix of  if and only if (1) bi = ai for (i  m-1); (2) bm ⊆ am; 
and (3) all the items in (am - bm) are alphabetically after those in bm. 

Given sequences  and  such that  is a sequence of . A subsequence ’ of se-
quence  is called a projection of  w.r.t. prefix  if and only if (1) ’ has prefix  and 
(2) there exists no proper super sequence ’’ of ’ such that ’’ is a subsequence of  
and also has prefix . Let ’ = {e1, e2, …, en} be the projection of  w.r.t. prefix  = 
{e1, e2, …, em-1, em’} (m  n). Sequence  = {em’’, em+1, …, en} is called the suffix of  
w.r.t. prefix , denoted as  =  /  [4]. 

We denote the projected database of a sequence database w.r.t. prefix sequence pre 
as pre-projected database. The pre-projected database is composed by those none 
empty suffix of each sequence in the original sequence database w.r.t. pre. If a se-
quence is not a super-sequence of pre, the suffix of this sequence w.r.t. pre is an 
empty sequence. All empty suffixes will not be stored in the projected database. In 
order to improve the memory usage efficiency we just store the corresponding projec-
tion position of each nonempty suffix of the original sequence and its sequence id in 
the pre-projected database. 

In projection-based pattern growth method each different prefix is used to project 
the sequence database to get the corresponding projected-database. Then frequent 
items in the projected-database are discovered. The prefix is extended with each dis-
covered frequent item to form a new prefix which is a pattern. The projection-based 
pattern growth method will generate a new projected database based on the new pre-
fix and discover new patterns recursively. 
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To constraint based sequential pattern mining, we can push constraints into mining 
process to prune some items that can not belong to any pattern that satisfies con-
straints. This may help to reduce the size of projected database and lead to further 
items pruning. For example, given an item i1, suppose that i1 is not a valid extension 
item for the prefix pre in sequence s1, i.e., the prefix pre can not be extended with i1 in 
sequence s1. While in the sequence s2, i1 is a valid extension item. Under this circum-
stance, the pre’s projected database will only contain the suffix of s2 w.r.t. pre. This 
helps to reduce the size of projected database. Furthermore, because that i1 cannot get 
support from sequence s1, it may lead to that i1 can not be a frequent item and thus can 
be pruned. This will in turn help to further reduce the search space. 

Here we give the pseudo code of the framework.  

 

Input:   sequence database: SDB, minimum support: min_supp and the constraint C  

Output:   all sequential patterns that satisfy the constraint C.  
Call method CBPSAlgm(< >, SDB)  
1. Call GetAllValidFrequentItems(prefix, S|prefix)  
2. While(FrequentItemsSet != NULL){  
   newPrefix = ExtendPrefix(prefix, FrequentItem);  
     if (newPrefix satisfies the Constraint)  
   WriteIntoPatternTbl(newPrefix);  
             CBPSAlgm (newPrefix, S|newPrefix);  
   }  

Fig. 1. The pseudocode of CBPSAlgm framework 

The function CBPSAlgm has two parameters: the first is a frequent pattern as a pre-
fix. At the beginning it is an empty sequence, denoted as < >. The second parameter is 
the projected database w.r.t prefix. Initially it is the sequence database in which all 
infrequent items have been pruned. ExtendPrefix function will return a new prefix 
which is joined by prefix and a frequent item. 

The most important part of the framework is the GetAllValidFrequentItems func-
tion. The function corresponds to the constraint processing strategy in mining process. 
To different constraint, the corresponding constraint based pruning strategy can be 
designed for this function and incorporated into the framework CBPSAlgm to get an 
efficient sequential pattern mining algorithm. 

3   The Strategy for Processing Monotony Constraint 

Let C
M 

be the monotony constraint. To such constraint, it has the property that if a 

sequence  does not satisfy C
M

, its super sequence might satisfy C
M

. So we can not 

use apriori trick way to remove sequence  from search space.  
Presently the typical methods for processing the monotony constraint based se-

quential pattern mining are ExAnte and PrefixGrowth. But ExAnte can not ensure that 
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all the discovered patterns after preprocessing step satisfy the CM. So we still have to 
check each discovered pattern. On the other hand, by monotone pruning we risk to 
lose anti-monotone pruning opportunities given by the removed items [8]. Prefix-
Growth just prunes infrequent items and invalid sequences in the projected database 
D(pre) when mining extendable frequent items for the prefix pre. It does not push the 
pruning operation to each item of valid sequences in the projected database. 

By the property of monotony constraint CM, a theorem can be given as follows: 

Theorem 1. Given a projected database D(pre) of prefix pre. Suppose that s1 is a 
sequence in D(pre), i is an item of s1, and suffix(i) is the suffix of i in s1. If pre + i + 
suffix(i) does not satisfy CM, where the operator ‘+’ means the join of two sequences, 
then item i can be pruned safely. 

Proof. By the property of CM, we know that if pre + i + suffix(i) does not satisfy CM, 
any subsequence of pre + i + suffix(i) can not satisfy CM either. Therefore i can not be 
a valid extendable frequent item of pre. If not so, after extending pre by i we get a 
new prefix new_pre = pre + i. The projected database of new_pre must contain se-
quence s2 = suffix(i). Because new_pre + s2 can not satisfy CM, s2 should be pruned 
and new_pre should not be generated either. Thus i can be pruned safely.  � 

Based on the theorem above, we implement a strategy for processing constraint CM 
in function GetAllValidFrequentItems, and incorporate it into CBPSAlgm for mining 
monotony constraint based sequential patterns. 

GetAllValidFrequentItems(prefix, S|prefix) { 
for each sequence in the S|prefix s { 
  if (prefix satisfies the CM) { 
     Count all the items in s;  
        } 
        else{ 
    for (int i=seq_len; i>0; --i) { 
       if (pre + seq[i] + suffix(seq[i]) satisfies CM)  
                          break;  
          } 
       for (; i>0; --i)  
               Count seq[i];  
     }  
   }  
  return all frequent items;  

} 

Fig. 2. The pseudocode of GetAllValidFrequentItems function 

Fig. 2 presents the pseudo code of the GetAllValidFrequentItems function. Here we 
give an example to illustrate the use of the above strategy to prune invalid items based 
on monotony constraint. Given a sequence s = {a, c, <b, d>, e}, suppose that each 
item of s has a value, a.value = 3, b.value = 2, c.value = 4, d.value = 2 and e.value = 1. 
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Let monotony constrain CM be defined as {Sum(pattern) } and prefix pre = {a}. 
Function GetAllValidFrequentItems will check each item of the suffix of s1 w.r.t. pre 
from the end to the beginning. For item e, suffix(e) = {}, and pre + e + suffix(e) = {a, 
e} does not satisfy CM. So item e can be pruned. As the same reason, item d can also 
be pruned. Thus, only c and b are valid extendable items for pre.  

4   The Strategy for Processing Tough Constraint 

If a constraint is neither monotonic, nor anti-monotonic, nor succinct, we called it a 
tough constraint. When a sequence satisfies a tough constraint, we can not sure that 
whether its subsequence and super sequence satisfy the constraint or not. So it is a 
hard work for constraint based sequential pattern mining. For example the MaxGap 
constraint mentioned above is a tough constraint. Formally a MaxGap constraint is in 
the form of Gap( ) t, where t is an integer. A sequence  satisfies the MaxGap if 
and only if |{  SDB| ∃ 1 i1 …< ilen( )  len( ) s.t. [1] ⊆ [i1], …, [len( )] 

⊆ [ilen( )], for all 1<j ≤ len( ), ( [ij].time - [ij-1].time)  t }| min_supp.  
As discussed above, the performance of CCSM is better than that of cSPADE for 

processing the MaxGap constraint. But CCSM is based on GSP method which does 
not work very well in the condition of low support threshold, so the property of GSP 
also affects the performance of CCSM algorithm. CCSM needs to spend some time in 
query processing in the cache when counting the support of a candidate sequential 
pattern. Along with the further execution of the algorithm, the cache will consume 
more memory. On the other hand, CCSM algorithm must start from the mining of the 
set of 2-patterns. This is a very complex preprocessing step. 

Based on the CBPSAlgm framework, we can propose an efficient strategy for 
MaxGap constraint based sequential pattern mining. 

By the property of MaxGap constraint, the following theorem can be given: 

Theorem 2. Let s be a sequence of SDB, D(pre) be a projected database of prefix pre, 
and s1 be a suffix of s w.r.t pre. An item i in s1 is an extendable item of pre if and only 
if i.timestamp – pre.last_timestamp  MaxGap, where pre.last_timestamp is the 
timestamp of the last item of pre in s. 

Proof. It is obvious from the definition of MaxGap constraint.                   �      

Based on the theorem 2, we can design the strategy shown in Fig. 3 for mining 
MaxGap constraint based sequential patterns.  

From the above strategy we can see that the generated patterns must satisfy the 
MaxGap constraint as long as the prefix is extended with valid items. Comparing with 
CCSM our algorithm does not need a special and complex preprocessing step. Each 
projected database D(pre) plays the same role as CCSM’s cache. Both of them can 
help to reduce the search space, but with the projected database we need not manage a 
global cache. In addition, CBPSAlgm is performed in the depth first search way and  
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the mining is  just performed in  each projected database. So it does not  need to  store 
all the  patterns for  mining new  candidate sequences like CCSM,  and thus  requires 
less memory than CCSM. Furthermore our algorithm is based on the projection-
based pattern growth method, it is more efficient in the condition of low support 
threshold. 

 

GetAllValidFrequentItems(prefix, S|prefix){ 
for each sequence s in the S|prefix { 
  for (int i=0; i>len; ++i){  
    if (s[i].timestamp  MaxGap)  
   count (s[i]);  
     } 
} 
return all frequent items;  

  }  

Fig. 3. The pseudocode of MaxGap constraint pruning strategy 

For example, given a sequence s = {<a, b>, c, d, <e, f>, g}, and the prefix pre = 
{a}, the constraint MaxGap = 2, the projected sequence in the pre’s projected data-
base of s is s’ = {_b, c, d, <e, f>, g}. Based on Theorem 2, we will check all the items 
in s’. In sequence s, the item _b and the last item of pre are in the same transaction, so 
in s’ _b.timestamp – pre.last_timestamp = 0. The timestamp of following transactions 
in s’ are increased by 1 in turn. At last the valid extendable items are {_b, c, d}. 

5   Experiment and Analysis 

In this section we will perform some experiments to evaluate the performance of the 
algorithms base on the CBPSAlgm framework and corresponding pruning strategies. 
We use the IBM data generator[9] to generate synthetic data for evaluation. The ex-
periment environment is: PIV 2G, 256MB memory and Windows-2000 Professional 
OS. We compare our algorithms with CCSM, ExAnte, PrefixGrowth algorithms. Our 
CBPSAlgm framework is developed in Microsoft Visual C++ 6.0 and database sys-
tem is Microsoft SQL Server 2000. In order to ensure the impartiality of the evalua-
tion, we have done same preprocessing work before mining. 

Fig. 4 provides the comparison of the efficiency of CCSM and CBPSAlgm with a 
fixed MaxGap constraint and variable minimum support values. The dataset is 
C10T5S4I3.5D100k and the MaxGap = 8. From the figure we can conclude that in 
the condition of low minimum support CCSM does not work very well due to that 
CCSM is based on the GSP method which can not work effectively for pattern min-
ing with low minimum support. The CBPSAlgm can work more effectively. With the 
increase of the minimum support, CCSM and CBPSAlgm have almost the same per-
formance. 
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Fig. 4. Performance of CCSM and 
CBPSAlgm with MaxGap = 8 

Fig. 5. Performance of CCSM and 
CBPSAlgm with min_support = 0.3% 

Fig. 5 shows the performance of CCSM and CBPSAlgm with a fixed minimum 
support 0.3% and variable MaxGap constraints. We still use the dataset 
C10T5S4I3.5D100k. From the figure we can see that the number of candidate pat-
terns increase dramatically along with the increase of maxgap, which leads the mining 
time increasing a lot for CCSM. For CBPSAlgm, it partitions all the candidate pat-
terns into different projected databases. In one moment we just need to perform min-
ing task in a projected database of a pattern, which helps to reduce the number of 
sequences in each iterative step. So it can work more efficiently. 

 

Fig. 6. Performance of ExAnte, PrefixGrowth and CBPSAlgm  with CM = (Sum(s) • 300 300) 

Fig. 6 presents the performance comparison of ExAnte, PrefixGrowth and 
CBPSAlgm. We use a dataset of 50k sequences, the average length of the sequence is 
15, and the total number of different items is 5000. Each item has an associated value 
set as follows: item.value = item % 100 + 1. The monotony constraint CM is Sum(s) ≥ 
300 for any pattern s to be mined. 

From Fig. 6 we can see that the efficiency of ExAnte and PrefixGrowth is almost 
the same while the CBPSAlgm works much better. Although the advantage of 
CBPSAlgm reduces along with the increase of minimum support, in the condition of 
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low minimum support and when CM constraint is the primary factor for pruning 
search space, its efficiency will emerge. 

Fig. 7 gives another performance comparison about ExAnte, PrefixGrowth and 
CBPSAlgm with variable monotony constraints when the minimum support is set to 
be 0.05% and 0.10% respectively. We use the same dataset as Fig. 5-3. The monotony 
constraints are set as follows: Sum(s) ≥ 200, Sum(s) ≥ 225, Sum(s) ≥ 250, Sum(s) ≥ 
275, Sum(s) ≥ 300.  

In Fig. 7, the x-axis denotes the different constraint and y-axis denotes the accel-
eration rate. For example the acceleration rate of an algorithm when the constraint is 
Sum(s) ≥ 250 can be calculated as follows: acceleration rate = (runtime of the algo-
rithm when Sum(s) ≥ 200)/(runtime of the algorithm when Sum(s) ≥ 250). We can see 
from the figure that the acceleration rate of CBPSAlgm improves much more than 
those of ExAnte and PrefixGrowth along with the increase of monotony constraints. It 
is more sensitive to the changes of the constraint than ExAnte and PrefixGrowth. 

  

Fig. 7. The performance acceleration rate of ExAnte, PrefixGrowth and CBPSAlgm with dif-
ferent monotony constraint when minimum support =0.05% and 0.10% 

From Fig. 6 and Fig. 7 we can conclude that either in the condition of fixed CM 
constraint or in the condition of CM increase step by step, CBPSAlgm works better 
than ExAnte and PrefixGrowth algorithms do. 

6   Conclusions and Future Work 

This paper presents CBPSAlgm, a new algorithm framework for frequent sequential 
patterns mining in the presence of user-defined constraints. The CBPSAlgm frame-
work is based on the principal of projection-based pattern growth method. In each 
processing iteration of the framework, a set of valid frequent items are selected to 
extend current patterns and prune  invalid items, which can  help to reduce the  search 
space and improve the mining efficiency. For different class of constraints, the corre-
sponding strategies are proposed to prune invalid items. Then each strategy can be 
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incorporated into CBPSAlgm framework for corresponding constraint based sequen-
tial patterns mining.  

Finally, some synthetical sequence data is generated with the IBM data generator, 
and the comparison experiments of our method with some existing algorithm, such as 
the ExAnte, CCSM algorithm have been done. From the experiment results we can 
conclude that our framework can perform the task of constraint based sequential pat-
tern mining effectively. In the future, with this framework we plan to focus on new 
strategies design for developing new constraint based algorithms.  
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Abstract. In this paper, we propose a method of hiding sensitive classi-
fication rules from data mining algorithms for categorical datasets. Our
approach is to reconstruct a dataset according to the classification rules
that have been checked and agreed by the data owner for releasing to
data sharing. Unlike the other heuristic modification approaches, firstly,
our method classifies a given dataset. Subsequently, a set of classifica-
tion rules is shown to the data owner to identify the sensitive rules that
should be hidden. After that we build a new decision tree that is con-
stituted only non-sensitive rules. Finally, a new dataset is reconstructed.
Our experiments show that the sensitive rules can be hidden completely
on the reconstructed datasets. While non-sensitive rules are still able
to discovered without any side effect. Moreover, our method can also
preserve high usability of reconstructed datasets.

1 Introduction

Currently, many efficient data mining algorithms have been proposed. On one
hand, these algorithms can be used by data owners to extract useful patterns
from collected data. On the other hand, the algorithms can become a threat
in privacy issue. They can be used in combination with other techniques to
disclose sensitive private data. For example, a mining result on the medical
dataset can help re-identifying of individual person, although the dataset seems
to be anonymous.

Not only the threat for individual privacy, but the sensitive private patterns
should also be aware. In business, although data sharing is useful for business
partners to discover global patterns. However, giving datasets to the others with-
out careful consideration can cause the loss of competitive ability. For example,
consider the scenario when a credit card company releases credit card approval
dataset for a new home loan company. Each record in the dataset is individual
applicant. The collected attributes of each applicant in this dataset can be fi-
nancial status, number of working years at the current company, gender, salary
level, living area and range of age. While the class is the approval result. The
purpose of the home loan company is to build a classification model to classify
their home loan applicants. The dataset must be provided because two com-
panies have different views on each attribute. However, some sensitive patterns
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can be discovered from the given dataset. More specifically, the patterns that
exist in the dataset can give competitive ability to the others more than data
owners expect. For example, it can be used to identify appropriate groups of
customers, or even individual person to send advertising mail. It can be done by
changing the class label to be the post code of living area. Although it might not
be able to do accurately, only narrow down the scope can be consider as privacy
threat. Therefore, the privacy of sensitive patterns also needs to be concerned
and preserved.

To preserve the privacy of sensitive patterns, obviously, the dataset is needed
to be modified. Consequently, the dataset correctness will be destroyed definitely.
However, if the overall characteristics of the dataset can be maintained, the
dataset is still usable. In other words, the usability of the dataset is also needed
to be preserved. Therefore, modification should be done properly. Recently, many
works proposed to hide sensitive association rules [1]. Almost all use heuristic ap-
proach to modify the datasets directly by support or confident values decreasing.

Compared with association rule mining, classification rule mining seems to
be more complicated problem. Instead of existing of items in association rules
mining , classification deals with attributes and attribute values. Moreover, in-
stead of association between attribute values, the ability to classify dataset of
each attribute is considered. Therefore, in preserving privacy of classification
rules, a heuristic approach to modify dataset directly should be designed with
a great care. Otherwise, the usability of modified datasets can be lost by side
effect of modification. As we will demonstrate that the heuristic approach may
be an inappropriate approach for classification rules hiding.

In this paper, we propose a classification rule hiding method for categorical
datasets by reconstruction approach. Instead of arbitrary dataset modification,
our method reconstructs a new dataset that contains only non-sensitive rules.
Additionally, the usability of new dataset is also preserved. In our method, we
extract classification rules of an original dataset firstly by a rule-based classifi-
cation algorithm. Subsequently, set of non-sensitive classification rules is used to
build a decision tree by our algorithm. Finally, a new dataset is reconstructed
from the decision tree.

The rest of this paper is organized as follows. Section 2 provides a review of
related work. Our proposed approach is shown in Section 3. The experiments
and results are brought up in Section 4. Finally, Section 5 gives the conclusion.

2 Related Work

Generally, the privacy problem of individual person can be addressed by using
some well-known database techniques such as security view management. Sta-
tistical security-control is another approach [2], Noise values are added into an
original dataset to preserve the privacy, while the correctness of some aggregated
values e.g. mean or variance are still preserved.

However, privacy preserving data mining (PPDM) is a different issue. In
PPDM, data mining algorithms are also considered. Moreover, not only the pri-
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vacy of the individuality is concerned, but also the sensitive patterns. The avail-
able approaches can be categorized into a few different groups such as heuristic-
based, cryptography-based and reconstruction-based techniques [1]. For associa-
tion rules privacy preserving, most works tackled the problem by using heuristic
approaches [3,4]. Selected values in the dataset are changed to decrease support
and/or confident values of sensitive rules. The rules will be hidden successfully if
their support and/or confident values are less than specific thresholds. Regarding
the classification tasks, most of the research works focus on preserving privacy
of individuality [5,6].

Our reconstruction-based approach for classification problem is motivated by
a reconstruction-based approach for association rules privacy preserving [7,8].
These works preserve the privacy by firstly extracting selected characteristics
of the datasets. The preserving process is done on the characteristics, following
by reconstruction of new dataset. The approach of dataset reconstruction has
advantageous over the heuristic data modification approaches since it hardly
introduces side-effect [1].

3 Privacy Preserving in Mining Classification Rules

3.1 Drawbacks of Heuristic Modification Method

In this section, we demonstrate drawbacks of heuristic modification method by
examples. A credit card approval sample dataset is shown in Table 1. Every
record represents a single person who applied for credit card. The categorical
dataset consists of four attributes : the number of years at current work, the
marriage status , the gender of applicant, and an attribute of whether the name
is on a “black list” or not. Finally, each class label is an approval result. For
rule hiding demonstration, firstly, we use a classification algorithm (C4.5 [9]) to
obtain a whole set of classification rules. The set of rules is shown in Table 2.

Suppose that the owner of the dataset wants to hide the rule: “# years at
current work = medium & black list = yes → approval result = NO”.
The easiest heuristic method (in terms of association rule mining) is to decrease
the confidence of the rule. This can be done by alternating values in the right
hand side, the class, of the corresponding records. In classification context, it is
decreasing of ability to classify datasets. In this case, corresponding records are
record number 6 and 14. Suppose that the sixth record is chosen. Subsequently,
its class label is changed to YES. For checking whether the hiding successes, the
dataset has to be classified again. The set of rules on modified dataset is listed
in Table 3.

From the result, it seems that the sensitive rule has been hidden successfully.
However, there are some differences between the original and the modified set
of rules. Some non-sensitive rules are lost e.g. the second, the third and the
fifth rules of original dataset. Moreover, some insignificant patterns also become
significant. For example, in the original set of rules, there is no rule likes the
second, the third and the fourth rules of new set of rules. This result occurs
because most of classification algorithms generate the rules according to the
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Table 1. Original credit card approval dataset

Record # years at marriage gender black list approval
No. current work status result
1 short married female no NO
2 short married female yes NO
3 long married female no YES
4 medium divorce female no YES
5 medium single male no YES
6 medium single male yes NO
7 long single male yes YES
8 short divorce female no NO
9 short single male no YES
10 medium divorce male no YES
11 short divorce male yes YES
12 long divorce female yes YES
13 long married male no YES
14 medium divorce female yes NO

Table 2. Original credit card classification rules

Rule No. Antecedence Class
1 # years at current work = short ∧ gender = female NO
2 # years at current work = short ∧ gender = male YES
3 # years at current work = long YES
4 # years at current work = medium ∧ black list = yes YES
5 # years at current work = medium ∧ black list = no NO

datasets classifying ability of each attribute. An arbitrary modification of some
data may effects the ability unintentionally.

The worst case of heuristic modification is when the owner wants to hide the
sensitive rules that contains the attribute with the highest ability to classify the
datasets e.g. root node of decision tree. For example, the owner wants to hide
rule: “# years at current work = long → approval result = YES”. Ob-
viously, there are four corresponding records: the third, the seventh, the twelfth
and the thirteenth records. To hide the sensitive rule, assume that the third
record is chosen, its class label is changed to NO. Table 4 shows the classifica-
tion result on modified dataset. As we expected, the set of rules is substantially
different from the original set of rules.

Obviously, the sensitive rule hiding by dataset modification would impact de-
rived rules significantly. The side effect seems to be uncontrollable. Moreover, the
usability of modified datasets is decreased enormously. Therefore, we purpose a
radically different way for hiding sensitive classification rules by reconstruction-
based approach. Rather than modification of the datasets for changing knowl-
edge, our approach focus on knowledge controlling. Our result datasets may look
different from the original. However, theirs characteristics are still preserved,
both knowledge and usability.
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Table 3. Modified credit card classification rules (The sixth record has been modified)

Rule No. Antecedence Class
1 # years at current work = short ∧ gender = female NO
2 # years at current work = long ∧ gender = female YES
3 # years at current work = medium ∧ gender = female YES
4 gender = male YES

Table 4. Modified credit card classification rules (The third record has been modified)

Rule No. Antecedent Class
1 gender = female NO
2 gender = male YES

3.2 Problem Statement

Given a dataset D, a set of classes C, a set of classification rules R over D, and
also R′ ⊂ R, R′ is a set of sensitive rules, find a dataset D′ such that there exists
only a set of rules R − R′ can be derived.

3.3 Dataset Reconstruction Method

Our approach starts with classifying original dataset by rule-based classifica-
tion algorithms e.g. RIPPER [10]. After a set of classification rules is extracted,
the owner can identify the sensitive rules. The remaining non-sensitive rules are
considered as characteristics of the dataset. Therefore, they are used to build
a dataset generator, a decision tree, by our algorithm. Obviously, a number of
used rules effects amount of the characteristics to be preserved. So, the unpruned
classification rules, less significant rules, can be used in the decision tree build-
ing algorithm. Our approach excludes the set of sensitive rules in the algorithm.
Therefore, there is no such directly derivable rule in the reconstructed datasets.
Finally, a non-sensitive dataset is reconstructed at the same number as the orig-
inal dataset by the decision tree. In this step, we modify a data generator from
the Very Fast Machine Learning toolkit (VFML) [11] for our purpose. Generally,
VFML data generator generates a dataset based on concept of an input decision
tree. Therefore, we replace the randomized decision tree generator in VFML
by the decision tree from the previous step. Each record is built and assigned
each attribute value with uniform probability. Then, it is induced through the
respected path in the decision tree. Finally, a class label is assigned to the record
with the terminal node of the tree.

Using uniform probability data generator provides an advantage to our ap-
proach. Obviously, the number of reconstructed records in each path of the trees
can be estimated. For example, if a binary attribute ”gender” is chosen as the
root of a tree, approximated half of reconstructed records will have ”male”
attribute value, otherwise ”female”.
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Table 5. Decision tree building algorithm

Inputs: R is set of classification rules.
R′ is set of sensitive rules.

Outputs: DT is a decision tree.

While there is any rule to be induced do
select a rule r from R − R′ to be induced order by the classifying ability.
While the number of approximated reconstructed records does not excess
the number of records that is classified by rule r in the original dataset

While the rule r is not induced completely do
select the least common attribute in r,
put selected attribute as non-terminal node
of DT .

End while.
Assign a class for the selected rule.

End while.
End while.

The decision tree building algorithm is shown in Table 5. In the algorithm,
each non-sensitive rule is put in a decision tree one by one. The ordering of rules
selection is based on their ability to classify original dataset. When any rule is
put earlier, it will be in the higher level of the tree. With a uniform probability
characteristic of the dataset generator, a rule that appears in the higher level will
be used to generate more records. This can help maintaining similarity between
original and reconstructed datasets.

For each selected rule, all of its attributes will becomes a node of the decision
tree. The least common attribute among set of all rules is chosen firstly. This
can provide many options to induce the trees by allowing a rule to be reflected
on many paths of the tree. A number of paths effects the ability to classify the
dataset of the each rule. Therefore, we can obtain the most similar dataset in
term of usability by controlling the numbers.

Regarding the complexity, this algorithm has O(mn) time complexity, where
m is the number of non-sensitive rules and n is the number of attributes of a
given dataset.

4 Experiments and Results

Two real-life datasets, Credit Card Applicants Approval and 1984 United States
Congressional Voting Records datasets from UCI Repository were used in our
experiments. For the first dataset, the continuous attributes were transformed
to categorical attributes. The number of records is 690 on 15 attributes. While,
the voting dataset contains 435 records on 16 attributes.

In the experiments, two rule based classification algorithms: RIPPER and
C4.5 Rule were selected. The numbers of classification rules by RIPPER of credit
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card and voting dataset were 5 and 4 respectively. C4.5 Rule could also discover
the same numbers of rules. 26 and 21 unpruned classification rules were dis-
covered on credit card dataset by RIPPER and C4.5 Rule respectively. While
both of them could discover 9 unpruned classification rules on voting dataset.
For each experiment, two classification algorithms are used. After a set of clas-
sification rules is generated by the first algorithm, some random rules are se-
lected as the sensitive rules. The set of remaining non-sensitive rules are used to
build a decision tree by our algorithm. Subsequently, the tree is used to gener-
ate a new non-sensitive reconstructed dataset. Finally, the second classification
algorithm is used to evaluate the reconstructed dataset. In the experiments,
the first and second classification algorithms can be both the same or differ-
ent algorithms. In our experiments, both single and many rules hiding were
investigated.

4.1 Evaluation Metrics

There are three metrics for evaluation. Firstly, the privacy issue must be con-
sidered. More specifically, the existing of sensitive rules is considered from the
entire set of rules discovered by the second algorithm. Secondly, the side effect
from the hiding approach is considered. There are two main metrics to evaluate
the side effect: a number of ghost rules and false-drop rules. Ghost rules are the
rules that are not sensitive rules and do not exist in the original dataset, but
reconstructed dataset. On the contrary, false-drop rules are the non-sensitive
rules that do not exist in the reconstructed dataset, but original dataset. These
two numbers can also be seen when the second classification algorithm is used.
Obviously, these numbers should be kept minimal.

The last metric is the usability of the reconstructed dataset. Because the
released dataset are usually used to build the classification model. Therefore, the
ability to classify datasets of each attribute should be measured as the usability
metric. In the experiments, the gain ratio [9] is used to served our propose.
We measure the percentages of gain ratio variations between the original and
reconstructed dataset with Equation 1.

V =

√∑n
i=1 (oi−ri

oi
)2

n
× 100 (1)

where oi and ri are gain ratios for the ith attribute on the original and recon-
structed datasets. While n is the number of entire attributes.

In order to evaluate the usability of our decision tree building algorithm,
another algorithm has been developed to be compared. It is almost the same as
the algorithm in Table 5, but each rule will be put in the tree as many as possible.
With this algorithm, the impact of controlling a number of paths for each rule
can be investigated. In the experiment, the compared algorithm is called ”ALL”
algorithm, While our purposed algorithm is called ”CONTROLLED”.
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Table 6. Results of single rule hiding on credit card and voting datasets

Second Algorithm
C4.5 Rule RIPPER

Discovered False Ghost Discovered False Ghost
First Dataset Used sensitive drop rules non-sensitive drop rules

Algorithm rules rules rule rules rule
C4.5 Rule Credit card 4 0 0 0 3 1 0

5 0 0 0 4 0 0
7 0 0 0 4 0 0
10 0 0 0 4 0 0
15 0 0 0 4 0 0
20 0 0 0 4 0 0

Voting 3 0 0 0 2 1 0
4 0 0 0 2 1 0
6 0 0 0 3 0 0
8 0 0 0 3 0 0

RIPPER Credit card 4 0 1 0 4 0 0
5 0 1 0 4 0 0
7 0 0 0 4 0 0
10 0 0 0 4 0 0
15 0 0 0 4 0 0
20 0 0 0 4 0 0
25 0 0 0 4 0 0

Voting 3 0 1 0 3 0 0
4 0 1 0 3 0 0
6 0 1 0 3 0 0
8 0 0 0 3 0 0

4.2 Experimental Results and Discussion

The experimental results of single rule hiding are presented in Table 6. From the
results, our approach can hide sensitive rules successfully. There is no discovered
sensitive rules in any experiments even we used only a set of pruned rules to build
the decision trees. Moreover, side effect in term of ghost and false drop rules was
hardly found. Even when the first and the second classification algorithms were
different, we were able to avoid the side effect successfully by using all unpruned
rules to build the decision trees. Remarkably, the side effect could be found in
the voting dataset more than the credit card dataset. It means that our approach
can hide sensitive patterns in datasets with more discoverable knowledge better
than the less one.

Table 7 shows the experiment results when many sensitive rules were selected
to be hidden. In this experiment, RIPPER was used as the first and the second
classification algorithms. All unpruned rules were used in the reconstruction
process. Obviously, our approach can hide the sensitive rules, and avoid the side
effect successfully.
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Table 7. Results of multi-rules hiding on credit card and voting datasets

Dataset Hidden Remained Discovered False Ghost
rule non-sensitive sensitive drop rules

rules rules rules
Credit card 1 4 0 0 0

2 3 0 0 0
3 2 0 0 0

Voting 1 3 0 0 0
2 2 0 0 0

The Figure 1 shows the usability on reconstructed datasets. In this exper-
iment, RIPPER was used as the first and the second classification algorithms.
The percentages of gain ratio variations by numbers of used rules are shown. At
16% of used rules, only pruned classification rules were used, while all unpruned
rules were used at 100%.

Generally, the variation decreases when more rules are used in both
algorithms. Obviously, our purposed decision tree building algorithm (CON-
TROLLED) can be used in reconstruction process much more better than the
compared algorithm (ALL). Compared with ALL algorithm, controlling a num-
ber of paths for each rule in our purposed algorithm can reduce gain ratio vari-
ations efficiently. It means that our algorithm can also preserve the usability as
well as the privacy.
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Fig. 1. The credit card datasets usability

5 Conclusion

In this paper, we proposed a method of preserving privacy of classification rules
of categorical datasets. We can hide sensitive rules by reconstructing a new
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dataset which is still similar to the original dataset in terms of knowledge, ex-
cept the sensitive part. Additionally, our approach can archive high usability
of reconstructed datasets. We found that the difference in original and recon-
structed datasets can be reduced when we have a large number of rules. In our
future work, the efficiency of the approach will be considered.
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Abstract. A new technique for constructing multi-dimensional histograms is
proposed. This technique first invokes a density-based clustering algorithm to
locate dense and sparse regions of the input data. Then the data distribution in-
side each of these regions is summarized by partitioning it into non-overlapping
blocks laid onto a grid. The granularity of this grid is chosen depending on the
underlying data distribution: the more homogeneous the data, the coarser the grid.
Our approach is compared with state-of-the-art histograms on both synthetic and
real-life data and is shown to be more effective.

1 Introduction

The need to compress data into synopses of summarized information often arises in
many scenarios, where the aim is to retrieve aggregate data efficiently, possibly trading
off the computational efficiency with the accuracy of query answers. Selectivity esti-
mation for query optimization in RDBMSs [2,6,10], range query answering in OLAP
services [11], statistical and scientific data analysis [8], window query answering in spa-
tial databases [1,9], are examples of application contexts where efficiently aggregating
data within specified ranges of the domain is such a crucial issue, that high accuracy in
query answers becomes a secondary requirement.

For instance, query optimizers in RDBMSs can build an effective query evalua-
tion plan by estimating the selectivity of intermediate query results: this can be ac-
complished by retrieving aggregate information on the frequencies of attribute values.
Obviously, in building an effective execution plan a fast computation of aggregations
is mandatory. Moreover a dramatic precision in evaluating aggregates is not needed,
as knowing the order of magnitude of the selectivity of intermediate queries suffices
to build an effective execution plan. In particular, given a relation R(A1, . . . , Ad), the
selectivity of a query of the form q = (v′1 < R.A1 < v′′1 ) ∧ . . . ∧ (v′d < R.Ad < v′′d )
(representing the intermediate result of more complex queries) is evaluated by access-
ing the joint frequency distribution [10] associated to R. The latter can be viewed
as a d-dimensional array F whose dimensions represent the attribute domains, and
whose cell with coordinates < v1, . . . , vd > stores the number of tuples of R where
A1 = v1, . . . , Ad = vd. The selectivity of the query q defined above is the answer of
the range-sum query Q=sum(〈[v′1..v′′1 ], . . . , [v′d..v

′′
d ]〉) posed on F , which returns the

sum of the frequencies contained in the multidimensional range 〈[v′1..v′′1 ], . . . , [v′d..v
′′
d ]〉

of F . As the size of F is generally very large, evaluating the exact selectivity of q (i.e.
the exact answer of Q) can be inefficient.

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2005, LNCS 3589, pp. 478–487, 2005.
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A widely accepted approach to the problem of providing fast estimates of query
selectivities consists in compressing F into a lossy synopsis F̃ , and then evaluating the
selectivity of queries by accessing F̃ rather than F . Histograms [10] are a well-known
approach for compressing the joint frequency distribution. A histogram over F is built
by partitioning F into a number of blocks (called buckets), and then storing for each
bucket b the number of tuples in R whose attributes have values belonging to the range
of b. The selectivity of q is estimated on the histogram by summing the values stored
in the buckets whose boundaries are completely contained inside the range-sum query
Q corresponding to q, and then by estimating the “contributions” of the buckets which
partially overlap the range of Q. These contributions are evaluated by performing linear
interpolation, under the assumption that the data distribution inside each bucket is “ho-
mogeneous” (that is, the joint distribution of attribute values underlying b is uniform).

As expected, on the one hand, querying the histogram rather than F reduces the
cost of evaluating selectivities (as the histogram size is much less than the original data
size); on the other hand, the loss of information due to summarization introduces some
approximation. Therefore, a crucial issue when dealing with histograms is finding the
partition which provides the “best” accuracy in reconstructing query selectivities.

Existing approaches provide reasonable error rates at low-dimensionality scenar-
ios, but worsen dramatically for higher-dimensionality data. On the one hand, this is
somewhat inevitable, since, as dimensionality increases, the size of the data domain
grows much more than the number of data points. That is, high-dimensionality data are
likely to be much sparser than low-dimensionality ones. This implies that the number
of buckets which should be used to effectively approximate data tends to explode as
dimensionality increases. For instance, consider two data distributions D2 (of size n2)
and D10 (of size n10), where the same number of data points are distributed, respec-
tively, on a two-dimensional and ten-dimensional domain. If we use the same number of
buckets to partition D2 and D10, buckets of D10 are likely to be much larger in volume
than those of D2. Therefore, the aggregate information associated to buckets of D10

is less localized than buckets of D2 (as the aggregate value associated to each bucket
is spread onto a larger volume), thus providing a poorer description of the actual data
distribution.

On the other hand, the low accuracy in query estimates provided by traditional his-
tograms is also due to the ineffectiveness of the adopted heuristics guiding the his-
togram construction. That is, traditional techniques for constructing histograms often
result in partitions where dense and sparse regions are put together in the same bucket1,
which yields poor accuracy in describing data. For instance consider the bucket shown
in Fig. 1(a), where a dense cluster is put together with a sparse region. As the bucket is
summarized by the sum of its values, estimating either Q1 and Q2 shown in Fig. 1(b) by
performing linear interpolation yields a high error rate, since the total sum is assumed
to be homogeneously distributed inside b. In fact this assumption is far from being true:
most of the sum of b is concentrated in the dense cluster on the right-hand side of b.

Therefore, it’s our belief that improving the ability of distinguishing dense regions
can result in more accurate partitions, as this prevents buckets like that of Fig. 1(a)

1 In Section 3 we will give an evidence of this, by showing partitions of the data domain gener-
ated by traditional techniques.
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Fig. 1. A non-homogeneous bucket b and two queries involving b

from being constructed. The problem of searching homogeneous regions is very close
to the data clustering problem, i.e. the problem of grouping database objects into a
set of meaningful classes. This issue has been widely studied in the data mining con-
text, and several algorithms accomplishing data clustering have been proposed. For the
sake of brevity we do not provide a classification of existing clustering techniques. The
interested reader can find a detailed survey in [7].

This work aims at enhancing the histogram construction by exploiting the capa-
bility of clustering techniques to locate dense regions. We define a new technique for
constructing multi-dimensional histograms which first invokes a density-based cluster-
ing algorithm for partitioning the data into dense and sparse regions, and then further
refines this partitioning by adopting a grid-based paradigm.

2 CHist: Clustering-Based Histogram

Our technique works in three steps. At the first step clusters of data and outliers (i.e.
points which do not belong to any cluster) are located. At the second step, these clusters
and the set of outliers are treated as distinct layers, and each layer is summarized by
partitioning it according to a grid-based paradigm. At the last step the histogram is
constructed by “assembling” all the buckets obtained at the previous step.

The three phases of our approach are described in detail in the following sections.
The description of the algorithm is provided by assuming a d-dimensional data distri-
bution D. D will be treated as a multi-dimensional array of integers of size nd (without
loss of generality the edges of D are assumed to be of the same size). That is, values
of data points of the input distribution are represented into cells of D. The cells of D
which do not correspond to any data point contain the value 0. A query Q on D is spec-
ified by a multidimensional range of the domain of D and its answer is the sum of the
values of the cells of D inside this range.
Any sub-array of D will be referred to as a bucket. The volume of a bucket b (i.e.
the number of cells of the sub-array) will be denoted as vol(b), the sum of data point
values inside b as sum(b). In order to measure the homogeneity of the data inside a
bucket we adopt the SSE (namely Sum Square Error), defined as follows: SSE(b) =∑

i∈b (b[i] − avg(b))2, where: avg(b) is the average of cell values inside b; the expres-
sion i ∈ b means that i denotes the coordinates of a cell inside b; b[i] denotes the value
of the cell of b with coordinates i. The amount of available storage space for the repre-
sentation of the histogram will be denoted as B.
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2.1 Step I: Clustering Data

In our prototype, we have embedded the clustering algorithm DBSCAN [3] in order to
group input data into dense clusters. Indeed, our approach can be viewed as orthogonal
to any clustering technique: we have chosen DBSCAN as it is representative of density-
based clustering algorithms.

The idea underlying DBSCAN is that points belonging to a dense cluster (except
those points lying on the border of the cluster) have a dense neighborhood. A point p
is said to have a dense neighborhood if there are at least MinPts distinct points whose
distance from p is less than Eps (both Eps and MinPts are parameters crucial for the
definition of clusters). Points with a dense neighborhood are said to be core points.
DBSCAN scans input data searching for core points. Once a core point p is found, a
new cluster C is created, and both p and all of its neighbors are grouped into C. Then C
is recursively expanded by including the neighbors of all core points put in C at the last
step. When C cannot be further expanded, DBSCAN searches for other core points to
start new clusters, until no more core points can be found. At the end of the clustering,
points which do not belong to any clusters are classified as outliers. Fig. 2 shows an
example of clustering obtained by DBSCAN.

Fig. 2. Running DBSCAN on a set of points

2.2 Step II: Summarizing Data into Buckets

At this step the input data distribution is viewed as a superposition of layers. Each layer
is either a cluster or the set of outliers. In the following we will denote the layer consist-
ing of outliers as L0, and the layers corresponding to dense clusters as L1, . . . , Lc. L0
will be said to be the outlier layer, whereas L1, . . . , Lc will be said to be cluster layers.
Each layer is represented by means of its MBR.

The different layers are summarized separately by partitioning their MBRs into
buckets. This aims at preventing the construction of buckets where dense and sparse
regions are put together, which, as explained before (see Fig. 1), can yield poor accu-
racy. In more detail, our approach works as follows.

(Step II.a) Before summarizing the layers into buckets, possible peaks are located
among the set of outliers. In order to detect peaks we use a threshold parameter (namely,
t) to decide whether an outlier is a peak or not: if the value of an outlier o is greater than
t times the average value of input points, then o is a peak, and will be removed from L0
and stored in detail (this can be viewed as creating buckets containing single points). In
our experiments we used the value t = 3.
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(Step II.b) The amount of storage space left from the representation of peaks is invested
to summarize the clusters and outliers not previously selected. Layers are summarized
independently of each other, and the summary of the whole data distribution will be the
superimposition of the summaries of all layers.

The summarization of layers is accomplished by a multi-step algorithm which, at
each step, summarizes a single layer by partitioning it according to a grid and storing,
for each bucket defined by this grid, both its MBR and the sum of its values (obviously,
the cells of this grid which do not contain any data point result in an empty MBR
which is not stored). The MBRs of buckets obtained from the summarization of cluster
layers will be said to be c-buckets, whereas the MBRs of the buckets constructed by
partitioning L0 will be said to be o-buckets.

Indeed, layer L0 is processed after the summarization of all the cluster layers. In
particular, before summarizing the outlier layer, we scan all outliers to locate those
lying onto the range of some c-bucket. Each outlier o which lies onto some c-bucket is
removed from L0 and “added” to one c-bucket whose range contains the coordinates of
o 2. This allows us to view c-buckets as “holes” of L0, in the sense that, after performing
this task, there are no points lying onto the range of some c-bucket which belong to L0.
As it will be clear in the following, this will be exploited in the physical representation
of the histogram to improve its accuracy.

We now describe how the available storage space is used to summarize layers. Let
Bi be the amount of memory which is left from the i− 1 previous summarization steps
(at the first step, B1 is the residual of the initial amount of storage space which is left
from the representation of peaks). The portion of Bi which is invested to summarize
Li is denoted as B(Li) and is computed by comparing the need of being partitioned
of Li with all remaining layers Li+1, . . . , Lc, L0. The need of being partitioned of a
layer L is estimated by computing its SSE (denoted as SSE(L)), thus B(Li) = Bi ·

SSE(Li)
SSE(L0)+

∑
c
j=i+1 SSE(Lj)

.

We now show how B(Li) is exploited to store a partition of Li into buckets. The
idea is to partition Li according to a grid and store, for each cell of the grid containing
at least one point, the coordinates of its MBR and the sum of the values occurring in it.
The grid on a layer Li is constructed as follows.

If we denote as W the amount of storage space needed to store a bucket3, the number
of buckets produced by the grid on Li can be no more than nb = $B(Li)

W %. Thus, if tj
is the number of divisions of the grid along the j-th dimension of Li, it should be∏d

j=1 tj = nb.
We partition each edge of the MBR of the layer to be summarized into a number of

portions which is proportional to the length of the edge itself. Let wj be the length of
the edge along the j-th dimension, and tj be the number of divisions performed along

the same dimension. Choosing tj = wj · d

√
nb

vol(Li)
(where vol(Li) is the volume of

2 If more than one c-bucket contains o, one of these c-buckets is randomly selected to incorporate
o. Adding an outlier o to a c-bucket b means removing o from L0 and adding the value of o to
sum(b).

3 We use 2 ·d 32-bit words for storing bucket boundaries, and one 32-bit word for storing the
sum-aggregate
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the MBR of Li), guarantees both that
∏

tj = nb and that the grid degree along each
dimension is chosen by weighting the corresponding edge size. Indeed, this formula
can result in non-integer value coefficients t1, . . . , td.

Therefore we use the following strategy to construct the grid. The degrees of the grid
along each dimension are computed progressively, starting from t1 to td, according to
the following scheme:

t′
1 = max{�t1�, 1}; t′

2 = max
{⌊

t1·t2
t′
1

⌋
, 1
}

; . . . t′
d = max

{⌊∏
d
j=1 tj∏d−1
j=1 t′

j

⌋
, 1
}

.

That is, the value of each tj is approximated to t′j by taking into account the ap-
proximations already performed at the j − 1 previous steps.

2.3 Step III: Representation of the Histogram

The strategy adopted to compress layers can yield overlapping buckets. In particular,
buckets aggregating points of L0 (the layer consisting of outliers) are likely to be larger
than buckets describing clusters. Therefore, several c-buckets b1, . . . , bk can lie onto
the range of an o-bucket b. In this scenario b1, . . . , bk can be viewed as “holes” of b,
as the aggregate information associated to b does not refer to points contained inside
b1, . . . , bk. We now show how this observation can be exploited to make query estima-
tion more accurate. In the following, given an o-bucket b, the set of c-buckets completely
contained into b will be denoted as Holes(b).

Consider the scenario depicted in Fig. 3(a), where the query Q1 intersects one half
of the range associated to the bucket b. Adopting linear interpolation to estimate Q1

returns: Q̃1 = vol(Q1∩b)
vol(b) · sum(b), where Q1 ∩ b refers to the intersection between

the query range and the range of b. In fact points belonging to the ranges of b1, . . . , b9
give no contribution to the value of sum(b). Therefore, a more precise estimate for
Q1 is: Q̃1 = vol(Q1∩b)

vol(b)−vol(b1,...,b9)
· sum(b), where vol(b1, . . . , b9) denotes the volume

of the range underlying the buckets b1, . . . , b9. Likewise, the bucket b should give no
contribution to the estimate of the query Q2 in Fig. 3(b), which lies completely on the
range underlying the buckets b1, . . . , b9.

Fig. 3. O-buckets with holes

In the following the number of cells of an o-bucket b which are not contained in
any hole of b will be said to be the actual volume of b. In the case depicted in Fig. 3(a)
evaluating the actual volume of b can be accomplished efficiently, as b1, . . . , b9 do not
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Fig. 4. Nested representation of buckets

overlap. Indeed also c-buckets inside an o-bucket b can intersect one another 4. For
instance, in Fig. 3(c) the three buckets b1, b2, b3 inside b overlap. In this case computing
the actual volume of b requires vol(b1), vol(b2), vol(b3), vol(b1 ∩ b2), vol(b2 ∩ b3) and
vol(b1 ∩ b2 ∩ b3) to be computed. This computation becomes more and more complex
when more buckets intersect in the same region: we need to compute the volumes of
all the intersections between 2 holes, 3 holes, and so on. Obviously, this slows down
query estimations. Due to this reason, we prefer to estimate the actual volume of an
o-bucket b involved in a query instead of evaluating its exact value: To this end we
consider only a maximal subset of Holes(b) (denoted as NOHoles(b)) consisting of
non-overlapping c-buckets, thus avoiding intersections between holes to be computed.
For instance, in the case depicted in Fig. 4(a) we can estimate the actual volume of b as
vol(b)−vol(b1)−vol(b3). However we point out that from our experiments on real-life
data it turned out that intersections between c-buckets are unlikely to occur.

The adopted representation model partitions buckets into two levels. The buckets at
the second level are those belonging to NOHoles(b) for some b. The first level consists
of all the other buckets.

The physical representation model can be exploited to evaluate query answers effi-
ciently, as it is easy to see that query answers can be estimated by accessing each bucket
at most once.

Observe that representing some c-buckets as holes of o-buckets introduces no spa-
tial overhead on the representation of o-buckets. That is, the two-levels organization
of buckets can be linearized by representing buckets into two distinct sequences S1,
S2. In particular, S1 contains all o-buckets and their non-overlapping holes: each o-
bucket b is followed by the representation of c-buckets in NOHoles(b) (see Fig. 4(c)).
Thus, locating non-overlapping holes of an o-bucket b at position i in this sequence
can be accomplished by scanning the positions of the sequence following i, till ei-
ther the end of the sequence or an o-bucket having an empty intersection with b is
reached (for instance, the holes b1, b3 of b occur in the sequence between b and b′).
Sequence S2 contains all c-buckets which do not belong to any NOHoles(b) for any
o-bucket b.

This explains why we do not consider c-buckets which partially overlap o-buckets
as holes. For instance, when estimating the query Q of Fig. 4(a), bucket b4 is not taken
into account to estimate the actual volumes of b and b′. Otherwise we should insert into
both the representations of b and b′ a reference to b4 (which cannot be accomplished by

4 Although no pair of clusters C1, C2 can overlap (otherwise C1, C2 would be a unique cluster),
MBRs of clusters can overlap (see Fig. 3(c)). Thus partitioning overlapping MBRs can result
in overlapping c-buckets.
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a sequential physical representation of the histogram), and moreover bucket b4 should
be accessed more than once to estimate queries involving b and b′.

3 Experimental Results

In this section we present some experimental results comparing the accuracy of es-
timating query selectivities by means of CHIST with state-of-the-art techniques. The
accuracy of a histogram F̃ built on the joint frequency distribution F of an input rela-
tion R is measured by evaluating the average relative error of the estimates obtained by
accessing the histogram. Given a query q on R, we denote the range-sum query on F
denoting its selectivity as Q, and the estimate of Q evaluated on F̃ as Q̃. The relative er-

ror of the estimate Q̃ is defined as: erel = |Q−Q̃|
max{1,Q} . We performed several experiments

both on synthetic and real-life data.

Synthetic Data. Our synthetic data are similar to those of [4]. They are generated by
creating an empty d-dimensional array D of size nd, and then by populating r regions
of D by distributing into each of them a portion of the total sum value T . The size of the
dimensions of each region is randomly chosen between lmin and lmax, and the regions
are uniformly distributed in the multi-dimensional array. The total sum T is partitioned
across the r regions according to a Zipf distribution with parameter z. To populate
each region, we first generate a Zipf distribution whose parameter is randomly chosen
between zmin and zmax. Next, we associate these values to the cells in such a way
that the closer a cell to the centre of the region, the larger its value. Outside the dense
regions, some isolated non-zero values are randomly assigned to the array cells. As
explained in [4], data-sets generated by using this strategy well represent many classes
of real-life distributions.

Real Life Data. We considered a real-life data set which will be referred to as For-
est Cover. It was obtained from the U.S. Forest Service and is available at the UCI
KDD archive site. It consists of 581012 tuples having 54 attributes. Among these, 10
attributes are numerical. As in [5], we considered the tuples projected on these numer-
ical attributes, thus obtaining a 10-dimensional data distribution which will be denoted
as FC10. We projected FC10 on five attributes, thus obtaining a 5-dimensional data dis-
tribution which will be denoted as FC5.

MHIST [10], MinSkew [1], and GENHIST [5] are the state-of-the-art techniques which
were compared with CHIST in our experiments. The comparison was accomplished
by considering histograms (with the same number of buckets) obtained by the four
techniques. We investigated how the accuracy depends on the number of buckets and
on the exact selectivity of the queries. Diagrams (a, d) in Fig. 5 refer to 8-dimensional
synthetic data (d = 8; n = 1000; T = 200000; r = 200; zmin= 0.5; zmax= 2.5; lmin =
30; lmax= 200). Diagrams (b, e) in Fig. 5 were obtained on FC5, whereas diagrams (c,
f) refer to FC10.

The query workload was constructed by first randomly generating 10000 query cen-
ters in the data domain; then, for each of these centers, queries with increasing selec-
tivity were generated by progressively enlarging the query volume, till a selectivity
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Fig. 5. Accuracy of techniques on 8D synthetic data (a,d), FC5 (b,e), FC10 (c,f)

threshold is reached (this threshold is 6.4% for synthetic data, and 5% for real-life
data). Finally, the results on the accuracy of the answers were grouped by the query
selectivity.

From the analysis of the diagrams in Fig. 5 it turns out that, for all the techniques,
the accuracy of estimates improves as the number of buckets increases. Likewise, error
rates decrease as selectivity increases. This is mainly due to the fact that queries having
higher selectivity are likely to have larger volumes: the larger the volume, the more
the buckets of the histogram which are completely contained in the query range (such
buckets give an exact contribution to the query evaluation).

Diagrams in Fig. 5 show that CHIST outperforms all the other techniques on both
synthetic and real-life data.

4 Conclusions

We have proposed a new technique for constructing multidimensional histograms pro-
viding high accuracy for selectivity estimation. Our technique invokes a density-based
clustering algorithm to partition data into dense and sparse regions which are further
partitioned according to a grid-based scheme. We compared our technique with the state
of the art on both synthetic and real-life data, showing that it yields the best accuracy.
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In our prototype we adopted the well-known clustering algorithm DBSCAN, whose
execution time turns out to dominate the cost of the histogram construction. In fact
DBSCAN is known to provide poor performances (in terms of computational cost) on
large data sets with high-dimensionality. Future work will aim at considering different
clustering techniques to be embedded into our approach, in order to study how they can
be exploited to improve the histogram construction cost while preserving its accuracy.
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Abstract. Clustering is a task of grouping data based on similarity. A popular 
k-means algorithm groups data by firstly assigning all data points to the closest 
clusters, then determining the cluster means. The algorithm repeats these two 
steps until it has converged. We propose a variation called weighted k-means to 
improve the clustering scalability. To speed up the clustering process, we 
develop the reservoir-biased sampling as an efficient data reduction technique 
since it performs a single scan over a data set. Our algorithm has been designed 
to group data of mixture models. We present an experimental evaluation of the 
proposed method.  

1   Introduction 

Clustering is the automatic grouping of data based on similarity. There exists a large 
number of clustering techniques, but the most classical and popular one is the 
k-means algorithm [1]. Given a data set containing n objects, k-means partitions these 
objects into k groups. Each group is represented by the centroid of the cluster. Once 
cluster representatives are selected, data objects are assigned to the nearest centers. 
The algorithm iteratively selects new better representatives and reassigns data objects 
until no change is made. At this point the algorithm is said to converge. Even though 
k-means is an effective clustering algorithm, it can sometimes converge to a local 
optimum. Many methods [2,3,4,5] have been developed to extend the k-means with 
the common objective of avoiding converging to a bad local optimum. Some methods 
[6,7,8] search for the best initialization because k-means is known to be sensitive to 
initial point selection. Other research [9] seeks for the global optimum, at the cost of 
computation. These researches try to solve the problem of sub-optimal clustering and 
estimation the appropriate number of clusters [10,11]. 

Another difficulty of clustering with k-means is that it fails to identify clusters with 
large variation in sizes since original large clusters tend to be split. Clustering 
algorithms, such as DBSCAN [12] and CURE [13], have been developed to overcome 
this kind of difficulty. DBSCAN associates a data point with its density obtained by 
counting the number of points in a region of radius ε. The algorithm discovers clusters 
by connecting regions with sufficient high density, a MinPts threshold. DBSCAN 
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works well in spatial clustering, but it is sensitive to the selection of ε and MinPts and 
it fails to efficiently discover clusters with highly different densities. CURE algorithm 
represents a cluster by a set of points, instead of a single representative. Once the 
representative points are chosen, the algorithm then shrinks these points toward the 
centroid of the cluster according to a shrinking factor. CURE is an iterative 
hierarchical-based clustering that works well with discovering cluster of different 
sizes, but it is sensitive to the selection of representatives and shrinking factor. 
Moreover,  with very large data set, these algorithms degrade considerably. 

When clustering massive data set, data reduction is an effective technique to speed 
up the algorithm. Sampling [14,15,16] is a powerful data reduction paradigm to 
remedy the inherent complexity of clustering. Uniform random sampling in which 
every data point has the same probability of being selected has been used extensively 
in data mining and databases [17,18,19,20]. In the case of data sets with large 
variation in cluster sizes, density biased sampling [21,22,23] tends to be a better 
scheme. In density biased sampling, the probability that a data point will be included 
in the sample is varied by the density of a cluster. 

Recent researches [21,22,23] propose several techniques to density biased 
sampling. Our work also follows this path with a step further on extending the 
k-means algorithm to work with a weighted sample. We propose an algorithm on 
density biased sampling based on the reservoir technique and a weighted k-means 
algorithm to cluster a data sample augmented with weights. The proposed algorithms 
are explained in Sections 2 and 3, respectively. We present the experimental results in 
Section 4. The conclusion and our future work are discussed in Section 5. 

2   Data Reduction Biased by Density 

On scalable popular and successful clustering methods such as k-means to work 
against large data sets, many algorithms like BIRCH [24] and CLARANS [14] 
employ the sampling technique to minimize data sets. In BIRCH, a CF-tree structure 
is built after an initial random sampling step. The CF-tree is used as a summarized 
data structure with statistical representations of space regions stored on leaf nodes. 
After the phase of CF-tree building, any clustering algorithm can be applied to the 
leaf nodes. CLARANS also uses uniform sampling to derive initial representative 
objects for the clusters. 

The sampling technique used in these algorithms is uniform random sampling, 
which assigns every object the same probability of being included in the sample. But 
many data sets in real life do not follow the uniform distribution scheme. It instead 
seems to follow the Zipf’s distribution [25], for instance, income and population 
distribution. In these data sets, some areas such as large metropolitan area have much 
higher population density than the small cities. If all the populations have equal 
opportunity of being selected as a representative, sparse areas may be missed and not 
be included in the sample.  

2.1   Density-Biased Sampling  

Density biased sampling [21] is a sampling technique that takes into account the 
different sizes of the groups. Small groups or sparse regions are assigned higher 
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probability to be included in the sample than the large groups or dense regions. By 
biasing the sampling process, small clusters will not be missed or overlooked as outliers. 

Recent advancement on clustering very large data sets in which summarized data 
structure is even too big to fit into main memory, sampling is independently applied 
to the data set prior to the subsequent clustering phase. Palmer and Faloutsos [21] 
develop a non-uniform sampling method for clusters that differ very much in size and 
density. Their method is a generalization of uniform random sampling in that every 
group of data sets can be assigned different probability of being drawn. When 
sampling is biased by group density, smaller groups are oversampling, whereas larger 
groups are under- sampling. Since clusters are not known a priori, Palmer and 
Faloutsos combine the phase of density information extraction with the biased 
sampling phase using the hash-based approach. They argue that the inherent collision 
problem of any hash-based approach will not dramatically degrade the sample. 

Nevertheless, their method is significantly affected by noise due to the tendency of 
oversampling noisy area. Our approach adopts the reservoir technique to eliminate the 
collision problem of hash-based approach and it is independent on the assumption 
regarding cluster distribution to avoid the impact of noise.   

2.2   Density-Biased Reservoir Sampling 

We propose a novel approach of adapting reservoir technique [26,27] to perform a 
density biased sampling on large data sets. Our algorithm can obtain a desired sample 
through a single data set scan. The proposed method is simpler and requires less 
resource than the hash-based method [21]. 

A reservoir-sampling algorithm [26,27] is a simple, unbiased random sampling 
algorithm for drawing a sample of size n without replacement from a population of 
size N (N ≥ n). Vitter [26] has developed a one-pass reservoir-sampling algorithm 
when the population size (N) is unknown and cannot be determined efficiently. The 
term “reservoir” defines a storage area j (j ≥ n, but mostly j = n) to store the potential 
candidates of the sample. The j reservoirs are initialized to store the first j records of 
the file, that is, all areas of the reservoir pool are initially filled up. Then the algorithm 
starts scanning the remaining part of the file with a randomly skipping step. The 
randomly selected record is evaluated as to whether to replace an existing record in 
the reservoir pool. If it passes the test, the position in the reservoir is also randomly 
selected. The process stops when the end of file has been reached and the records in 
the reservoir form a simple random sample of the population. The general procedure 
of reservoir-sampling algorithm [27,28] is given in Figure 1. 

The time complexity of the algorithm is shown [26,27] to be O(n (1+ log(N/n)). In 
the reservoir-sampling algorithm, each record of the file is assigned a uniform (0,1) 
random number. When the reservoir is needed to be updated, each record in the 
reservoir has the same chance to be replaced by the new record. 

Our sampling algorithm generalizes the reservoir scheme for the case of data with 
different density distribution. In our proposed method, the initial step of partitioning 
data into groups resembles that of Palmer and Faloutsos [21]. But our subsequent 
steps are not based on hashing scheme in order to avoid the effect of noise and 
collision problems. 
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Algorithm Reservoir sampling       
      Input:     a sequential file of N population       
      Output:  a random sample of size n (n ≤ N)  

1)  Initialize the reservoir X1, ..., Xn to be the first n records of the file  
2)  Initialize W to be the largest value in a sample of size n from the uniform   

distribution on the interval (0, 1)  
3)  While not eof do  
4)       Generate the random variable S to denote the number of records to be skipped 

over before a new record can enter the reservoir  
5)        If  (not eof)  Then Search for the next potential record to be in the reservoir  
6)                             Else   return X1, ..., Xn  
7)        Update X and W  

Fig. 1. Reservoir-sampling algorithm 

After the initial step of dividing the data space into bins of equal size, the informa- 
tion of the first n groups are put into the n reservoirs residing in main memory (see 
Figure 2a). The collected information includes the number of points in each group and 
the id of the group. 

The algorithm performs a single scan on a data set in a random manner controlled 
by a random variable S with the distribution W. The density biasing (step 7 in Figure 
3) is achieved through the consideration of two consecutive data groups. The δ 
threshold is set to detect the cluster edge. Intuitively, a sudden increase or decrease in 
density with respect to its neighboring area reflects the bordering situation. For 
example, if the group gi contains 30 data points whereas the adjacent group gi+1 
contains only 2 data points, gi+1 is highly probably the boundary area of the cluster. 
With δ being set to 20, for instance, the group gi is then a candidate to be included in a 
sample. The ε value is a threshold to detect noisy and outlier cases. The sparse area is 
presumably to contain noise or outlier, thus, it should not be put in a sample if its 
density even combined with the nearby group is below this ε threshold value. 

 
(a) initialize the reservoir (b) update reservoir randomly 

Fig. 2. Density biasing in a reservoir scheme 
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Figure 2(b) shows the reservoir update for the case of δ and ε values being set to 15 
and 5, respectively. The random variable S is assumed to reach the data group <3,1>. 
On comparison with the adjacent group <3,2>, its density is above the threshold 
values δ and ε (i.e., ||density<3,1> - density<3,2>|| = 25-6 = 19 and density<3,1> + 
density <3,2> = 31), thus, the denser group <3,1> is a candidate to be included in a 
sample and is placed in the reservoir pool at a randomly selected position 1. The 
density-biased sampling proceeds until the skipping variable S reaches the end of the 
data groups. 

Algorithm Density-biased reservoir sampling       

     Input:     a data set of N objects       
     Output:  a  density-biased sample of size n (n ≤ N) associated with weight w  

1)  Partition data into g groups (with group-id 1,2,..., g), g ≥ n  

2)  Initialize the reservoir X1, ..., Xn to be the first n  <group-id, density>-pairs of the 
data groups  

3)  Set W ← exp(log (random()) / n)            // initialize W that will be used in the                
                                                                             //  generation step of a random variable S  

4)  Set  S ←  log (random()) / log(1-W)   

5)  While S < g  do  

6)       Read data groups gS  and  gS+1            // read two consecutive data groups  

7)       If  (||density(gS) − density(gS+1)|| > δ ) OR ((density(gS) + density (gS+1)) > ε)       

                                                          //  δ and ε are predefined density threshold values    

          Then  X 1+  n∗ random ()   ← <group-id, density> of maximum density{gS , gS+1} 
                                                                 // randomized the reservoir area to be updated  

8)       W ← W ∗ exp(log (random()) / n)          // update W for the skipping process     

9)       S ←  log (random()) / log(1-W)           // generate S to denote the number of  
                                                                                  // groups to be skipped over    

10) Return X1, ..., Xn 

Fig. 3. Density-biased reservoir sampling algorithm 

3   Weighted K-Means Algorithm 

The classical k-means algorithm [1] is a fast method to perform clustering. The 
algorithm consists of a simple re-estimation procedure as outlined as follows. The 
original n data points to be clustered are contained in the dataset X = {x1, ..., xn}. The 
k-means algorithm partitions n data points into K sets. The assignment of a data point 
xi to its nearest cluster center cj is decided on the basis of the membership function, 
m(cj|xi). The function returns either one of the {0,1} values:  m(cj|xi) = 1 if  j = 
argmink||xi - ck||

2; it is zero, otherwise. The new centroids of clusters can be computed 
from all data points xi in the cluster. The objective function J of the algorithm is to 
minimize the sum of error squared, J = i = 1:n minj ∈ {1..k} || xi - cj ||

2. 
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Algorithm Weighted k-means       

     Input:   a set of n data points obtained from the density-biased reservoir sampling, 
                 and the number of clusters (K)       
     Output:  centroids of the K clusters  

1)  Initialize the K cluster centers  

2)  Repeat   
                 Assign each data point to its nearest cluster center according to the 

membership function, 

m(cj|xi) =     || xi - cj ||
-p-2  

 
j = 1:k || xi - cj ||

-p-2  

3)              For each center cj, recompute the cluster center cj using the current cluster 
memberships and weights, 

cj = 
i = 1:n  m(cj|xi) w( xi) xi  

 
i = 1:n  m(cj|xi) w( xi)  

                   where w(xi)  is a weight associated with each data point 

4)  Until there is no reassignment of data points to new cluster centers 

Fig. 4. Weighted k-means algorithm 

In k-means algorithm, every data point has equal importance in locating the 
centroid of the cluster. This property does no longer hold in the case of density-biased 
sample clustering, for which each data point represents varied density in the original 
data. Therefore, the clustering algorithm has to consider a weight associated with each 
data point in the computation of cluster centers. The proposed extension to the 
k-means algorithm is called weighted k-means. Figure 4 outlines the algorithm. 

The membership function in the weighted k-means algorithm resembles that of the 
k-harmonic means algorithm [5]. Zhang [5] also introduces the weight function, w(xi), 
in his algorithm to accelerate the recomputation of the new centroids in the next 
iteration. The weight function in our algorithm, however, is introduced for different 
purpose. It represents the density of the original data points. 

4   Experiments and Results 

We perform two sets of experiments to test the quality of our sampling method, which 
is the step prior to clustering, and to measure the quality of the weighted k-means 
algorithm. 

4.1   Performance of Density-Biased Reservoir Sampling  

We evaluate the performance of the proposed reservoir-based density bias sampling 
method against the hash-based sampling method [21]. The efficiency regarding 
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memory usage of our reservoir-based sampling method is obviously better than the 
hash-based method. In the hashing scheme, some amount of memory is needed to 
store the hashing table in addition to the memory required for storing the drawn 
sample. Thus, it requires twice the amount of memory comparative to those required 
by our method. 

Effectiveness of the proposed sampling method is examined by measuring the 
quality of a sample with respect to the number of correctly found clusters. We run 
clustering using the k-means algorithm. We use a synthetic data generator to generate 
d-dimensional data sets having k clusters and N data points. We vary d  from 2 to 5, k 
from 2 to 10, and N from 5,000 to 100,000. 

The measurement Number of Clusters found (NC) is the metric defined in [21]. NC 
is calculated by comparing the distances of the cluster centers found by the clustering 
algorithm with the true cluster centers. We say that the cluster is found if the 
calculated distance is less than a predefined threshold (e.g., 0.001). 

The results in Figure 5 show the NC when run clustering on various sample sizes 
with the presence of noise. The reported results are observed from the experiments 
using 3-dimensional data set having 7 clusters. One cluster contains 50,000 points and 
the other six clusters contain 500 points. The results obtained from other experiments 
on data sets with different dimensions, various number of clusters, and varied number 
of data points are conformed with the one presented in Figure 5, so we omit them for 
brevity. The experimental results reveal the efficiency of the biased reservoir method 
especially in the presence of noise. 
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Fig. 5. Finding clusters of 3-dimensional data on various sample sizes, in the presence of noise 

4.2   Performance of Weighted K-Means Algorithm  

We evaluate the quality of the weighted k-means algorithm against the k-means 
algorithm by using the squared objective function. Lower value of a squared 
objective function reflects a better quality on clustering. The experiments perform on 
the syntactic data sets explained in Section 4.1. The initialization step randomly 
selects data points as initial cluster centroids. We also consider running time of both 
algorithms.  

The performance evaluation as shown on top of Figure 6 is obtained from running 
k-means and weighted k-means algorithms on 3-dimensional data sets of sizes varied 
from 5000, 10000, 20000, 35000, 55000, 75000, to 100000 data points. The number 
of clusters is set to be 10. The experiments are performed on the PC with CPU speed 
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800 MHz, memory 512 MB. Since all data points are used in weighted k-means 
algorithm, the weight function is set to be 1. The parameter p in the membership 
function is set to be 1.3. 

The comparison on clustering quality and running time shown at the bottom of 
Figure 6 reveals the efficiency of running weighted k-means on density-biased 
sample. The experiments are performed on 10% sample of data with two methods of 
sampling: simple random sampling (RS) and density-biased reservoir sampling 
(DBS). The weight function of the weighted k-means algorithm is varied according to 
the density of the original data. 

5   Conclusions 

The k-means is the simplest and most commonly used clustering algorithm. The 
simplicity is due to the use of squared error as the stopping criteria, which tends to 
work well with isolated and compact clusters. Its time complexity depends on the 
number of data points to be clustered and the number of iteration. We propose a 
variation of the k-means to better work with a large data set having much difference 
in cluster density. Our intuition idea is that to cope with massive data set, sampling 
should be the efficient data reduction method. Since the original data is assumed to be 
much varied in cluster sizes, density-biased sampling is an appropriate method to 
preserve the density.  
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We propose a density biased sampling technique based on the reservoir method. 
The inherent advantage of efficient memory usage in the reservoir scheme is adopted 
and extended with the additional capability of dealing with data that are much 
different in density distribution. The proposed technique is designed to lessen the 
effect of noise as it is the case in the hash-based approach. The experimental results 
have shown that the proposed method is as good as the hash-based method in 
discovering correct number of clusters. Our method, moreover, is less sensitive to 
noisy data even when the percentage of noise is greater than 20.  

We also develop the weighted k-means algorithm to better cluster a sample data 
biased by its density. The results demonstrate the efficiency of the algorithm. The 
evaluation of the proposed methods on real large databases and the consideration of 
outliers are our future work. 
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Abstract. The study of the use of computers through human computer
interfaces (HCI) is essential to improve the productivity in any com-
puter application environment. HCI analysts use a number of techniques
to build models that are faithful to actual computer use. A key tech-
nique is through eye tracking, in which the region of the screen being
examined is recorded in order to determine key areas of use. Clustering
techniques allow these regions to be grouped to help facilitate usability
analysis. Historically, approaches such as the Expectation Maximization
(EM) and K-Means algorithm have performed well. Unfortunately, these
approaches require the number of clusters k to be known beforehand -
in many real world situations, this hampers the effectiveness of the anal-
ysis of the data. We propose a novel algorithm that is well suited for
cluster discovery for HCI data; we do not require the number of clusters
to be specified a priori and our approach scales very well for both large
datasets and high dimensionality. Experiments have demonstrated that
our approach works well for real data from HCI applications.

1 Introduction

Usability studies are essential to asses the quality of a user interface. Interface
designers may wish to improve the efficacy of an interface or advertisers may
wish to determine which part of a webpage receives the most attention. Although
there are a number of ways to assess the quality of an interface, a key tool for
usability studies is tracking eye movements. In many situations, we may wish
to analyze the clusters resulting from the eye movements. These clusters may
then be directly matched against the interface components to provide more exact
information on various components.

There are a number of domains in which clustering techniques are used, for
instance Micro-Array analysis, marketing and finance. Unfortunately, existing
approaches require input parameters that often require good cluster analysis
techniques in addition to knowledge of the algorithm being used. Moreover, in
many cases, domain specific knowledge is also required - this can drastically
increase the time between data being collected, and usable knowledge being
discovered.

Our aim is to develop an algorithm that can be used immediately at the
completion of a eye-tracking or usability testing session. Ideally, we wish for
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minimal effort to be required to determine algorithmic parameters that result in
high quality clusterings. In this paper, we propose a novel clustering technique
that is scalable and particularly suited for the analysis of eye gaze usability data.
This enables us to automatically determine the number of clusters, and hence
relevant screen components, very quickly.

The remainder of this paper is structured as follows. We begin by examining
some of the related work for usability analysis through the use of eye move-
ment and gaze analysis in addition to some of the more prominent clustering
techniques. This is followed by the basics of our clustering algorithm which we
extend to multiple dimensions. Section 4 provides an experimental evaluation of
our approach which we augment with a discussion illustrating the usefulness of
our algorithm with respect to HCI tasks.

Contribution. Our contribution is a robust clustering algorithm, MCA, that
is scalable in terms of both data set size and dimensionality. Unlike other ap-
proaches, MCA does not require the number of clusters to be known a priori,
instead determining the number of clusters based on the data set itself requir-
ing only a single parameter representing a tolerable distance that points may
lie from the mean of a cluster. Moreover, we demonstrate empirically that this
threshold value falls within a small range for many real world data sets.

2 Related Work

Analysis of eye movements has enjoyed favorable attention from the CHI com-
munity. Uses of eye movement data includes analysis of web pages [7], [12], de-
termining where attention is drawn during problem solving [11], and providing a
basis for user interaction and control [13], [4]. Unfortunately, for many of these
problems, the cost of analyzing the gaze data can be cumbersome. Eye move-
ments must be recorded, the data preprocessed by a usability analyst knowledge,
discovered in the data such as important screen regions must be identified and
mapped to interesting screen components.

There have been a number of clustering algorithms proposed in the data
mining literature. Of these, possibly the most notable is the Expectation Max-
imization (EM) presented as the k-means algorithm or the similar k-medoid
algorithm. These algorithms begin with a number of seed points representing
clusters and assign each point to its nearest seed. k-means is intuitive, simple to
implement and effective for many real world clustering tasks, however k-means
suffers from a number of problems which make it particularly unsuitable for
analysis of eye tracking data:

– k, the number of clusters, is a parameter that must be specified beforehand.
This ensures that a minimum level of analysis of the data is required before
clustering can be performed.

– The choice of the k seed points greatly influences the final clustering. Be-
ing so susceptible to outliers means that the final clustering may be very
inaccurate; a single ’true’ cluster may be represented as two clusters in the
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clustering, while two ’true’ clusters may be represented as a single cluster. As
medians tend to be influenced to a lesser degree than means by the presence
of outliers, k-medoid is more robust than k-means, but the actual discrimi-
nation of points can still be heavily affected by the initial seed points.

In contrast, hierarchical approaches such as CHAMELEON, [8], assume that
all the data is comprised of a series of smaller clusters, which in turn are com-
prised of smaller clusters (or alternately, all data is a series of smaller clusters
that represent a series of larger clusters). A measure of similarity between pairs
of clusters is used to determine which should be merged and which should be
kept separate. Despite generally resulting in good clusterings, the scalability of
hierarchical methods is typically O(n2).

Other approaches include density bases techniques such as DBSCAN/
OPTICS which examines the density surrounding each point [1] (the same tech-
nique was used for the LOF outlier detection algorithm [2]. Points in high density
areas are placed into clusters with other nearby points that are also in high den-
sity areas. DBSCAN and OPTICS produce good clusters and requires only one
parameter, MinPts, the number of neighbors of each point to examine when de-
termining the density. Once density information has been collected, the running
time of both approaches is linear, however, DBSCAN and OPTICS require the
nearest neighbors to be found for each point as part of the clustering process,
making high dimensional cluster detection difficulty, requiring a running time
of O(n2). Additionally, there are a number of categorical and text clustering
approaches [6], [10], [9]. Although many of the approaches can be used for real
valued data, there is typically a high cost in terms of complexity. Of note is the
TURN* algorithm [5], a parameterless approach which is reasonably efficient.
TURN* calculates the closeness of points at various resolutions and uses this as
a measure to decide cluster membership.

3 Our Approach

In this section, we propose Mean Clustering Algorithm (MCA). There are two
main processes employed by MCA. Firstly, clustering is performed on each di-
mension. Secondly the results from the clustering of the initial dimension are fed
into the clustering process for the subsequence dimension, these steps are then
repeated. For clarity, we will begin by considering cluster detection for univariate
data, we then extend this approach for an arbitrary number of dimensions.

3.1 Single Dimension Clustering

Preliminaries. For the remainder of this paper, we will use Sd to denote a
set of points sorted by dimension d, Sd[i] representing the ith point in d. S is
drawn from at least one, although usually many and with varying parameters,
Normal distributions. Unless otherwise specified, we will assume that we iterate
through S in ascending order, so that Sd[i] < Sd[i+1]. A cluster, C, is an ordered
sequence of adjacent, in a given dimension, points. C +p denotes the assignment
of point p to cluster C and C

⊕
p represents the temporary assignment of p to C.
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Algorithm 1 Clusters a set of points based on one dimension
ClusterDim (Sd)
1: Clusters = ∅
2: C′ = ∅
3: Cnt = 0
4: for p ∈ Sd do
5: if NumDevs(C′ ⊕ p, p) < T then
6: C′ + x
7: else
8: if Cnt > 0 then
9: if CheckMerge(Clusters[Cnt], C′) then

10: Merge(Clusters[Cnt], C′)
11: if Did not merge then
12: Cnt = Cnt + 1
13: Clusters = Clusters.add(C′)
14: AdjustBorrowed(Clusters[Cnt − 1], C′)
15: C′ = ∅
16: return return Clusters

Approach. Let us consider a set of points drawn from a single standard nor-
mal distribution in one dimension - S1. If we were to iterate over these points,
keeping track of points observed, C′, in addition to the mean of the points ob-
served, C′, we would notice that as we ’approached’ a cluster C′ would begin at
the lowest value of C′ and begin to approach 0 we reached the tail the cluster
(at approximately 3). Moreover, the standard deviation of the observed points,
σ(C′), would begin to approach 1, the true value.

If we were to extend this example, and add another point, x, say at 10.0 -
ten standard deviations from the mean of the original observed points, we would
expect that, with a reasonable level of confidence, that x did not belong to C′. In
fact, if we were to specify a threshold of T standard deviations, we could classify
any points more than T ∗ σ(C′) from C′ as belonging to different clusters.

For clarity, we have two notions of a ’cluster’. Firstly, C, a cluster which is
complete and will have no more points added to it. The second type of cluster,
C′, represents a group of points that have been considered, but may have more
points added at a later stage. We will refer to clusters of the second type as biased
clusters. We now examine the algorithm for a single dimension as presented in
Algorithm 1.

We begin by creating an initial cluster C0
′, containing the first point of Sd.

The second point is observed and we test to determine whether it should be
included in C0

′. If it should be, then we add it to C0. We then repeat this for
the third point, fourth point and so on until we begin observing points that
should not be included in C0

′.
At this stage, we consider the remaining, unseen points to have a lower prob-

ability of belonging to C0
′ than we are inclined to accept. We then define a new

cluster C1
′. If Sd[n] is the last point of C0, we assign Sd[n + 1] to be the first
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Fig. 1. Example set of points in one dimension

point of C1
′. Following this, we resume testing for membership from Sd[n + 2]

onwards. The process of assigning points to the current cluster until they are
outside the acceptable threshold and then creating a new cluster is repeated
until all points in Sd have been assigned.

We illustrate this process with an example. Consider Figure 1, observing
the points from left to right and assuming a threshold of T = 3. Initially, a
new, empty cluster, C′

0, is formed and to which the point at 0 and the point
at 1 is assigned. The point at 1.5 is then tested and, as it is within 3 standard
deviations of (C′

0), it too is added to C′
0. Points are continually added until

we reach the observation at 5.5. As 5.5 is more than the tolerable number of
standard deviations from the mean of our cluster, we begin a new cluster and
resume testing points. We should note that as we are observing the points from
left to right, the mean of a biased cluster will be lower than the mean of the full
cluster.

3.2 Extension to Multiple Dimensions

Although the one dimensional component forms the crux of MCA, it is not
overly useful by itself. Let us imagine a bivariate set of data drawn from three
normal distributions; all with a variance of 4, the first with a mean of (2,2), the
second with a mean of (10,10) and the third with a mean of (10, 2). In order
to determine the structure of these points, we first perform a clustering on the
first dimension giving us two clusters. One cluster comprised of the points in
the normal at (2,2) while the second cluster will contain both the points in the
normal located at (10,10) and (10,2). The resulting clusters are then clustered
independently based on the second dimension. The result of clustering the first
cluster will simply be (2,2). However, the result of clustering the second cluster
in the context of the second dimension will be two clusters, firstly (10,10) and
secondly (10,2). Thus resulting in all three clusters being located.

To handle an arbitrary number of dimensions, we begin by taking the points,
and projecting them and then clustering them in the first dimension. As each
cluster found as a result of this process is separable from the other clusters
in the first dimension, we know that they should be kept as distinct groups.
Each of the clusters found as a result of the clustering in the first dimension
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Algorithm 2 Clusters points in multiple dimensions
ClusterPoints (S)
1: ChildClusters = ∅
2: for d = 0, 1 · · · num dims do
3: Sd = Load(d)
4: if ChildClusters.empty() then
5: ChildClusters = ClusterDim(Sd)
6: else
7: Clusters = ∅
8: for C ∈ ChildClusters do
9: DimPoints = GetDimPoints(C)

10: DimClusters = DimClusters + ClusterDim(DimPoints)
11: return ChildClusters

are then processed in the same way. For example, if we to find clusters C1 and
C2 in the first dimension, we would then process, separately, C1 in the second
dimension and C2 in the second dimension. Any clusters that are found in the
nth dimension as a result of a cluster from the (n − 1)th dimension are referred
to as child clusters. This approach is highlighted in Algorithm 2.

Identifying Cluster Boundaries. In the univariate case, when considering
points from left to right (ascending order), the ’tail clusters’ that occur when end-
ing a cluster will be on the right hand side of the biased clusters. For T = 3, these
tail clusters will contain approximately one percent of the points that should be
assigned to the cluster. If we were to instead observe the points from right to
left (descending order), the tails would be on the left hand side of the cluster.

Moreover, due to the small number of points that typically make up a tail
cluster, it is possible for a tail cluster of a small, dense cluster to be significantly
influenced by a large cluster with high variance. This is addressed by performing
a reverse merge in which we attempt to connect a tail cluster to the cluster to
which it should belong (the term reverse is used because if we are observing the
points in ascending order, the tail cluster will be joined to the preceding points).
When we complete the tail cluster, we examine the end of the full cluster - if
the points are within the threshold, we merge the tail and full clusters.

Borrowed Points. In the basic algorithm, it is possible that some points be-
longing to a cluster may be further from the mean that permitted by the choice
of the threshold value. These points will be assigned, in many cases wrongfully,
to the beginning of the adjacent cluster to the right. We refer to this process as
borrowing (the points themselves are borrowed), which can lead to a high level
of mis-classification.

We address this issue by calculating the likelihood of the potentially borrowed
point belonging to the current cluster, and compare this with the probability of
the point belonging to the previous cluster. The test for a point being borrowed
is defined as:
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Algorithm 3 Adjusts points that are borrowed from the previous cluster
AdjustBorrowed (Ci, Ci+1)
1: right start = NumDevs(Ci

⊕
Ci+1[0], C2[0]) < NumDevs(Ci+1, Ci+1[0])

2: while not right start do
3: Ci ← Ci + Ci+1[0]
4: Ci+1 ← Ci+1 − Ci+1[0]
5: right start = NumDevs(Ci

⊕
Ci+1[0], C2[0]) < NumDevs(Ci+1, Ci+1[0])

Algorithm 4 Check to see if two adjacent clusters should have a reverse merge
performed
CheckMerge (Ci, Ci+1)
1: last = Ci[Ci.size()]
2: if NumDevs(Ci+1

⊕
last, last) < T then

3: return true
4: else
5: return false

IsBorrowed = NumDevs(Cn+C′
n+1[0], C′

n+1[0]) < NumDevs(C′
n+1, Cn+1[0])

If this point is borrowed, the point is reassigned to the previous, correct,
cluster. As we have a new beginning point for the current cluster that may
also be a borrowed point, we repeat this test until all borrowed points have been
correctly assigned. The reassignment is performed once we begin observing points
outside the threshold for the current cluster. Before this stage, the estimate of
the mean for the current cluster is heavily biased to such an extent that the
probability of points being classified as borrowed is artificially low.

Accounting for correlation and Obscured Clusters. In practice, we may
find clusters of multivariate data to be heavily correlated. In order to determine
clusters for such points, we can perform some form of dimensionality reduction
such as Principal Component Analysis (PCA) which creates orthogonal dimen-
sions. Alternately, we can use a different cutting plane based on the covariance of
the data. Additionally, in an earlier projection, some clusters may be obscured,
but found at a later stage. In order to overcome this, we can rerun the clustering
process until no new clusters are found.

4 Performance Evaluation

4.1 Performance Evaluation of MCA for HCI Data

We ran our clustering algorithm on a number of usability data sets, such as the
one depicted in Figure 2. In the first part of the figure, we have added noise
to make the task harsher; an eyeball test indicates four main clusters in the
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Algorithm 5 Performs a reverse merge
ReverseMerge (Ci, Ci+1)
1: Cnew = ∅
2: Cnew .start = Ci.start
3: Cnew .end = Ci + 1.emd

4: Cnew = |Ci|∗Ci+|Ci+1|∗Ci+1
|Ci|+|Ci+1|

5: Cnew .var = CombineV ar(Ci, Ci+1)

(a) Eye tracking data with noise (b) Clean eye tracking data

Fig. 2. Sample eye tracking data sets

presence of the added noise. Figure 2b is a clean version of the same data. MCA
detects four main clusters for the noisy version of the test, while for the second
one, the four that are obvious from the noisy task in addition to two small
clusters on the left middle area and an additional small cluster in the lower
right. Overall, for real world usability data, our approach performs well except
in the presence of a very, very large number of small clusters. In particular, the
logical grouping of GUI components allows MCA to perform particularly well
For data sets of this style, MCA will classify the points into one large cluster
(although, in many cases, the clusterings produced by k-means is not necessarily
usable). The running time required for approximately 40,000 points is under one
second.

4.2 Performance Evaulation for Synthetic Data

Although eye tracking data is typically one dimensional, we also examine the
performance for high dimensional synthetic data. Additionally, we compare MCA
against the TURN* algorithm. Figure 3 demonstrates the scalability of MCA on
data over 10 dimensions (we should note that each dimension is sorted). We can
see that MCA is linear in performance.
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Fig. 3. Performance for MCA vs TURN*

4.3 Scalability Analysis

There are three main steps in the algorithm:

1. Iteration over the points, testing for membership, and assignment of the
points to their appropriate clusters. This can be done efficiently by keeping
track of the current variance and mean, and updating these when new points
are seen. There are numerous ways to do this (some more appropriate than
others) as described in Chan and Lewis [3]. As each point only needs to be
observed once (in this step), the initial assignment of points to clusters can
be performed in O(n) time and space.

2. Adjusting, borrowed points. The test for borrowed points is only conducted
when the cluster is being completed, and the maximum number of points
that may be re-assigned would be the number of points in the clusters. As
the test for borrowed points points is performed in cases where no reverse
merge is performed, in the worse case, we will test at most O(n) points for
borrowing. We should note that this O(n) is per dimension, not per point
or cluster and that in practice, the number of tests is typically O(k), where
k is the number of clusters.

3. Checking for, and performing, reverse merges. The check for a reverse merge
takes O(1) time as it is simply a membership test. The mean and the new
variance of the merged cluster can be calculated in O(1) time as we are
already storing the data required.

For the univariate case, the running time and space is O(n) if the data is
sorted. If the data requires sorting beforehand, the running time would naturally
be O(nlogn).

For the multivariate case, the number of calls to ClusterDim will be equal
to the number of clusters, Clustersd, at each dimension. However, each call of
ClusterDim will only process n

Clustersd
points on average. This means that each

dimension will require O(n) time, irrespective of the number of clusters. As each
dimension requires O(n) time and there are d dimensions, the total time required
will be O(nd).
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5 Discussion

Our clustering approach is very suitable for handling most eye tracking tasks,
outputting high quality clustering with only a minimal amount of knowledge
required to determine parameters. This makes the usability analyst’s job sig-
nificantly easier, allowing them to focus on analyzing the eye movement data
as opposed to the eye movement data. We suggest a framework for usability
experiments as follows:

1. Define regions of interest within a screen. Many toolkits and interface design
systems make this task easy as widgets tend not to overlap.

2. Perform usability analysis with a user executing pre-defined tasks
3. Take the results of the previous step and generate clusters using MCA
4. Map clusters to the regions defined in the first step.

The advantages of MCA over other approaches are primarily the parameters
required and the high scalability allowing the results to be obtained promptly.

6 Conclusions

In this paper, we have proposed a new clustering algorithm, MCA, that requires
only a single, easy to determine, parameter. MCA, is particularly suited to the
task of cluster detection for eye movement data that is often found in HCI anal-
ysis. Moreover, the MCA algorithm is scalable and extensible to an arbitrary
number of dimensions. The results of our experimental evaluation are very en-
couraging. MCA provided high quality clusterings in the presence of both noise
and varying cluster size. Additionally, in terms of performance, it was very sat-
isfactory, demonstrating the efficacy of MCA for a number of problem areas
including the analysis of large databases.
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Abstract. A biclustering algorithm, based on a greedy technique and
enriched with a local search strategy to escape poor local minima, is pro-
posed. The algorithm starts with an initial random solution and searches
for a locally optimal solution by successive transformations that improve
a gain function, combining the mean squared residue, the row variance,
and the size of the bicluster. Different strategies to escape local min-
ima are introduced and compared. Experimental results on yeast and
lymphoma microarray data sets show that the method is able to find
significant biclusters.

1 Introduction

In the past recent years, DNA microarray technology has captured the attention
of scientific community because of its capability of simultaneously measure the
activity and interactions of thousands of genes. The relative abundance of the
mRNA of a gene under a specific experimental condition (or sample) is called
the expression level of a gene. The expression level of a large number of genes
of an organism under various experimental conditions can be arranged in a data
matrix, also known as gene expression data matrix, where rows correspond to
genes and columns to conditions. Thus each entry of this matrix is a real number
representing the expression level of a gene under a specific experiment. One of
the objectives of gene expression data analysis is to group genes according to
their expression under multiple conditions. Clustering [4,11,1] is an important
gene expression analysis method that has been extensively used to group either
genes, to search for functional similarities, or conditions, to find samples char-
acterized by homogeneous gene expression levels. However, generally, genes are
not relevant for all the experimental conditions, but groups of genes are often
co-regulated and co-expressed only under specific conditions. This important ob-
servation has lead the attention towards the design of clustering methods that
try to simultaneously group genes and conditions. The approach, named biclus-
tering, detects subsets of genes that show similar patterns under a specific subset
of experimental conditions.

Biclustering was first defined by Hartigan [7] and called direct clustering. His
aim was to find a set of sub-matrices having zero variance, that is with constant
values. This concept was then adopted by Cheng and Church [2] by introducing
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a similarity score, called mean squared residue, to measure the coherence of
rows and columns in the bicluster. A group of genes is considered coherent if
their expression levels varies simultaneously across a set of conditions. Biclusters
with a high similarity score and, thus, with low residue, indicate that genes
show similar tendency on the subset of the conditions present in the bicluster.
The problem of finding biclusters with low mean squared residue, in particular
maximal biclusters with scores under a fixed threshold, has been proved to be
NP-hard [2] because it includes the problem of finding a maximum biclique in
a bipartite graph as a special case [5]. Therefore, Cheng and Church proposed
heuristic algorithms that are able to generate good quality biclusters.

In this paper a greedy search algorithm to find k biclusters with a fixed
degree of overlapping is proposed. The method is enriched with an heuristic
to avoid to get trapped at poor local minima. The algorithm starts with an
initial random bicluster and searches for a locally optimal solution by successive
transformations that improve a gain function. The gain combines the mean
squared residue, the row variance, and the size of the bicluster. In order to escape
poor local minima, that is low quality biclusters having negative gain in their
neighborhood, random moves with given probability are executed. These moves
delete or add a row/column on the base of different strategies introduced in the
method. To obtain k biclusters the algorithm is executed k times by allowing
to control the degree of overlapping among the biclusters. Experimental results
on two well known microarray data sets, yeast cell cycle and B-cell lymphoma,
show that the algorithm is able to find significant and coherent biclusters.

The paper is organized as follows. The next section defines the problem of
biclustering and the notations used. In Section 3 an overview of the existing
approaches to biclustering is given, section 4 describes the algorithm proposed,
and, finally, section 5 reports the experiments on the two mentioned data sets.

2 Notation and Problem Definition

In this section the notation used in the paper is introduced and a formal defi-
nition of bicluster is provided [2]. Let X = {I1, . . . , IN} be the set of genes and
Y = {J1, . . . , JM} be the set of conditions. The data can be viewed as an N ×M
matrix A of real numbers. Each entry aij in A represents the relative abundance
(generally its logarithm) of the mRNA of a gene Ii under a specific condition Jj .

A bicluster is a sub-matrix (I, J) of A, where I is a subset of the rows X of
A, and J is a subset of the columns Y of A.

Let aiJ denote the mean of the ith row of the bicluster (I, J), aIj the mean
of the jth column of (I, J), and aIJ the mean of all the elements in the bicluster.
More formally,

aiJ = 1
|J|

∑
j∈J aij , aIj = 1

|I|
∑

i∈I aij , aIJ = 1
|I||J|

∑
i∈I,j∈J aij .

The volume vIJ of a bicluster (I, J) is the number of entries aij such that
i ∈ I and j ∈ J , that is vIJ = |I| × |J |.
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The residue rij of an element aij is defined as rij = aij − aiJ − aIj + aIJ .
The residue of an element provides the difference between the actual value of
aij and its expected value predicted from its row, column, and bicluster mean.
The residue of an element reveals its degree of coherence with the other entries
of the bicluster it belongs to. The lower the residue, the higher the coherence.
The quality of a bicluster can be thus evaluated by computing the mean squared
residue rIJ , i.e. the sum of all the squared residues of its elements:

rIJ =

∑
i∈I,j∈J(rij)2

vIJ
.

The mean squared residue of a bicluster, as outlined by Cheng and Church
in [2], provides the similarity score of a bicluster. Given a threshold δ ≥ 0, a
sub-matrix (I, J) is said a δ-bicluster, if rIJ < δ. The aim is then to find large
biclusters with scores below a fixed threshold δ. However, low residue biclusters
should be accompanied with a sufficient variation of the gene values with respect
to the row mean value, otherwise trivial biclusters having almost all constant
values could be determined. To this end the row variance varIJ of a bicluster
(I, J) is defined as

varIJ =

∑
i∈I,j∈J (aij − aiJ )2

vIJ
.

The final goal is to obtain large biclusters, with a relatively high variance,
and with mean squared residue lower than a given threshold δ.

3 Related Work

A comprehensive survey on biclustering algorithms for biological data analysis
can be found in [9]. In the following the main existing proposals will be de-
scribed. As already mentioned in the introduction, Hartigan [7] first suggested
a partition based algorithm, called direct clustering, that splits the data matrix
to find sub-matrices having zero variance, that is with constant values. Hartigan
used the variance of a bicluster to evaluate its quality and his aim was to obtain
constant sub-matrices. However, he proposed to modify his algorithm to find
biclusters with coherent values in rows and columns. Cheng and Church [2] were
the first who introduced the new paradigm of biclustering to gene expression
data analysis. They proposed some greedy search heuristics that generate sub-
optimal biclusters satisfying the condition of having the mean squared residue
below a threshold δ. The heuristics start with the original data matrix and
add or delete rows and columns. The algorithms assume that the data matrix
doesn’t contain missing values and can find one or k biclusters. In the latter case,
in order to avoid to reobtain the same biclusters, the values of those elements
aij that have already been inserted in a bicluster are substituted with random
numbers. Yang et al. [12] extended the definition of δ-bicluster to cope with
missing values and to avoid problems caused by random numbers. In fact, they
experimented that random numbers in the methods of Cheng and Church can
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interfere with the discovery of new biclusters, in particular for those that overlap
with those already obtained. They defined a probabilistic move-based algorithm
FLOC (FLexible Overlapped biClustering) that generalizes the concept of mean
squared residue and based on the concept of action and gain. Getz et al. [6]
presented the Coupled Two-Way Clustering algorithm that uses a hierarchical
clustering method separately on each dimension. Clusters of rows are used as
conditions for column clustering and vice-versa. Lazzeroni and Owen [8] intro-
duced the plaid model, where the concept of layers (bicluster) is used to compute
the values of the elements in the data matrix. The data matrix is described as
a linear function of layers corresponding to its biclusters. Tanay et al. presented
SAMBA (Statistical-algorithmic Method for Bicluster Analysis), a biclustering
algorithm that combines graph theory and statistics. The data matrix is repre-
sented as a bipartite graph where the nodes are conditions and genes, and edges
denote significant expression changes. Vertex pairs are associated with a weight,
and heavy subgraphs correspond to significant biclusters. Cho et al. [3] propose
two iterative co-clustering algorithms that use two similar squared residue mea-
sures, and based on the k-means clustering method. They formulate the problem
of minimizing the residue as trace optimization problems that provide a spectral
relaxation, used to initialize their methods.

4 Algorithm Description

In this section we present RandomWalkBiclustering, a biclustering algorithm
based on a greedy technique enriched with a local search strategy to escape poor
local minima. The basic schema of our method derives from the WSAT algorithm
of Selman et al. for the Satisfiability problem [10], opportunely modified to deal
with the biclustering problem. The algorithm starts with an initial random bi-
cluster B = (I, J) and searches for a δ-bicluster by successive transformations of
B, until a gain function is improved. The transformations consist in the change
of membership (called flip or move) of the row/column that leads to the largest
increase of the gain function. The gain function combines mean squared residue,
row variance, and size of the bicluster by means of user-provided weights wres,
wvar, and wvol. More formally, let

Δres =
resold − resnew

resold
, Δvar =

varold − varnew

varold
, Δvol =

volold − volnew

volold
,

be the relative changes of residue, row variance, and volume when a row/column
is added/removed, where resold, varold, and volold (resp. resnew, varnew , and
volnew) are respectively the values of the residue, row variance and volume of B
before (after) the move. Then the function gain is defined as

gain = wres(2Δres − 1) − wvar(2Δvar − 1) − wvol(2Δvol − 1),

with wres+wvar+wvol = 1. This function assumes values in the interval [−1, +1].
In fact, relative changes Δres, Δvar, and Δvol range in the interval [−∞, +1],
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Algorithm RandomWalkBiclustering
Input:
- matrix: a gene-expression matrix
- δ: stop when this value of residue is reached (0=stop at local minimum)
- max flips: maximum number of iterations allowed
- method: type of random move
- p: probability of a random move (0 = no random move)
- wres, wvar, wvol: weight associated to the residue, row variance, and volume resp.
- rowmin, rowmax: minimum and maximum number of rows allowed in the bicluster
- colmin, colmax: minimum and maximum number of columns allowed in the bicluster
Method:

generate at random a bicluster that does not violate the constraints on the number
of rows and columns
set flips = 0, res = +∞, local minimum = false
while flips < max flips and δ < res and not local minimum

flips = flips + 1
if a random generated number is less than p then

execute a random move according to the method chosen, that does not
violate the constraints on the number of rows and columns, and update
the residue value res

else
let m be the move, that does not violate the constraints on the number
of rows and columns, with the maximum gain gain
if gain > 0 then

execute the move m and update the residue value res
else

set local minimum = true
return the bicluster computed

Fig. 1. The RandomWalkBiclustering algorithm

consequently the terms 2Δres, 2Δvar, and 2Δvol range in the interval [0, 2], and
the whole function is assumes values between −1 and +1. The weights wres,
wvar, and wvol provide a trade-off among the relative changes of residue, row
variance, and volume. When wres = 1 (and thus wvar = wvol = 0), the algorithm
searches for a minimum residue bicluster, since the gain monotonically increases
with the residue of the bicluster. Decreasing wres and increasing wvar and wvol,
biclusters with higher row variance and larger volume can be obtained. Notice
that when the residue after a flip diminishes, and the row variance and volume
increase, Δres is positive, while Δvar and Δvol are negative. Thus, when the
gain function is positive, RandomWalkBiclustering is biased towards large bi-
clusters with a relatively high variance, and low residue. A negative gain, on the
contrary, means a deterioration of the bicluster because there could have been
either an augmentation of the residue or a decrease of the row variance or vol-
ume. During its execution, in order to avoid get trapped into poor local minima
(i.e. low quality biclusters with negative gain in their neighborhood), instead of
performing the flip maximizing the gain, with a user-provided probability p the
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algorithm is allowed to execute a random move. We introduced three types of
random moves:

– NOISE: with probability p, choose at random a row/column of the matrix
and add/remove it to/from B;

– REMOVE: with probability p, choose at random a row/column of B and
remove it from B;

– REMOVE-MAX: with probability p, select the row/column of B scoring the
maximum value of residue, and remove it from B.

Thus, the NOISE is a purely random strategy that picks a row/column from
the overall matrix, and not only from the bicluster, and adds or removes the
row/column to the bicluster if it belongs or it does not belong to it. The RE-
MOVE strategy removes at random a row/column already present in the biclus-
ter, thus it could accidentally delete a worthless gene/condition from the current
solution, and the REMOVE-MAX removes that row/column already present
in the bicluster having the highest value of the residue, i.e. mostly contribut-
ing to worsen the gain. Figure 3 shows the algorithm RandomWalkBiclustering.
The algorithm receives in input a gene-expression matrix, a threshold value (δ)
for the residue of the bicluster, the maximum number of times (max flips)
that a flip can be done, the kind of random move the algorithm can choose
(method), the probability (p) of executing a random move, the weight to assign
to residue (wres), variance (wvar), and volume (wvol), and some optional con-
straint (rowmin, rowmax, colmin, colmax) on the size of the bicluster to find. The
flips are repeated until either a preset of maximum number of flips (max fips) is
reached, or a δ-bicluster is found, or the solution can not ulteriorly be improved
(get trapped into a local minimum). Until the stop condition is not reached, it
executes a random move with probability p, and a greedy move with probabil-
ity (1 − p). In order to compute k biclusters, we execute k times the algorithm
Random-WalkBiclustering by fixing two frequency thresholds, frow and fcol, that
allow to control the degree of overlapping among the biclusters. The former binds
a generic row to participate to at most k·frow biclusters among the k to be found.
Analogously, fcol limits the presence of a column in at most k · fcol biclusters.
During the k executions of the algorithm, whenever a row/column exceeds the
corresponding frequency threshold, it is removed from the matrix and not taken
into account any more in the subsequent executions.

Computational Complexity. The temporal cost of the algorithm is upper
bounded by

max flips× Cu × [(1 − p) × (N + M) + p]

where Cu is the cost of computing the new residue and the new row variance of
the bicluster after performing a move. In order to reduce the complexity of Cu,
we maintain, together with the current bicluster B = (I, J), the mean values
aiJ and aIj , for each i ∈ I, the summation

∑
j∈J a2

ij , and the total sum of the
row variances. The computation of the new residue of each element involves
recomputing the |I| + |J | mean values aiJ (1 ≤ i ≤ |I|) and aIj (1 ≤ j ≤ |J |)
after performing the move. This can be done efficiently, in time max{|I|, |J |}, by
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exploiting the values maintained together with the current bicluster. Computing
the residue resnew of the new bicluster, requires the computation of the squares
of its element residues, a time proportional to the volume of the new bicluster.
We note that, usually, |I||J | 
 NM . Computing the new row variances can
be done in a fast way by exploiting the summations

∑
j∈J a2

ij already stored.
Indeed, if a column is added or removed, the new row variances can be obtained
quickly by evaluating the |I| expressions 1

|J|
∑

ij(a
2
ij) − a2

iJ (1 ≤ i ≤ |I|). For
example, if the qth column is added, in order to compute the new variance of
the row i, the following expression must be evaluated:

1
|J|+1

(∑
j∈J (a2

ij) + a2
iq

)
−
( |J|aiJ+aiq

|J|+1

)2
.

Analogously if a column is removed. Otherwise, if a row is added (removed resp.)
the corresponding row variance must be computed and added (subtracted resp.)
to the overall sum of row variances. Before concluding, we note that the cost of
a random move is negligible, as it consists in generating a random number, when
the NOISE or REMOVE strategies are selected, while the row/column with the
maximum residue, selected by the REMOVE-MAX strategy, is computed, with
no additional time requirements, during the update of the residue of the bicluster
at the end of each iteration, and, hence, it is always immediately available.

5 Experimental Results

In this section we give experimental results to show the behavior of the Ran-
domWalkBiclustering algorithm. We selected two well known gene expression
data sets, the Yeast Saccharomyces cerevisiae cell cycle expression data set, and
the human B-cell Lymphoma data set. The preprocessed gene expression matri-
ces can be obtained from [2] at http://arep.med.harvard.edu/biclustering.
The yeast cell cycle data set contains 2884 genes and 17 conditions. The hu-
man lymphoma data set has 4026 genes and 96 conditions. The algorithm has
been implemented in C, and all the experiments have been performed on a
Pentium Mobile 1700MHz based machine. The experiments aimed at compar-
ing the three random move strategies when different probabilities and input
parameters are given and to discuss the advantages of each of them. In partic-
ular, we computed k = 100 biclusters varying the probability p of a random
move in the interval [0.1, 0.6], for two different configurations of the weights,
i.e. w1 = (wres, wvar , wvol) = (1, 0, 0) (dashed lines in Figure 2) and w2 =
(wres, wvar , wvol) = (0.5, 0.3, 0.2) (solid lines in Figure 2). Notice that wres = 1
and wvar = wvol = 0, means that the gain function is completely determined by
the residue value. We set max flips to 100, δ to 0, and the frequency thresh-
olds to frow = 10% and fcol = 100%, i.e. a row can participate in at most 10
biclusters, while a column can appear in all the 100 biclusters. The initial ran-
dom generated biclusters are of size 14 × 14 for the Yeast data set and of size
20 × 20 for the Lymphoma data set, while we constrained biclusters to have at
least rowmin = 10 rows and colmin = 10 columns. Figure 2 shows the behavior
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of the algorithm on the two above mentioned data sets. From the top to the bot-
tom, the figures show the average residue, row variance and volume of the 100
biclusters computed, the average number of flips performed by the method, and
the average execution time. Figures on the left concern the Yeast data set, and
figures on the right the Lymphoma data set. We can observe that, as regards the
residue, the REMOVE-MAX method performs better than the two others, as
expected. In fact, its random move consists in removing the gene/condition hav-
ing the highest residue. Furthermore, increasing the random move probability p
improves the value of the residue. The residue of the NOISE method, instead, de-
teriorates when the probability increases. The REMOVE strategy, on the Yeast
data set is better than the NOISE one, but worse than the REMOVE-MAX. On
the Lymphoma data set, the value of the residue increases until p = 0.3 but then
it decreases. The residue scored for parameters w1 (dashed lines) is lower with
respect to that obtained for w2 (solid lines), for the two strategies NOISE and
REMOVE, while, for REMOVE-MAX the difference is negligible. As regards
the variance, we can note that the variance of REMOVE is greater than that of
NOISE, and that of NOISE is greater than that of REMOVE-MAX for both w1
e w2. This is of course expected, since in the former case we do not consider the
variance in the gain function in order to obtain the biclusters, while in the latter
the weight of the variance is almost as important as that of the residue (0.3 w.r.t
0.5). Analogous considerations hold for the volume, whose value is higher for w2.
Furthermore, the volume is almost constant for the NOISE strategy, because the
probability of adding or removing an element in the bicluster is more or less the
same, but it decreases for the REMOVE and REMOVE-MAX strategies. These
two strategies tend to discovery biclusters having the same size when the prob-
ability p increases. As for the average number of flips, we can note that 100 flips
are never sufficient for the NOISE method to reach a local minimum, while the
other two methods do not execute all the 100 flips. In particular, the RANDOM-
MAX strategy is the fastest since it is that which needs less flips before stopping.
As regards the execution time, the algorithm is faster for w1 w.r.t w2, but, in
general, the execution time decreases when the probability p increases and they
are almost the same for higher values of p because the number of random moves
augments for both. Finally some consideration on the quality of the biclusters
obtained. We noticed that the NOISE strategy, which works in a purely ran-
dom way, gives biclusters with lower gain and it requires more execution time.
On the contrary, REMOVE-MAX is positively biased by the removal of those
elements in the bicluster having the worst residue, thus it is able to obtain bi-
clusters with higher values of residue and volume, while the REMOVE strategy
extract biclusters with higher variance. To show the quality of the biclusters
found by RandomWalkBiclustering, Figure 3 depicts some of the biclusters dis-
covered in the experiments of Figure 2 by using the REMOVE-MAX strategy for
(wres, wvar , wvol) = (0.5, 0.3, 0.2). The x axis corresponds to conditions, while
the y axis gives the gene expression level. The figures point out the good qual-
ity of the biclusters obtained. In fact, their expression levels vary homogenously
under a subset of conditions, thus they present a high degree of coherence.
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Fig. 2. Average residue, variance, volume, number of flips and execution time for Yeast
(on the left) and Lymphoma (on the right) data sets
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Fig. 3. Biclusters obtained by using the REMOVE-MAX strategy with
(wres, wvar, wvol) = (0.5, 0.3, 0.2) in the experiments of Figure 2. The first two
rows show 8 biclusters of the Yeast data set (p = 0.3), while the subsequent two rows
show 8 biclusters of the Lymphoma data set (p = 0.5). From left to right and from top
to bottom the values of (residue, variance, volume) are the following: (70.14, 590.65,
460), (99.51, 705.58, 530), (160.89, 834.79, 360), (113.47, 674.25, 630), (83.04, 439.81,
310), (136.31, 788.27, 580), (180.03, 545.23, 518), and (111.01, 356.24, 640) for the
Yeast data set, and (214.63, 1414.45, 150), (169.96, 1626.74, 165), (366.18, 2012.5,
190), (181.34, 2135.5, 140), (323.17, 2472.65, 170), (182.45, 1499.95, 160), (200.24,
3412.19, 130), and (172.94, 1197.03, 220) for the Lymphoma data set.
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6 Conclusions

The paper presented a greedy search algorithm to find overlapped biclusters en-
riched with a local search strategy to escape poor local minima. The proposed al-
gorithm is guided by a gain function that combines the mean squared residue, the
row variance, and the size of the bicluster through user-provided weights. Different
strategies to escape localminima have been introduced and compared. Experimen-
tal results showed that the algorithm is able to obtain groups of genes co-regulated
and co-expressedunder specific conditions. Future workwill investigate the behav-
ior of the algorithm for many different combinations of the input parameters, in
particular for the weights wres, wvar , and wvol employed in the gain function, to
study how the trade-off among residue, variance, and volume affects the quality of
the solution. We are also planning an extensive comparison with other approaches,
and an analysis of the biological significance of the biclusters obtained.
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Abstract. Spectral methods, as an unsupervised technique, have been used with
success in data mining such as LSI in information retrieval, HITS and PageRank
in Web search engines, and spectral clustering in machine learning. The essence
of success in these applications is the spectral information that captures the se-
mantics inherent in the large amount of data required during unsupervised learn-
ing. In this paper, we ask if spectral methods can also be used in supervised
learning, e.g., classification. In an attempt to answer this question, our research
reveals a novel kernel in which spectral clustering information can be easily ex-
ploited and extended to new incoming data during classification tasks. From our
experimental results, the proposed Spectral Kernel has proved to speedup classi-
fication tasks without compromising accuracy.

1 Introduction

Kernel-based learning first appear in the form of Support Vector Machines (SVM), and
readily became the state-of-the-art for learning algorithms. The framework of kernel-
based learning methods (KM) is also known as kernel-based analysis of data in both su-
pervised and unsupervised learning [1,2,3]. Within this framework, kernels encode all
the information required by the learning machinery, and acts as the interface between
the data and the learning modules [4]. Hence, they are implicitly high-dimensional
spaces that contain more information than the original explicit feature space. The ad-
vantage of this is that once obtained, kernel algorithms can perform analysis without
further information from the original data set.

There have been many success stories [5,6,7,8] with kernels. In text categorization,
the kernel was used to capture a semantic network of terms to better compute the sim-
ilarities between documents [9]. In natural language learning, subparse trees are taken
into consideration in the semantic kernel to improve the accuracy of classifying pred-
icative arguments [10]. And in image retrieval, the knowledge about users’ queries are
encoded in the kernel to improve query accuracy [11]. While domain knowledge is usu-
ally encoded in the kernel by the expert user, they can also be obtained from automated
discovery algorithms. The pioneering attempt to integrate unsupervised discovery, in
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the form of kernels, for supervised learning is Latent Semantic Indexing (LSI). It has
been shown [12] that the Latent Semantic Kernel (LSK) benefits from the automated
discovery of latent semantics that aid the task of classification. In fact, the semantics
uncovered in LSI is simply the ‘tip of the iceberg’ of spectral graph analysis on kernel
matrices. Under spectral graph theory, there have been active research on the use of
latent semantics for clustering. This research, known as spectral clustering, is a method
that uses spectral information to assist clustering algorithms.

Obtaining the spectral information of a data set is a three step process: (i) compute
the similarity matrix S from the data; (ii) transform S to another matrix Γ (S); and fi-
nally (iii) perform an eigen-decomposition on Γ (S). Our analysis of this process led
to an important discovery — if certain matrix transformation (e.g., normalized Lapla-
cian) is performed, we can observe some interesting latent clustering semantics in the
eigenvalues and eigenvectors of Γ (S) [5,13,14,15,16,17] that can be used in the kernel
for the task of classification. Our observation, and hence the main contribution of this
paper, led to our proposal of the Spectral Kernel. The spectral kernel combines two
state-of-the-art learning algorithms: kernel-based learning and spectral clustering; and
introduces a mechanism that supports the spectral embedding of new input data into the
kernel to improve classification precision.

We present our proposal as follows. The next section provides the background about
kernels and spectral clustering. In doing so, we provide the theoretical analysis and
examples to demonstrate the steps to compute the spectral embedding space. We then
present in Section 3, the steps to update the kernel values as new input arrives — a
differentiation of our approach from other spectral learning methods. We then provide
empirical results in Section 4 to support the feasibility of our proposal. Finally, we
conclude with related and future work in Section 5.

2 Spectral Graph Analysis of Kernel Matrices

To facilitate understanding of our proposal, as well as the analysis and proofs presented
in the later sections of this paper, we first introduce some basic facts of kernel matrices
and its mathematical foundation [13].

Given a set of data points D = {x1,x2, . . . ,xn} and a kernel function κ(·, ·), the
kernel matrix K = (Kij)n

i,j=1 is defined as Kij = κ(xi,xj), where K is symmetric
and usually positive semi-definite. By operating on K, we can easily recode the data in a
manner suitable for the learning module. A simple and widely used κ is the inner prod-
uct κI(xi,xj) = xT

i xj . And if we have κ1(x, z) as a kernel, we can construct new ker-
nels using other kernel functions, e.g., exponential kernel κE(x, z) = exp(κ1(x, z));
polynomial kernel κP (x, z) = (κ1(x, z)+ d)p with positive coefficients; and Gaussian
kernel κG(x, z) = exp((κ1(x,x) + κ1(z, z) − 2κ1(x, z))/(2σ2)).

In many cases, κ need not be an explicit function if the kernel matrix can be given
directly. Examples of that include the Latent Semantic Kernel and our proposed Spectral
Kernel. The idea is that while some kernels can be represented using explicit functions,
many are implicitly represented without one. Regardless of whether κ is an explicit
function, the matrix serves as the underlying representation of a kernel capturing all the
information required for supervised or unsupervised learning. More interesting perhaps,
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Table 1. Solution to two graph cut criteria used in spectral clustering: (i) the correspond-
ing transformation by eigen-decomposition of the matrix Γ (S); (ii) on an incoming data x,
the similarity with the training examples is computed as Sx and its corresponding transfor-
mation is τ (Sx). Note: the original version of the normalized Laplacian matrix should be
ΓN(S) = D−1/2(D − S)D−1/2; see Section 2.2 and Lemma 1.

Average Volume Normalized Cut

Criterion max vol(A)
|A| + vol(B)

|B| min cut(A,B)
vol(A)

+ cut(A,B)
vol(B)

Solution to criterion Sx = λx (D − S)x = λDx
(i) Transformed S ΓI(S) = S ΓN (S) = D−1/2SD−1/2

(ii) Transformed Sx τI(Sx) = Sx τN(Sx) = D−1/2Sxd
−1/2
x

is that the underlying idea found in spectral embedding and clustering methods (pro-
posed in recent years) coincides with that of kernel-based methods, i.e., a symmetric
matrix is used in the analysis. As a result, there are some interesting properties that we
can learn about kernels through spectral properties.

A symmetric matrix S = (Sij)n×n (where Sij = Sji) is naturally mapped to an
undirected graph G(S), where its adjacency matrix is S. In spectral graph theory, the
spectral component of the transformed S has a natural relationship with the structure
and properties of the graph G(S) [13]. Further let G(S) = 〈V, E,S〉 be the graph of
S, where V is the set of n vertices and E is the set of weighted edges. Each vertex i
of G(S) corresponds to the i-th column (or row) of S, and the weight of each edge îj
corresponds to the non-diagonal entry Sij . For any two vertices (i, j), a larger value
of Sij indicates a higher connectivity, and vice versa. From the above, we have the
following interesting spectral properties:

Eigenvalues. The spectrum of the Normalized Laplacian transformation of S reveals
the embedding clustering structure of G(S) with different global bisection (or cut)
criteria [5,13].

Eigenvectors. Correspondingly, the i-th eigenvector naturally explains the meaning of
the i-th eigenvalue. This led to the development of spectral clustering [15,16,17].

2.1 Graph Cut Criteria of Kernel Matrices

In spectral clustering, since S is actually an adjacency matrix of the weighted graph
G(S), finding the clustering structure of S can be transformed into the problem of find-
ing an optimum graph cut in G(S). Notably, a different graph cut criterion leads to a
different solution of G(S).

In the case of Table 1, the criterion is to find an optimal cut of G(S) such that we
have two non-overlapping subsets A, B ⊆ V satisfying the conditions A ∩ B = Ø and
A ∪ B = V , where |A| is the number of vertices or data points; vol(A) =

∑
i∈A di

is the volume with di =
∑

j∈V Sij being the degree of the vertex i; cut(A, B) =∑
i∈A,j∈B Sij is the cut between A and B; and D is the diagonal matrix formed from

the degrees of the vertices. In both solutions, the second largest eigenvalues (a.k.a.
interested eigenvalues) and the corresponding eigenvectors relating to the equations in
Table 1 provide the global optimum.
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Clearly, the idea of bisecting the kernel matrix can be extended to the first k largest
eigenvalues or eigenvectors. And this observation leads to the construction of multi-way
spectral clustering. In the criterion of average volume, if we consider the inner product
matrix of the term-document matrix (without normalization) as S, then its first k largest
eigenvectors is used in LSI for information retrieval. In the criterion of normalized cut,
the second largest eigenvector of ΓN (S) is also the clustering information used in the
normalized cut image segmentation algorithm [15]. Finally, we have the NJW clustering
algorithm [17] when we consider the first k largest eigenvectors of ΓN (S).

We can thus conclude the following. First, the criterion determines the solution and
transformation of the kernel matrix that in turn, affects the behavior in the learning
module. Second, the type of application to be delivered by the kernel is determined by
how the eigenvalues and/or eigenvectors are used. The spectral kernel, presented next,
is the result of exploiting these observations.

2.2 Computing the Spectral Embedding Space

Among the different spectral clustering techniques proposed in the literature, e.g.,
[15,16,17], an analysis of the underlying mathematical representation suggests that with
appropriate transformations, they essentially reduce to a common representation. This
observation motivates the first contribution of the spectral kernel – a unifying frame-
work which by means of different parameters, creates different kernel instances that
exhibit different behaviors. We will first prove the existence of this framework, and
then show how the spectral embedding is computed.

From Table 1, we see that it is easy to mathematically transform the solutions into a
standard eigendecomposition problem of symmetric matrices, i.e., Γ (S)x = λx. To do
so however, requires the transformation of S, and this is dependent on the solution to the
cut criteria. In Table 1, ΓI(S) represents the original matrix while ΓN (S) is the normal-
ized Laplacian matrix. From spectral graph theory [13], K1 = D−1/2(D − S)D−1/2

is actually the normalized Laplacian matrix. Notably, K1 has the same eigenvectors
as K2 = D−1/2SD−1/2 and the eigenvalues is related by eig(K1) = {1 − λ|λ ∈
eig(K2)}, where eig(·) is the set of eigenvalues of a symmetric matrix. Furthermore,
the interested eigenvalues change from the smallest in K1 to the largest in K2. There-
fore, it is actually possible to compute the normalized Laplacian matrix using K2 giving
us ΓN (S) = D−1/2SD−1/2. In fact, the equivalence relationship between K1, K2, and
the stochastic matrix P = D−1S can be proven, and therefore in the remaining part of
this paper, we will use K2 in place of K1 and P if any.

Lemma 1 (Equivalence of K1, K2 and P). If λ and x are correspondingly the eigen-
value and eigenvector of matrix K1, then (1 − λ) are the eigenvalues of the matrices
K2 and P; and the eigenvectors of K2 and P are x and D−1/2x respectively.

Proof. By definition of K1, K2 and P, we have:

K1 = I − K2 (1)

K2 = D1/2PD−1/2 (2)

Suppose λ and x are eigenvalue and eigenvector of K1, i.e., K1x = λx. By Equa-
tion (1), substituting K1 with K2 gives us (I − K2)x = λx. After transformation, we
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have K2x = Ix−λx = (1−λ)x. This proves the relationship between K1 and K2. We
next complete the proof by showing the equivalence of K2 and P. Suppose now λ and
x are eigenvalue and eigenvector of K2, i.e., K2x = λx. By Equation (2), substituting
K2 with P gives us D1/2PD−1/2x = λx. By left-multiplication of the matrix D−1/2

on this equation, we get PD−1/2x = λD−1/2x. Here, λ is the eigenvalue of P, and
D−1/2x is the eigenvector of P.

Within this framework, we can compute the spectral embedding for any specific in-
stance of the spectral kernel. The steps to do so are given in Figure 1. After the spectral
components of Γ (S) is computed, the k interested extreme eigenvalues and eigenvec-
tors are selected to construct the reduced data space. Let the first k interested eigenval-
ues of Γ (S) be λ1 ' λ2 . . . ' λ, where “'” is “�” or “	” according to the different
matrix transformation Γ , and v1,v2, . . .vk as their corresponding eigenvectors each
of dimension n. The k dimensional data space is constructed by the two steps shown
in Figure 1. The first step has two implementations that can be selected based on the
desired application behavior.

Step 1(a) has been proved to be effective and useful on ΓN (S) in revealing the clus-
tering structure of S in [16]. When considered with Step 2, its effectiveness was proven,
both theoretically and empirically, in [17]. When Step 1(a) is used with ΓI(S), it has
proven applications in latent semantic analysis and indexing [6,18]. Step 1(b) on the
other hand is well-suited in the context of k-rank approximation when used with Γ (S)
as supported by Lemma 2 below. Furthermore, latent semantic analysis has shown that
the k-rank approximation of a similarity matrix (that is also ΓI(S)) incorporates seman-
tic information in measure of similarity between two data points (the same conclusion
was also given in latent semantic kernels). We will elaborate this point in Section 3.3.

Lemma 2 (Approximation of Γ (S) by embedding of Step 1(b)). The matrix S′, com-
puted by the embedding of Step 1(b) using inner product (i.e., S′

ij = yT
i yj), is the best

k-rank matrix approximation of Γ (S).

Proof. Lemma 2 is a variant of the Eckart-Young theorem [19]. Given Sn×n = UΛV
(singular value decomposition), A = Sk = UkΛkVk is the best rank-k approximation
to S that minimizes ‖A−S‖2

F among all matrices A with rank k (F denotes Frobenius
norm of a matrix). And because S is symmetric, singular values and vectors of S are
the same as eigenvalues and eigenvectors of S.

3 Spectral Kernels

In the previous section, the spectral graph analysis of the kernel matrix shows that the
spectral embedding (obtained by either Step 1(a) or 1(b)) reveals more latent seman-
tics than the original kernel matrix. By projecting the original feature vectors onto the
spectral embedding subspace, we can define a kernel, originating from this subspace,
through a particular choice of similarity measure. This effectively registers the cluster-
ing information inherent in the subspace into the spectral kernel (SK).

Computing the spectral kernel for classification can be done in three phases: (i)
transformation, (ii) spectral embedding, and (iii) kernel computation. Thus, we define
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Step 1(a). Step 1(b).
Directly get yi=(vi

1,v
i
2, . . . ,v

i
k))T ,

where i=1, 2, . . . , n.
Compute yi=(

√
λ1vi

1,
√

λ2vi
2, . . . ,

√
λkvi

k)T , where
i=1, 2, . . . , n or Λ1/2

k (vi
1,v

i
2, . . . ,v

i
n)T .

Step 2 (Optional).
Renormalize each yi to have the unit length (i.e. yi = 1

‖yi‖yi).

Fig. 1. Spectral embedding in the spectral kernel. Let the projected k-dimensional data space
be y1,y2, . . . , yn ∈ Rk×1, and the first k interested eigenvalues λ1, λ2, . . . , λk are positive.
Note: vi

j denotes the i-th coordinate of the eigenvector vj . Λk is the truncated diagonal of Λ =
diag(λ1, λ2, . . . , λn), its last (n − k) diagonal entries are set 0.

the spectral kernel with three components, i.e., SK〈T, E, S〉, where T is the transforma-
tion in Table 1; E is the embedding step in Figure 1; and S is one of the similarity
measure in Table 2 selected to compute the final spectral kernel value in the spectral
embedding subspace.

In classification, the kernel can contain values from either the training set, or from
the training set and its new input (from the testing set). Since during transformation
and spectral embedding, the input kernel matrix S only holds kernel values from the
training set, the spectral embedding can be computed by following the steps given in
Section 2.2. In the case where we need to compute the kernel values from both the
training and testing set, a different way to compute the spectral embedding of the new
input within the same subspace of the training set is needed.

3.1 Transforming and Spectral Embedding of New Input

When a new input arrives, its spectral embedding is computed in a similar fashion as
described in Section 2.2. The difference is that the transformation and computation of
spectral embedding is applied to the vector Sx rather than the symmetric matrix. This
gives rise to a different transformation and computation of the spectral embedding. Af-
ter getting the spectral embedding of the new input, the kernel values can be updated
with the same similarity measure used during training.

The new input can be given in the form of a vector containing kernel values, i.e.,
Sx = (S1x,S2x, . . . ,Snx)T , where Six represents the kernel value between the i-th
training example and itself. The rationale to why we used Sx instead of the vector x in
the original space is that spectral kernels are based on the other input kernels. In order
to compute the spectral embedding of the new input, there is a need to recompute the
transformation and the embedding space. Therefore, the vector transformation corre-
sponding to its matrix transformation Γ (S) is defined as τ(Sx) and is given in Table 1
for different Γ . After obtaining τ(Sx), the following lemma defines how the spectral
embedding of the new input is computed.

Lemma 3 (Spectral embedding of new input). Given a kernel matrix S for train-
ing data, its transformation Γ (S), the k interested eigenvalues/vectors of Γ (S) (λi ≥
0 and vi, i = 1, 2, . . . , k), and a new input Sx in form of kernel values, the spec-
tral embedding of Sx for Step 1(a) is y = Λ−1

k VT τ(Sx), and Step 1(b) is y =
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Table 2. The similarity measures s(x,y) used in the computation of spectral kernels

Inner product Extension of Euclidean Pearson correlation
distance coefficient

Symbol SI SE SP

Formula xT y exp(− ‖x−y‖2

σ
) (x−x̄)′(y−ȳ)

‖x−x̄‖‖y−ȳ‖

Λ−1/2
k VT τ(Sx); where the diagonal matrix Λk = diag(λ1, λ2, . . . , λk, 0, . . . , 0), and

V = (v1,v2, . . . ,vk,vk+1, . . . ,vn)T .

Proof. By eigendeomposition, Γ (S) = VΛVT , where Λ = diag(λ1, λ2, . . . , λn).
Therefore, Γ (S) can be approximated by Γ (S) ≈ VΛkVT = (Λ1/2

k VT )T (Λ1/2
k VT ),

since the interested k eigenvalues are the largest positive eigenvalues of Γ (S). There-
fore, each training example i can be represented by the spectral embedding yi =
Λ1/2

k (vi
1,v

i
2, . . . ,v

i
n)T in terms of matrix approximation, where yi is the spectral em-

bedding of the i-th training example by Step 1(b) from Table 1. If we assume that y is
also the spectral embedding of the new input in terms of matrix approximation, then y
should be the spectral embedding obtained by Step 1(b). By matrix approximation, we
can therefore approximate the transformed kernel vector τ(Sx) of the new input Sx in

the same way. Thus, we have τ(Sx) = (Λ1/2
k V T )Ty. Since Λ1/2

k VT is an orthogonal

matrix, it can be solved by taking the matrix inverse to obtain y = Λ−1/2
k V T τ(Sx).

This gives the result in Step 1(b). Further, the spectral embedding by Step 1(a) can be
computed by multiplying the diagonal matrix Λ−1/2

k , which gives the spectral embed-

ding of the new input y = Λ−1/2
k

(
Λ−1/2

k VT τ(Sx)
)

= Λ−1
k VT τ(Sx) by Step 1(a).

Essentially, Lemma 3 specifies how to project the new input onto the spectral em-
bedding space given by the training examples. And Step 2 of Figure 1 served as the
optional step that can be applied to the spectral embedding of the new input (computed
either by Step 1(a) or 1(b)), and its used is dependent on whether Step 2 was used dur-
ing training so that the new input can be compared with the training examples within
the same embedding space.

3.2 Computing the Spectral Kernel

When the spectral embedding of the training and testing set is ready, the final step is
to compute the spectral kernel values from the spectral embedding using a selected
similarity measure. This step is flexible and many typical similarity measures can be
used. Table 2 lists some possible options for the spectral kernel. Notice that the magni-
tude of the similarity measure need not be constrained within 0 and 1 since there is no
strict requirement on the range of possible kernel values in classification.

3.3 Relationship to Latent Semantic Kernel

We conclude this section with the proof that the latent semantic kernel is only a specific
instance of the spectral kernel. The objective is two-fold: (i) we want to clarify the
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difference between spectral kernels and latent semantic kernels as they appear similar at
first glance; and (ii) by this proof, we seek to establish spectral kernels as a framework
under which spectral clustering information can be further researched to improve the
task of classification.

Theorem 1. Given the term-document matrix D, the latent semantic kernel is a spe-
cific instance of the spectral kernel, i.e., SK〈ΓI(DT D), 1(b), SI〉 reduces to the latent
semantic kernel.

Proof. From [12], we have the following facts: latent semantic kernels are computed
from the term-document matrix D or S = DTD; the LSK matrix of training set is
K = VΛkVT ; the LSK values between the training set di and the new input d is
κ(di,d) = (VIkVT t)i, where t = DT d and the matrix V is obtained from eigen
decomposition S = VΛVT . Using the above, we prove that spectral kernels with
a configuration of SK〈ΓI(S), 1(b), SI〉 gives the same K and κ(di,d) as LSK. We
denote K̂ as the SK matrix of the training set and κ̂(di,d) as the SK values between
the training set di and the new input d. Since the input kernel matrix of SK is S = DT D
and is computed by the inner product of each document di, we can easily get the input
kernel values of the new input d as Sx = DTd. As the transformation is ΓI , we have
ΓI(S) = S and τI(Sx) = Sx = DTd = t. Then, we compute the spectral embedding

(using Step 1(b)) of di as yi = Λ1/2
k (vi

1,v
i
2, . . . ,v

i
n)T , where vi is the i-th eigenvector

of S or the i-th column of V. Further, the spectral embedding of the new input d (by
Step 1(b)) is y = Λ−1/2

k VT τ(Sx) = Λ−1/2
k VT t. Since the final component is the

inner product SI , we immediately get K̂ = (yT
i yj)n×n = (Λ1/2

k VT )T (Λ1/2
k VT ) =

VΛkVT = K and κ̂(yi,y) = yT
i y =

(
(Λ1/2

k VT )T (Λ−1/2
k VT t)

)
i
= (VIkVT t)i =

κ(yi,y).

4 Experimental Results

We evaluated our spectral kernels on two text data sets, namely Medline1033 and
Reuters-21578, to demonstrate its applicability and effectiveness. We chose these two
data sets for easy comparison with the experiments reported in [12]. Compared to the
baseline, i.e., SVM classifier with linear kernel and without feature selection, our re-
sults were either better or on-par according to the F1 measure. The interested reader
may refer to [20] for the complete details.

On the Medline1003, we configured a spectral kernel of the form SK〈ΓN , 1(a), SI〉.
We started with a small k feature space for the classifier with spectral kernel and in-
creased the dimensionality until the classification performance deteriorated, i.e., when
k > 250. The results of both query23 and query20 proved to be very encour-
aging. With a small k (less than 200), the spectral kernel SK〈ΓN , 1(a), SI〉 increased
quickly to a result that was much better than baseline method according to F1 measure.
In particular, for query23, the best performance delivered by the spectral kernel was
84.62%, almost twice that of the baseline method which was 42.11%.

On the Reuters21578, we configured the spectral kernel to SK〈ΓN , 1(b)2, SI〉.
While performing comparably on categories earn and interest, the spectral kernel
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outperformed the linear kernel (i.e., baseline method) on the remaining eight categories
with small k values (generally less than 300). In particular, on the ship category, the
best F1 achieved by spectral kernel was 89.16% which is much higher than 82.05%
delivered by linear kernel. More importantly, the F1 performance under most values
of k were much higher than the baseline. This is an encouraging result showing the
effectiveness of spectral kernels in text classification tasks.

Furthermore, eight of the performance plots on Reuters data set, and two of the per-
formance plots on Medline data set showed that a small value of k (usually 100 � k �
300) is often sufficient to achieve good F1 performance. This observation is different
from the selection of k in latent semantic kernels, where a larger k implied better per-
formance (i.e., in the range of 500 to 1000 as observed in [12]). The small values of k
is encouraging because they lead to shorter runtime to achieve the same classification
accuracy as the latent semantic kernels.

The results on the Reuters data set did however reveal a shortcoming of the spectral
kernel: there is no fix value of k that ensures consistent performance for different cate-
gories. This will be a practical limit that requires automated mechanisms to determine
k. While we are working on this as part of our future work, using a single value of k en-
ables us to compare the spectral kernel against the linear kernel objectively. As reported
in [20], we achieved better performance than the baseline method when k = 270, and
comparable performance when k = 120.

5 Conclusion and Future Work

We proposed a new kernel that uses the semantics extracted from spectral cluster-
ing. Unlike LSKs, spectral kernels are unique by the virtue of using spectral cluster-
ing information and its ability to support incremental updates to the kernel matrix that
keeps the cost of training to a minimal. Further, we have shown that we can obtain the
spectral embedding of both training and testing sets by matrix approximation. Hence, it
is possible for spectral kernels to handle feature space of any dimensionality.

The closest piece of related work, to our knowledge, is the classification of pro-
jected k-dimensional space obtained by spectral clustering algorithms [21]. However,
the proposal suffers from three drawbacks. First, if a new input arrives, there is a
need to eigendecompose the new S (which includes the new input) to obtain the new
spectral space. This is time-consuming for classification during operation where large
number of data may arrive. Second, since the spectral space is dependent on the test-
ing set rather than the training set, the spectral space is unstable if the testing set is
highly random. Third, the similarity relationship between training data is not fully ex-
ploited to significantly improve the accuracy of classification. Our work overcomes
these drawbacks and provided a kernel framework of applying spectral clustering to
classification.

As an attempt to develop a novel kernel for classification, we foresee much future
work for research. In particular, our immediate interest is to be able to find a suitable
value of k for each category in classification by means of automated mechanisms. This
is important for practical reasons as maintaining the right value of k over the lifetime
of classification can significantly improve classification accuracy.
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Data Warehousing and Knowledge Discovery has been widely accepted as a key 
technology for enterprises to improve their abilities in data analysis, decision support, 
and the automatic extraction of knowledge from data. Historically, the phrase knowl-
edge discovery in databases was coined at the first KDD (Knowledge Discovery and 
Data Mining) workshop in 1989 to emphasize that knowledge is the end-product of a 
data-driven discovery process. Since then, much research has been accomplished in 
this field. This paper which is written as an epilogue of the DaWaK 2005 proceedings 
by the programme committee chairpersons together with Nguyen Manh Tho, should 
reflect the past development of DaWaK-results and other significant research out-
comes in the area and above all should deliver a rough sketch of the current develop-
ment and possible future work. 

In the early 1990s, most businesses realized that there was an urgent need for more 
sophisticated tools for analyzing their business data, customer profiles and product 
information. Data mining and data warehousing technology mainly originated from 
these needs.  

Data mining can be defined as the automated extraction of hidden predictive in-
formation from large amount of data. Data Mining is considered as an important step 
in the Knowledge Discovery -process that produces a particular enumeration of pat-
terns (or models) over the data [9]. The most commonly used techniques in data min-
ing and knowledge discovery in the late 1980s and early 1990s are artificial neural 
networks, decision trees, genetic algorithms, nearest neighbourhood, and rule induc-
tion [12,13]. 

William H. Inmon, who is widely accepted as the mental-father of data warehous-
ing has been working on data warehousing concepts since 1983, and used for the first 
time this term in 1992 [10]. In 1993, Ted Codd coins the term OLAP (On-Line Ana-
lytical Processing) and defined the famous 12 OLAP rules [11]. Based on their defini-
tions, a data warehouse is actually a comprehensive system that includes all the proc-
esses, tools and technologies necessary for extracting data from many operational, 
legacy, possibly heterogeneous data sources and managing them in a separate storage 
(warehouse) to provide end-user decision-support access. OLAP tools are well-suited 
for complex data analysis, such as multidimensional data analysis, and to assist in 
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decision support activities. The multidimensional (MD) data model has been proved 
to be the most suitable for OLAP applications. 

The two sides of the coin for decision making are principally formed by Data 
Warehousing and Knowledge Discovery. Knowledge discovery in data warehouses 
focuses upon the extraction of interesting and previously unknown knowledge [3]. 
Researchers and application developers have designed knowledge discovery systems 
for a large number of application domains including finance, health, telecommu-
nications and marketing. Consequently, many areas of research in data warehousing 
and knowledge discovery mushroomed in the late 1990s. Initially, when the concepts 
of OLAP and multi-dimensional databases have not yet the desired level of maturity, 
most researchers focus on the topics of data warehouse design, view selection and 
maintenance, multiple query optimization using views, on-line view maintenance, 
OLAP operators and environment, fragmentation of multidimensional database [1, 23, 
24]. In the data mining community, interests are focused on data & web mining, pat-
tern recognition and time series databases [1, 14, 15, 16]. More attention is also de-
voted to scientific data exploration dealing with such research objects as mining and 
discovery on biological data, spatial, text and multimedia data. Distributed and paral-
lel mining techniques become more and more in use and some large-scale parallel and 
distributed knowledge discovery systems start to appear [17]. With the widespread of 
web applications web usage analysis and user profiling builds a special focus of in-
vestigations which huge relevance for e-commerce  [17]. 

In the early 2000 the research community gradually solve the most basic issues in 
data warehouse design, materialized view maintenance and selection, OLAP query 
design and evolution. However, with the development of the increasing number of 
commercial products in OLAP and data warehousing, the data warehouse research 
activities force to concentrate towards more advanced techniques such as integrating 
active rules, update filtering, parallel processing, summarizability problem, data ex-
piry, data indexing [2,3].  These activities include also the increasing consideration of 
security issues in OLAP and generally in the data warehousing environment [2, 25] - 
as well as the advanced interest on the heterogeneous and distributed data warehous-
ing environment. [3,26]. The concept of object-orientation and the emerging XML 
technology cause significant implications on the design and development of data 
warehouse applications. [3, 26].  

In the data mining and knowledge discovery research fields, the early 2000’s wit-
ness new mining algorithms and techniques which are proposed and applied in a vari-
ety of applications such as text mining,  outlier detection in scientific data, mining of 
temporal patterns, optimizing inventory in E-commerce, telephony and ISP applica-
tions [18]. Special attention is devoted to Web mining, interactive knowledge explora-
tion, matchmaking and visualization [2, 18]. Mining of Web-log data, and multimedia 
data are still most important research topics while mining in bioinformatics has be-
come an emerging field. [3,19]. 

In 2002 and 2003, with the advances of modern monitoring technologies (i.e. sen-
sors, RFID, transmission of huge amount of digital satellite monitoring data) and with 
the demand of high speed business changes, the integration of a special type of data 
source namely of continuous data streams is becoming more and more essential. Data 
streams occur in applications such as sensor networks, networking flow analysis, web 
clicks stream analysis, telecommunication fraud detection, e-business and stock mar-
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ket online analysis. One of the main characterics of data streams is the impracticality 
of complete storage – hence we are usually restricted to the storage of samples or 
aggregations. It is demanding to conduct advanced analysis over fast and huge data 
streams to capture the trends, patterns, and exceptions. As a further consequence, the 
concept of near-real time data warehouses was initially announced  in [4] while con-
currently we still observe further intense investigations on parallel and distributed 
warehousing. [4, 27]. Ontology Structures, which are a foundation of the Semantic 
Web [7], has been applied among others for the integration of heterogeneous Data 
Quality Improving techniques [5]. With the increasing embedding of Web data as one 
of the main data sources, in DWH-research the Web-Warehousing concept  is thus 
investigated in-depth together with its accompanying concepts and related technolo-
gies such as XML OLAP Cube, XML Warehouse, Warehouse design based on XML 
Schema [5, 28]. OLAP researchers proceed in the intense investigation of advanced 
improvements in Cube presentation, management, and performance (which obviously 
is not restricted on traditional data, but also includes XML data and other non-
standard data sources such as spatial data [5, 28]).  

Evidently the data mining community  recognizes the important role of streams and 
time series analysis applications. A plethora of algorithms and techniques were pro-
posed to mine high-speed data streams, to analyse click streams, and to correlate syn-
chronised and asynchronised online streams [20, 21]. Furthermore, with the huge 
amount of web data,  research conducted on web search tools and web classification 
applications builds a main focus[4, 20, 21]. Data mining in Bioinformatics, multime-
dia and complex data still receives a lot of interesting and research efforts [20, 21]. 
Data mining techniques are also applied to improve database-engine issues by using 
techniques which have been successfully deployed in other areas of applied computer 
science and systems theory – a prominent example herefore is the use of  Rough Set 
Theory, as an alternative of fuzzy sets  [5]. 

The complexity of existing data warehousing and enterprise systems has reached a 
new quality in the recent years. However, there is still a lack of comprehensive docu-
mentation and dissemination of requirement engineering methods. Therefore, concep-
tual modelling still plays an essential role in integrating higher level of abstractions 
for the description of processes all components of the data warehouse architecture [6]. 
Spatial data warehouses reach some maturity with the design framework of Geo-
graphical Dimensional Schema. OLAP-techniques are now enhanced with innova-
tions in Range Aggregation and approximate queries answering [6, 29]. Data streams 
analysis and time series mining techniques receive an enduring boosted interest from 
the researchers [6, 22]. Pattern discovery and event sequence mining has emerged as a 
new field of interest while data semantics became an increasingly important issue. 
The topic of data visualization and exploration gets increased interests while tradi-
tional mining techniques such as association rules, clustering remain steadily prevail-
ing [6, 22]. In parentheses it should be remarked that not only academic researchers, 
but increasingly the industrial community is concentrating in these activities [6, 22]. 

Due to the fact of the tremendous amount of existing data warehouse systems, 
more current efforts are taken to integrate and transform the different heterogeneous 
data warehousing systems. An important innovation can be observed  in extending   
existing relevant and successful CASE tools used in software development (most 
notably UML-tools) for data warehouse design and development. With the expanding 
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spread of open source tools we can observe a trend to solve the Business Intelligence 
issues in the open source community.  

Artificial intelligence techniques such as machine learning, neural network, case-
based reasoning have inspired a continuous  fast growing attention within the data 
mining community. An expanding interest can be observed in the integration of text 
processing and the mining unstructured data using data semantics approaches in com-
bination with traditional techniques i.e. clustering, association rules, pattern recogni-
tion...  

Although research in data warehousing and knowledge discovery has generated 
successful and remarkable results, new applications still continuously generate new 
challenges to the research community. With the exponential growing amount of  in-
formation to be included in the decision making process, the data to be considered 
becomes more and more complex in both structure and semantics. Consequently, the 
process of retrieval and knowledge discovery from this huge amount of heterogeneous 
complex data builds the litmus-test for the research in the area. Current emerging real 
world applications such as real-time data warehousing, analysis of spatial and spatio-
temporal data, OLAP mining, mobile OLAP and more recent applications in natural 
sciences (especially bioinformatics) requires novel representation and manipulation 
techniques for non-standard data and tailored efficient algorithms for the computation 
of dedicated aggregate queries and  application-specific index structures. 

Vendors like Oracle, IBM and Microsoft already tightly integrate OLAP and data 
mining in their DBMS commercial tools. Therefore, we are observing a trend to close 
the gap between data warehousing and data mining. It is even imaginable that in the 
medium-term  future the separation of OLAP-data warehouses (with its semantic 
redundant storage requirement) from its OLTP-database-sources could be bridge by 
innovative view-generation techniques as originally proposed in the three-level archi-
tecture. 
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